導航:首頁 > 小學學科 > 小學數學思想方法有哪些實踐中如何培養

小學數學思想方法有哪些實踐中如何培養

發布時間:2020-11-30 09:13:13

A. 如何培養小學生建立初步的數學思想方法

數學思想是指現實世界的空間形式和數量關系反映到人們的意識之中,經過思維活動而產生的結果。數學思想含有傳統數學思想的精華和現代數學思想的基本特徵,並且是歷史地發展著的。通過數學思想的培養,數學的能力才會有一個大幅度的提高。掌握數學思想,就是掌握數學的精髓。
小學數學教材中滲透的數學思想方法主要有:數形結合、集合、對應、分類、函數、極限、化歸、歸納、符號化、數學建模、統計、假設、代換、比較、可逆等思想方法。教學中,要明確滲透數學思想方法的意義,認識數學思想方法是數學的本質之所在、是數學的精髓,只有方法的掌握、思想的形成,才能使學生受益終生。
一、數形結合思想
1、先形後數。一年級的小學生剛開始學習數學,是從具體的物體開始認數,從具體形象到抽象。
2、先數後形。如教學排隊問題:一年級小同學排隊做操,從前往後數,小明排第4,從後往前,小明排第3,這一對共有幾人?小同學很容易地將4與3相加,得出錯誤的結果。如果讓學生用畫圖的方法解答,用「△」代表排隊的小朋友,這道題很容易解決。
二、對應思想
例如,求一個數比另一個數多(少)幾的應用題的數量關系。對二年級學生來說較為抽象。我是這樣設計的:蘋果有7個,梨有5個,蘋果比梨多幾個?學生通過用○、△等學具代替蘋果、梨擺一擺,或用畫一畫的方法得到了解決。同時,鼓勵了學生的創新,使學生樂於參與這樣的數學活動。
三、分類思想
分類是數學發現的重要手段,在教學中,如果對學過的知識恰當地進行分類,就可以使大量紛繁的知識具有條理性。一般分類時要求滿足互斥,無遺漏、最簡便的原則。
四、化歸思想
化歸是數學中最普遍使用的一種思想方法。它是通過變形把要解決的問題,化歸為某個已經解決的問題,從而求得原問題的解決。其基本思想是:將待解決的問題甲,通過某種轉化過程,歸結為一個已經解決或者比較容易解決的問題乙,然後通過乙問題的解答返回去求得原問題甲的解答。這種化歸思想不同於一般所講的「轉化」、「轉換」,它具有不可逆轉的單向性。它的基本形式有:化難為易,化生為熟,化繁為簡,化整為零,化曲為直等。在小學數學中蘊藏著各種可運用化歸的方法進行解答的內容,讓學生初步學會化歸的思想方法。
五、集合思想方法
小學數學教材中蘊涵著大量的集合思想,集合的思想和概念滲透於數學教學的各個階段,我們不僅向學生傳授知識,而且要把含在教材中的集合思想有意識地對學生進行滲透,這樣有利於培養學生的抽象概括能力,有利於提高學生分析和解決問題的能力。教材採用直觀手段,利用圖形和實物滲透集合的思想方法。
