導航:首頁 > 小學學科 > 2013年小學數學論文

2013年小學數學論文

發布時間:2020-11-30 02:34:08

小學數學小論文範文

生活中的數學
省市:河北省衡水市 學校班級:人民路小學六年級3班 作者:李博康 指導教師:霍瓊
大千世界,無奇不有,在我們數學王國里也有許多有趣的事情。在生活中,無數件顯得十分麻煩、枯燥浪費時間的事情,能不能用數學思維來分析一下,節省時間,讓事情變得十分有趣呢?當然也可以。
事情 時間
穿衣服整理床鋪 二分鍾
洗臉刷牙 五分鍾
燒水 五分鍾
煮飯 三十分鍾
吃飯 十五分鍾
就以早上這段時間來說吧;
乍眼一看,呀!不得了,一下子就要五十七分鍾,哪有這么長時間,但是用數學的角度來看就不一樣啦!在煮飯的時候可不可以幹些別的事情,當然可以,反正也不誤事,這么一說穿衣服整理床鋪、洗臉刷牙、燒水的時間都可以省去啦,這樣一來,足足少了十二分鍾,當然這只是簡單的舉例,在生活中有很多這種例子,再比如說,沏茶:
燒水(八分鍾) 洗水壺(一分鍾) 洗茶杯(二分鍾) 接水(一分鍾) 找茶葉(一分鍾) 沏茶(一分鍾)這道題與前一道差不多,可是在燒水前後必須做的事,不能放在燒水的八分鍾里,也就是說接水,洗水壺、沏茶的三分鍾,不可以消掉,那麼由此一算,需要十五分鍾。
當然生活還不止這些,再舉一個例子,打電話,應該所有人都熟悉,但這裡面也有學問。
假想一下,一個老師要通知一個學生,通知一個學生要一分鍾(不包括異常情況),有人說,很簡單,十個人十分鍾,那就大錯特錯啦,請問,第一分鍾通知一名學生,第二分鍾,老師再通知一名,那第一次通知的學生可不可以幫忙.?答;可以。以此類推,只需四分鍾,再把人數乘十,一百名,是不是很管用?
實際上,數學到處都是,只是要看看你有沒有發現它,其實數學廣角對我們很有幫助,我們要好好利用。

❷ 小學數學論文

數學發展史

此書記錄了世界初等數學的發展與變遷。可大體分為「數的出現」、「數字與符號的起源與發展」、「分數」、「代數與方程」、「幾何」、「數論」與「名著錄」七大項,跨度千萬年。可讓讀者了解數學的光輝歷史與發展。是將歷史與數學結合出的趣味網路讀物。

數的出現

一、數的概念出現

人對於「數」的概念是與身俱來的。從原始人開始,人就能分出一與二與三的區別,從而,就有了對數的認識。而為了表示數,原始人就創造並使用了一種古老卻笨拙且不太實用的方法——結繩計數。通過在繩子上打結來表示所指物體的數量,而為了辨認數量,也就出現了數數這一重要的方法。這一方法如今看來十分笨拙,但卻是人對數學的認識由零到一的關鍵一步。從這笨拙的一步人們也意識到:對數學的闡述必須要盡量得簡潔清楚。這是一個從那時開始便影響至今的人類第一個數學方面的認識,這也是人類為了解數學而邁出的關鍵性一步。

數字與符號的起源與發展

一、數的出現

很快,人類就又邁出了一大步。隨著文字的出現,最原始的數字就出現了。且更令人高興的是,人們將自己的認識代入了設計之中,他們想到了「以一個大的代替多個小的」這種方法來設計,而在字元表示之中,就是「進位制」。在眾多的數碼之中,有古巴比侖的二十進制數碼、古羅馬字元,但一直流傳至今的,世界通用的阿拉伯數字。它們告訴了我們:簡潔的,就是最好的。
而現在,又出現了「二進制數」、「三進制數」等低位進制數,有時人們會認為它們有些過度的「簡潔」,使數據會過多得長,而不便書寫,且熟悉了十進制的阿拉伯數字後,改變進制的換算也十分麻煩。其實,人是高等動物 ,理解能力強,從古至今都以十為整,所以習慣了十進制。可是,不是所有的東西都有智商,而且不可能智商高到能明顯區分1-10,卻能通過明顯相反的方式表達兩個數碼。於是,人類創造了「二進制數」,不過它們不便書寫,只適用於計算機和某些智能機器。但不可否認的是,它又創造了一種新的數碼表示方法。