重視加強對學生進行數學思想方法的滲透不但有利於提高課堂教學效率,而且有利於提高學生的數學文化素養和思維能力。但是,對學生數學思想方法的滲透不是一朝一夕就能見到學生數學能力提高的,而是有一個過程。因此,在教學過程中,要有機地結合數學知識的內容,做到持之以恆、循序漸進和反復訓練,才能使學生真正地領悟數學思想方法,實現質的飛躍。
那麼,小學數學該培養怎樣的數學習慣?良好學習習慣的培養應當是多層面的。小學數學教育中學生良好學習習慣的培養應包括以下幾個方面:一是傳統學習習慣培養,二是創造性學習習慣的培養,三是合作性學習習慣的培養。下面就具體談一談。
六、傳統數學學習習慣的培養
1、課前預習的習慣。在教學實際操作中,一開始可以通過布置預習提綱的方法來進行,以後逐步過渡到只布置預習內容,讓學生自己去讀書、去發現問題,讓學生課前對新知識有所了解。有些課上沒有條件、沒有時間做的活動,也可以讓學生課前去做。如講統計表時,就可以讓學生課前調查好同組同學的身高、體重等數據。
2、認真聽"講"的習慣。這里的聽"講",應包括兩方面的意思:一是說課堂上,精力要集中,不做與學習無關的動作,要認真傾聽老師的點撥、指導,要抓住新知識的生長點,新舊知識的聯系,弄清公式、法則的來龍去脈。二是說要認真地聽其他同學的發言,對他人的觀點、回答能做出評價和必要的補充。
3、認真完成作業的習慣。完成作業,是學生最基本、最經常的學習實踐活動。要求學生從小就養成:(1)規范書寫,保持書寫清潔的習慣。作業的格式、數字的書寫、數學符號的書寫都要規范。(2)良好的行為習慣。要獨立思考,獨立完成作業,不要跟別人對算式和結果,更不要抄襲別人的作業。(3)認真審題,仔細運算的習慣。(4)驗算的習慣。
七、創造性學習習慣的培養
1、培養學生善於質疑的習慣。在參與、經歷數學知識發現、形成的探究活動中,善於發現,提出有針對性、有價值的數學問題,質疑問難,是學生創造性學習習慣培養的一個重要方面。愛因斯坦說過:"提出一個問題,往往比解決一個問題更重要。"問題是數學的心臟。在數學學習過程中,要逐步培養學生自主探究、積極思考、主動質疑的學習習慣,讓他們想問、敢問、好問、會問。
2、培養學生手腦結合,注重實踐的習慣。小學數學教育必須重視培養學生動手、動腦、動口的良好習慣,使學生通過看一看、摸一摸、拼一拼、擺一擺、講一講來獲取新知。開展類似的教學活動,就能使學生養成手腦結合,勤於實踐的學習習慣。
3、培養學生的良好思維習慣。"教會學生思考,對學生來說,是一生中最有價值的本錢。"在教學活動中,要特別注重為學生創設"創新"的實踐活動,如一題多解、一題多變、猜想、聯想、發散思維、推理、操作、實驗、觀察、討論等數學活動。培養學生多角度思考和解決問題的習慣,培養他們思維的多向性和靈活性。
葉聖陶先生說:"教育是什麼,往單方面講,只需一句話,就是要培養良好的習慣。所以小學階段一定要注重學生習慣的培養,良好習慣的養成或受益終身。

B. 如何在小學數學教學中培養化歸的思想方法

小學數學知識分為顯性知識和隱性知識兩個方面。小學數學教材是數學教學的顯性知識系統,而數學思想方法是數學教學的隱性知識系統。
在小學階段數學學科最重要的知識莫過於數學思想方法的知識,它是學生未來能夠適應社會和繼續學習的一種能力。笛卡爾說過:「數學是使人變聰明的一門學科」。數學思想方法是數學的精髓,是數學精神和科學世界觀的重要組成部分,需要長期培養,經常應用,潛移默化。
小學數學常用的數學思想方法有:對應思想方法、假設思想方法、比較思想方法、符號化思想方法、類比思想方法、轉化思想方法、分類思想方法、集合思想方法、數形結合思想方法、統計思想方法、極限思想方法、代換思想方法、可逆思想方法、化歸思想方法、變中抓不變的思想方法等等。
本文就自己在教學中的實踐談談如何培養化歸的思想方法。
所謂「化歸」,就是轉化和歸結。在解決數學問題時,人們常常將待解決的問題甲,通過某種轉化過程,歸結為一個已經解決或者比較容易解決的問題乙,然後通過對問題乙的解答返回去求得原問題甲的解答,這就是化歸方法的基本思想。
化歸思想的實質,是將新問題轉化為已掌握的舊知識,然後進一步理解並解決新問題。它的基本形式有:化未知為已知,化新為舊,化難為易,化繁為簡,化曲為直。
一些學生平時學習很認真,可遇到新問題卻無從下手,不知道從何開始解決問題,出現這種情況的根本原因就是不會靈活應用已學的數學思想方法去思考問題,實現問題的轉化。
那麼如何在小學數學教學過程中培養學生掌握化歸的數學思想方法呢?
一、搭建新問題向已學知識化歸的橋梁
例1.計算 + ==?
學生剛開始學習異分母分數加法,怎樣求出它們的和?是一個所要解決的未知問題,為了解決這個問題。
教師搭橋:我們沒學過這樣的分數加法,但我們已學過 + = 的加法。問:算式的含義是什麼?你們能用平面圖表示出算式的意義嗎?能不能想辦法把現在的新問題轉化為已學過的問題,從而找出解決問題的途徑呢?
教師引導學生必須把 + =?化歸為學生能解決的同分母分數相加的問題上來。即通過通分,把異分母分數加法化為同分母分數加法,使之達到原問題的解決。即:
+ (新問題)=(轉化為) + (舊問題)== (結論)
當得出結論後,教師一定要追問:你們是怎麼想的?是運用什麼數學思想方法解決問題的?
看似這平常的、簡單的一問,其實化歸的數學思想方法在這一問中,得到了升華、得到了加強、得到了鞏固。
二、歸納概括出化歸思想方法在知識構建中的作用
學完一種知識,比如小數加減法;或學完一類知識,比如,平面圖形面積的計算;或學完階段知識,比如,小學階段的數學學習結束時,教師就要引導學生歸納概括出我們學習這些知識時,運用了哪些數學思想方法去解決的?從而進一步明確這些個數學思想方法在知識建構中的重要作用。
比如:當學完平面圖形時,教師可以引導學生歸納概括出小學階段我們學過的平面圖形的面積的計算公式都是如何推導出來的?即總結概括在同類知識結構中,化歸思想方法在知識建構中的運用。
設問:我們都學習過哪些平面圖形的面積公式?
總結:長方形、正方形、三角形、梯形、圓形。
啟思:同學們想想,這些平面圖形的面積都是怎麼推導出來的?運用的是什麼方法?
在給出充分的時間讓學生獨立思考、合作探究後,總結概括:
正方形用數格子的方式,得出正方形的面積=邊長×邊長;
長方形的面積,是用正方形和數格子的方法得出長方形的面積=長×寬;
平行四邊形的面積,是把平行四邊形轉化為長方形的圖形,長方形的長就是平行四邊形的長,長方形的寬就是平行四邊形的高,長方形的面積=長×寬,那麼,平行四邊形的面積就等於長乘以高。從而推導出平行四邊形的面積=底×高;
三角形的面積,是把三角形轉化為長方形或平行四邊形(或正方形),從而推導出三角形的面積=底×高÷2;
梯形(轉化為)長方形(或正方形),從而推導出梯形的面積=(上底+下底)×高÷2
圓的面積:我們用剪一剪、拼一拼、旋轉、平移的方法,把圓形化歸為一個近似於長方形的圖形。發現:圓周長的一半相當於長方形的長,寬相當於圓的半徑,平行四邊形的面積等於長乘以寬,圓的面積就等於圓周長的一半乘以半徑,那麼,圓的面積=圓周長的一半×半徑= ×r=π× r2 。所以得出圓的面積等於π× r2
我們推導出的平面圖形的面積計算公式,都是把一種新圖形化歸為已學過的圖形,從而用已學過的面積公式推導出新圖形的面積公式,把沒有學過的知識轉化為我們已經學過的知識來解決新問題,這種解決數學問題的方法就是——化歸的數學思想方法。
化歸的數學思想方法,不僅僅在小學階段學習佔有重要的地位,同時,它也是中學、高中學習的一種重要的思想方法,更是我們終身學習的一種思想方法。
當小學階段學習結束時,教師還要引導學生歸納概括出:化歸的數學思想方法在計算中的應用、在幾何圖形中的應用、在應用題中的應用,從而告訴學生學習數學知識最重要的是思想方法的學習,它是進一步學習知識的最重要的武器。

C. 小學數學里有哪些基本的數學思想方法

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

D. 小學數學思想方法有哪些內容

小學數學思想方法有哪些? 1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。 2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。 3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。 4、符號化思想方法 用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。