二、符號的出現

加減乘除〈+、-、×(·)、÷(∶)〉等數學符號是我們每一個人最熟悉的符號,因為不光在數學學習中離不開它們,幾乎每天的日常的生活也離不開它們。別看它們這么簡
單,直到17世紀中葉才全部形成。
法國數學家許凱在1484年寫成的《算術三篇》中,使用了一些編寫符號,如用D表示加法,用M表示減法。這兩個符號最早出現在德國數學家維德曼寫的《商業速演算法》中,他用「+」表示超過,用「-」表示不足。

1、加號(+)和減號(-)

加減號「+」,「-」,1489年德國數學家魏德曼在他的著作中首先使用了這兩個符號,但正式為大家公認是從1514年荷蘭數學家荷伊克開始。到1514年,荷蘭的赫克首次用「+」表示加法,用「-」表示減法。1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「-」表示加減,這兩個符號逐漸被公認為真正的算術符號,廣泛採用。

2、乘號(×、·)

乘號「×」,英國數學家奧屈特於1631年提出用「×」表示相乘。英國數學家奧特雷德於1631年出版的《數學之鑰》中引入這種記法。據說是由加法符號+變動而來,因為乘法運算是從相同數的連加運算發展而來的。另一乘號「·」是數學家赫銳奧特首創的。後來,萊布尼茲認為「×」容易與「X」相混淆,建議用「·」表示乘號,這樣,「·」也得到了承認。

3、除號(÷)

除法除號「÷」,最初這個符號是作為減號在歐洲大陸流行,奧屈特用「:」表示除或比.也有人用分數線表示比,後來有人把二者結合起來就變成了「÷」。瑞士的數學家拉哈的著作中正式把「÷」作為除號。符號「÷」是英國的瓦里斯最初使用的,後來在英國得到了推廣。除的本意是分,符號「÷」的中間的橫線把上、下兩部分分開,形象地表示了「分」。
至此,四則運算符號齊備了,當時還遠未達到被各國普遍採用的程度。

4、等號(=)

等號「=」,最初是1540年由英國牛津大學教授瑞柯德開始使用。1591年法國數學家韋達在其著作中大量使用後,才逐漸為人們所接受。

分數

一、分數的產生與定義

人類歷史上最早產生的數是自然數(正整數),以後在度量和均分時往往不能正好得到整數的結果,這樣就產生了分數。
一個物體,一個圖形,一個計量單位,都可看作單位「1」。把單位「1」平均分成幾份,表示這樣一份或幾份的數叫做分數。在分數里,表示把單位「1」平均分成多少份的叫做分母,表示有這樣多少份的叫做分子;其中的一份叫做分數單位。
分子,分母同時乘或除以一個相同的數〔0除外〕,分數的大小不變.這就是分數的基本性質.
分數一般包括:真分數,假分數,帶分數.
真分數小於1.
假分數大於1,或者等於1.
帶分數大於1而又是最簡分數.帶分數是由一個整數和一個真分數組成的。
注意 :
①分母和分子中不能有0,否則無意義。
②分數中的分子或分母不能出現無理數(如2的平方根),否則就不是分數。
③一個最簡分數的分母中只有2和5兩個質因數就能化成有限小數;如果最簡分數的分母中只含有2和5以外的質因數那麼就能化成純循環小數;如果最簡分數的分母中既含有2或5兩個質因數也含有2和5以外的質因數那麼就能化成混循環小數。(註:如果不是一個最簡分數就要先化成最簡分數再判斷;分母是2或5的最簡分數一定能化成有限小數,分母是其他質數的最簡分數一定能化成純循環小數)