E. 怎樣培養小學生的數學思想

一、從具體的感性認識入手,積極促進學生的思維在數學基礎知識教學中,應加強形成概念、法則、定律等過程的教學,這也是對學生進行初步的邏輯思維能力培養的重要手段。然而,這方面的教學比較抽象,加之學生年齡小,生活經驗缺乏,抽象思維能力較差,學習時比較吃力。學生學習抽象的知識,是在多次感性認識的基礎上產生飛躍,感知認識是學生理解知識的基礎,直觀是數學抽象思維的途徑和信息來源。我在教學時,注意由直觀到抽象,逐步培養學生的抽象思維的能力。在教學「角」這部分知識時,為了使學生獲得關於角的正確概念,我首先引導學生觀察實物和模型:如三角板、五角星和張開的剪刀、扇子形成的角等,從這些實物中抽象出角。接著再通過實物演示,將兩根細木條的一端釘在一起,旋轉其中的一根,直觀地說明由一條射線繞著它的端點旋轉可以得到大小不同的角,並讓學生用准備好的學具親自動手演示,用運動的觀點來闡明角的概念,並為引出平角、周角等概念做了准備。二、從新舊知識的聯系入手,積極發展學生思維數學知識具有嚴密的邏輯系統。就學生的學習過程來說,某些舊知識是新知識的基礎,新知識又是舊知識的引伸和發展,學生的認識活動也總是以已有的舊知識和經驗為前提。我每教一點新知識都盡可能復習有關的舊知識,充分利用已有的知識來搭橋鋪路,引導學生運用知識遷移規律,在獲取新知識的過程中發展思維。如在教加減法各部分的關系時,我先復習了加法中各部分的名稱,然後引導學生從35+25=60中得出:60-25=35;60-35=25。通過比較,可以看出後兩算式的得數實際上分別是前一個算式中的加數,通過觀察、比較,讓學生自己總結出求加數的公式:一個加數=和-另一個加數。這樣引導學生通過溫故知新,將新知識納入原來的知識系統中,豐富了知識,開闊了視野,思維也得到了發展。三、精心設計問題,引導學生思維小學生的獨立性較差,他們不善於組織自己的思維活動,往往是看到什麼就想到什麼。培養學生邏輯思維能力,主要是在教學過程中通過教師示範、引導、指導,潛移默化地使學生獲得一些思維的方法。教師在教學過程中精心設計問題,提出一些富有啟發性的問題,激發思維,最大限度地調動學生的積極性和主動性。學生的思維能力只有在思維的活躍狀態中,才能得到有效的發展。在教學過程中,教師應根據教材重點和學生的實際提出深淺適度,具有思考性的問題,這樣就將每位學生的思維活動都激活起來,通過正確的思維方法,掌握新學習的知識。四、進行說理訓練,推動學生思維語言是思維的工具,是思維的外殼,加強數學課堂的語言訓練,特別是口頭說理訓練,是發展學生思維的好法。在學習「小數和復名數」這一章節時,由於小數與復名數相互改寫,需要綜合運用的知識較多,這些又恰恰是學生容易出錯的地方。怎樣突破難點,使學生掌握好這一部分知識呢?我在課堂教學中注重加強說理訓練。在學生學完例題後,啟發總結出小數與復名數相互改寫的方法,再讓學生根據方法講出做題的過程。通過這樣反復的說理訓練,收到了較好的效果,既加深了學生對知識的理解,又推動了思維能力的發展。

F. 小學數學中對學生轉化思想的培養方法有哪些

轉化思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。也就是說,轉化方法的基本思想是在解決數學問題時,將待解決的問題,通過某種轉化過程,歸結到一類已經解決或者比較容易解決的問題,然後通過容易問題還原解決復雜的問題。將有待解決或未解決的問題,轉化為在已有知識的范圍內可解決的問題,是解決數學問題的基本思路和途徑之一,是一種重要的數學思想方法。
小學是學生學習數學的啟蒙階段,這一階段讓學生真正理解並掌握一些基本的數學思想便顯得尤為重要。轉化思想是數學思想的重要組成部分。它是從未知領域發展,通過數學元素之間的因果聯系向已知領域轉化,從中找出它們之間的本質聯系,解決問題的一種思想方法。在小學數學中,主要表現為數學知識的某一形式向另一形式轉變,即化新為舊、化繁為簡、化曲為直、化數為形等。21世紀的數學教師,應該結合相應的數學情景,培養學生善於和習慣利用轉化思想解決問題的意識。使復雜的問題簡單化、抽象的問題具體化,特殊的問題一般化,未知的問題已知化,提高學生解決數學問題的能力,從而使學生愛上學數學。

1.計算的縱向轉化
加減計算: 20以內數的加減←―100以內數的加減←―多位數的加減←―小數加減 ← 分數加減 。其中 20以內數的加減計算是基礎。如23+15可以轉化成2+1和3+5兩道十以內數的計算,64-38 可以轉化成14-8和5-3兩道計算。多位數計算也同樣。
分數加減計算如 7/8+3/8 就是 7個1/8 加3個1/8 ,就是(7+3)個1/8 ,最後也可以看作是20以內數的計算。乘除計算:一位數乘法← 多位數乘法← 小數乘法。一位數乘法口訣是基礎,多位數乘法都可以把它歸結到一位數乘法。除數是一位數的除法←―多位數除法←-小數除法。除法中除數是一位數除法的計算方法是基礎,多位數除法都可以把它歸結到一位數除法。 2.計算的橫向轉化
加法與減法之間可以轉化,乘法與除法之間可以轉化。幾個相同加數連加的和,可以轉化成乘法來計算。被減數連續減去幾個相同的減數,差為零,可以轉化成除法來表示。分數的除法,可以將除數顛倒位置變成乘法進行計算。
3.圖形中的轉化
面積計算公式的推導可以把長方形面積公式作為基礎,其它圖形面積公式都可以通過轉化變成長方形或平行四邊形後得出公式。體積計算公式以長方體的體積計算公式為基礎,圓柱體的體積公式的推導也是通過轉化為長方體來得出。轉化思想是解決數學問題的一種最基本的數學思想,在研究數學問題時,我們通常是將未知問題轉化為已知的問題,將復雜的問題轉化為簡單的問題,將抽象的問題轉化為具體的問題,將實際問題轉化為數學問題,我們也常常在不同的數學問題之間互相轉化,可以說在解決數學問題時轉化思想幾乎是無處不在的。

G. 小學數學教學中應滲透哪些數學思想方法

以下幾種數學思想方法學生不但容易接受,而且對學生數學能力的提高有很好的促進作用。
1.化歸思想
化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。應當指出,這種化歸思想不同於一般所講的「轉化」、「轉換」。它具有不可逆轉的單向性。例1 狐狸和黃鼠狼進行跳躍比賽,狐狸每次可向前跳20米,黃鼠狼每次可向前跳6米。它們每秒種都只跳一次。比賽途中,從起點開始,每隔15米設有一個陷阱,當它們之中有一個掉進陷阱時,另一個跳了多少米?這是一個實際問題,但通過分析知道,當狐狸(或黃鼠狼)第一次掉進陷阱時,它所跳過的距離即是它每次所跳距離20(或6)米的整倍數,又是陷阱間隔15米的整倍數,也就是20和15「 最小公倍數」。針對兩種情況,再分別算出各跳了幾次,確定誰先掉入陷阱,問題就基本解決了。上面的思考過程,實質上是把一個實際問題通過分析轉化、歸結為一個求「最小公倍數」的問題,即把一個實際問題轉化、歸結為一個數學問題,這種化歸思想正是數學能力的表現之一。
2.數形結合思想
數形結合思想是充分利用「形」把一定的數量關系形象地表示出來。即通過作一些如線段圖、樹形圖、長方形面積圖或集合圖來幫助學生正確理解數量關系使問題簡明直觀。例2 一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就這樣每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶?此題若把五次所喝的牛奶加起來,即1/2+1/4+1/8+1/16+1/32就為所求,但這不是最好的解題策略。我們先畫一個正方形,並假設它的面積為單位「1」,由圖可知,1-1/32就為所求,這里不但向學生滲透了數形結合思想,還向學生滲透了類比的思想。
3.組合思想
組合思想是把所研究的對象進行合理的分組,並對可能出現的各種情況既不重復又不遺漏地一一求解。
4.「函數」思想
函數是近代數學的重要概念之一,在現代科學技術中廣泛應用,在小學數學教材中,函數思想的滲透非常廣泛。在第一學段,通過填圖等形式,將函數思想滲透其中;在第二學段,學生掌握了許多計算公式,如s=vt等,這些計算公式實際上就是一些簡單的函數關系式;到了六年級,正、反比例的意義是滲透函數思想的重要內容,因為成正比例和反比例的量反映的是兩個變數之間的依存關系。
此外,還有符號思想、對應思想、極限思想、集合思想等,在小學數學教學中都應注意有目的、有選擇、適時地進行滲透。
此外還有集合思想、符號化思想、對應思想等數學思想和方法。

H. 小學數學思想方法有哪些

具體有:小學階段最常用的化歸的思想方法。利用化歸法轉化而得到的新問題與原問題相比較,為已解決的或較容易解決的。所以,化歸的方向應該是化隱為顯,化繁為簡、化難為易和化未知為已知。應當指出,化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。這種化歸思想不同於一般所講的「轉化」、「轉換」。應該就這些吧。

閱讀全文

與小學數學思想方法有哪些實踐中如何培養相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99