二、分數的歷史與演變

分數在我們中國很早就有了,最初分數的表現形式跟現在不一樣。後來,印度出現了和我國相似的分數表示法。再往後,阿拉伯人發明了分數線,分數的表示法就成為現在這樣了。
在歷史上,分數幾乎與自然數一樣古老。早在人類文化發明的初期,由於進行測量和均分的需要,引入並使用了分數。
在許多民族的古代文獻中都有關於分數的記載和各種不同的分數制度。早在公元前2100多年,古代巴比倫人(現處伊拉克一帶)就使用了分母是60的分數。
公元前1850年左右的埃及算學文獻中,也開始使用分數。
200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它.如果我們把它分成三等份,每份是3/7 米.像3/7 就是一種新的數,我們把它叫做分數.
為什麼叫它分數呢?分數這個名稱直觀而生動地表示這種數的特徵.例如,一隻西瓜四個人平均分,不把它分成相等的四塊行嗎?從這個例子就可以看出,分數是度量和數學本身的需要——除法運算的需要而產生的.
最早使用分數的國家是中國.我國春秋時代(公元前770年~前476年)的《左傳》中,規定了諸侯的都城大小:最大不可超過周文王國都的三分之一,中等的不可超過五分之一,小的不可超過九分之一。秦始皇時代的歷法規定:一年的天數為三百六十五又四分之一。這說明:分數在我國很早就出現了,並且用於社會生產和生活。
《九章算術》是我國1800多年前的一本數學專著,其中第一章《方田》里就講了分數四則演算法.
在古代,中國使用分數比其他國家要早出一千多年.所以說中國有著悠久的歷史,燦爛的文化 。

幾何

一、公式

1、平面圖形

正方形: S=a² C=4a
三角形: S=ah/2 a=2S/h h=2S/a
平行四邊形:S=ah a=S/h h=S/a
梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a
圓形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏
半圓: S=∏r²/2 C=∏r+d=5.14r

頂點數+面數-塊數=1

2、立體圖形

正方體: V=a³=S底·a S表=6a² S底=a² S側=4a² 棱長和=12a
長方體: V=abh=S底·h S表=2(ab+ac+bc) S側=2(a+b)h 棱長和=4(a+b+h)
圓柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S側=∏r²h S底=∏r²
其它柱體:V=S底h
錐體: V=V柱體/3
球: V=4/3∏r³ S表=4∏r²

頂點數+面數-棱數=2

數論

一、數論概述

人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們合起來叫做整數。(現在,自然數的概念有了改變,包括正整數和0)
對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。
人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。
數論這門學科最初是從研究整數開始的,所以叫做整數論。後來整數論又進一步發展,就叫做數論了。確切的說,數論就是一門研究整數性質的學科。

二、數論的發展簡況

自古以來,數學家對於整數性質的研究一直十分重視,但是直到十九世紀,這些研究成果還只是孤立地記載在各個時期的算術著作中,也就是說還沒有形成完整統一的學科。
自我國古代,許多著名的數學著作中都關於數論內容的論述,比如求最大公約數、勾股數組、某些不定方程整數解的問題等等。在國外,古希臘時代的數學家對於數論中一個最基本的問題——整除性問題就有系統的研究,關於質數、和數、約數、倍數等一系列概念也已經被提出來應用了。後來的各個時代的數學家也都對整數性質的研究做出過重大的貢獻,使數論的基本理論逐步得到完善。
在整數性質的研究中,人們發現質數是構成正整數的基本「材料」,要深入研究整數的性質就必須研究質數的性質。因此關於質數性質的有關問題,一直受到數學家的關注。
到了十八世紀末,歷代數學家積累的關於整數性質零散的知識已經十分豐富了,把它們整理加工成為一門系統的學科的條件已經完全成熟了。德國數學家高斯集中前人的大成,寫了一本書叫做《算術探討》,1800年寄給了法國科學院,但是法國科學院拒絕了高斯的這部傑作,高斯只好在1801年自己發表了這部著作。這部書開始了現代數論的新紀元。
在《算術探討》中,高斯把過去研究整數性質所用的符號標准化了,把當時現存的定理系統化並進行了推廣,把要研究的問題和意志的方法進行了分類,還引進了新的方法。
由於近代計算機科學和應用數學的發展,數論得到了廣泛的應用。比如在計算方法、代數編碼、組合論等方面都廣泛使用了初等數論范圍內的許多研究成果;又文獻報道,現在有些國家應用「孫子定理」來進行測距,用原根和指數來計算離散傅立葉變換等。此外,數論的許多比較深刻的研究成果也在近似分析、差集合、快速變換等方面得到了應用。特別是現在由於計算機的發展,用離散量的計算去逼近連續量而達到所要求的精度已成為可能。

三、數論的分類

初等數論
意指使用不超過高中程度的初等代數處理的數論問題,最主要的工具包括整數的整除性與同餘。重要的結論包括中國剩餘定理、費馬小定理、二次互逆律等等。
解析數論
藉助微積分及復分析的技術來研究關於整數的問題,主要又可以分為積性數論與加性數論兩類。積性數論藉由研究積性生成函數的性質來探討質數分布的問題,其中質數定理與狄利克雷定理為這個領域中最著名的古典成果。加性數論則是研究整數的加法分解之可能性與表示的問題,華林問題是該領域最著名的課題。此外例如篩法、圓法等等都是屬於這個范疇的重要議題。我國數學家陳景潤在解決「哥德巴赫猜想」問題中使用的是解析數論中的篩法。
代數數論
是把整數的概念推廣到代數整數的一個分支。關於代數整數的研究,主要的研究目標是為了更一般地解決不定方程的問題,而為了達到此目的,這個領域與代數幾何之間的關聯尤其緊密。建立了素整數、可除性等概念。
幾何數論
是由德國數學家、物理學家閔可夫斯基等人開創和奠基的。主要在於透過幾何觀點研究整數(在此即格子點)的分布情形。幾何數論研究的基本對象是「空間格網」。在給定的直角坐標繫上,坐標全是整數的點,叫做整點;全部整點構成的組就叫做空間格網。空間格網對幾何學和結晶學有著重大的意義。最著名的定理為Minkowski 定理。由於幾何數論涉及的問題比較復雜,必須具有相當的數學基礎才能深入研究。
計算數論
藉助電腦的演算法幫助數論的問題,例如素數測試和因數分解等和密碼學息息相關的話題。
超越數論
研究數的超越性,其中對於歐拉常數與特定的 Zeta 函數值之研究尤其令人感到興趣。
組合數論
利用組合和機率的技巧,非構造性地證明某些無法用初等方式處理的復雜結論。這是由艾狄胥開創的思路。

四、皇冠上的明珠

數論在數學中的地位是獨特的,高斯曾經說過「數學是科學的皇後,數論是數學中的皇冠」。因此,數學家都喜歡把數論中一些懸而未決的疑難問題,叫做「皇冠上的明珠」,以鼓勵人們去「摘取」。
簡要列出幾顆「明珠」:費爾馬大定理、孿生素數問題、歌德巴赫猜想、角谷猜想、圓內整點問題、完全數問題……

五、中國人的成績

在我國近代,數論也是發展最早的數學分支之一。從二十世紀三十年代開始,在解析數論、刁藩都方程、一致分布等方面都有過重要的貢獻,出現了華羅庚、閔嗣鶴、柯召等第一流的數論專家。其中華羅庚教授在三角和估值、堆砌素數論方面的研究是享有盛名的。1949年以後,數論的研究的得到了更大的發展。特別是在「篩法」和「歌德巴赫猜想」方面的研究,已取得世界領先的優秀成績。 特別是陳景潤在1966年證明「歌德巴赫猜想」的「一個大偶數可以表示為一個素數和一個不超過兩個素數的乘積之和」以後,在國際數學引起了強烈的反響,盛贊陳景潤的論文是解析數學的名作,是篩法的光輝頂點。至今,這仍是「歌德巴赫猜想」的最好結果。

名著錄

《幾何原本》 歐幾里得 約公元前300年
《周髀算經》 作者不詳 時間早於公元前一世紀
《九章算術》 作者不詳 約公元一世紀
《孫子算經》 作者不詳 南北朝時期
《幾何學》 笛卡兒 1637年
《自然哲學之數學原理》 牛頓 1687年
《無窮分析引論》 歐拉 1748年
《微分學》 歐拉 1755年
《積分學》(共三卷) 歐拉 1768-1770年
《算術探究》 高斯 1801年
《堆壘素數論》 華羅庚 1940年左右

任意選一段吧!!!

❸ 要一個小學數學論文三年級(200字左右)

人民幣中的數學問題

有一天,我跟媽媽去逛商場。媽媽進了超市買東西,讓我內站在付錢的容地方等她。我沒什麼事,就看著營業員阿姨收錢。看著看著,我忽然發現營業員阿姨收的錢都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民幣為什麼就沒有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我趕快跑去問媽媽,媽媽鼓勵我說:「好好動腦筋想想算算,媽媽相信你能自己弄明白為什麼的。」我定下心,仔細地想了起來。過了一會兒,我高興地跳了起來:「我知道了,因為只要有1元、2元、5元就可以隨意組成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同樣可以組成30元、40元、60元……」媽媽聽了直點頭,又向我提了一個問題:「如果只是為了能隨意組合的話,那隻要1元不就夠了嗎?干嗎還要2元、5元呢?」我說:「光用1元要組成大一點的數就不方便了呀。」這下媽媽露出了滿意的笑容,誇獎我會觀察,愛動腦筋,我聽了真比吃了我最喜歡吃的冰激凌還要舒服。

在此,我也想告訴其他的小朋友:其實生活中到處都有數學問題,只要你多留心觀察,多動腦思考,你就會有很多意外的發現,不信你就試一試!

小學五年級數學小論文

認識了小學五年級勾股定理知識和勾股定理知識的常見運用,想必很多同學會去深入學習。本站用戶整理了五年級數學小論文:勾股定理,歡迎閱讀。
五年級數學小論文:勾股定理
1、證明一個三角形是直角三角形
2、用於直角三角形中的相關計算
3、有利於你記住餘弦定理,它是餘弦定理的一種特殊情況。中國最早的一部數學著作—— 周髀算經 的開頭,記載著一段周公向商高請教數學知識的對話:
周公問:「我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能得到關於天地得到數據呢?」
商高回答說:「數的產生來源於對方和圓這些形體餓認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的呵。」
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要懂得數學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等於斜邊的平方
用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯於公元前550年首先發現的。其實,我國古代得到人民對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那麼周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現在數學界把它稱為勾股定理,應該是非常恰當的。
在稍後一點的 九章算術一書 中,勾股定理得到了更加規范的一般性表達。書中的 勾股章 說;「把勾和股分別自乘,然後把它們的積加起來,再進行開方,便可以得到弦。」把這段話列成算式,即為:
弦=(勾2+股2)(1/2)
即:
c=(a2+b2)(1/2)
定理:
如果直角三角形兩直角邊分別為a,b,斜邊為c,那麼a^平方+b^平方=c^平方;即直角三角形兩直角邊的平方和等於斜邊的平方。
如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是四,斜邊就是33+4。

❺ 急求小學數學論文!(原創)!

角和線
滄州市教育局石油分局十二處子弟學校
姓名:
指導教師:
摘要:
關鍵詞:
關於角和線,我們早有接觸,在二三年級的時候,我們就學會了角和線。但我今天,要把角和線的知識全部歸納一下。
我們所學過的線中的直線,沒有端點。直線的長度是無限的,也就是說,直線可以無限延長。過一點可以花無數條直線,但是過兩點卻只能畫一條。射線跟直線一樣,可以無限延長。但是,射線有一個端點。關於線段,有兩個端點。線段是直線的一部分,它的長度是有限的。在兩點的連線中線段為最短的。在同一平面內,永不相交的兩條直線叫做平行線,也就是說只兩條直線互相平行。兩條平行線之間的距離相等。那麼垂線呢?如果兩條直線相交成直角時,就說這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的相交點叫做垂足。從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。
關於線,我已經說完了。下面我來說一說角。從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的兩條邊,角通常用符號「∠」表示。關於角的分類:小於90°的角叫做銳角。等於90°的角叫做直角。大於90°而小於180°的角叫做鈍角。角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。角的一邊旋轉一周,與另一邊重合叫做周角。周角是360°。交的計量單位是「度」,用符號「°」表示。角的大小與角兩邊的長短沒關系,但他與角兩邊岔開的大小有關系,角兩邊岔開得越大,角越大。怎樣畫角,從一點起畫一條射線,再把量角器放在射線的上面,使量角器的中心和射線的端點重合,零刻度線和射線重合,然後對准要畫的角的度數的刻度線點上一點最後從射線的端點起通過剛畫的點再畫一條射線,這樣,一個角就畫好了。
我已經把我們所學過角和線的知識都打上去了,大家慢慢看。

絕對原創

小學四年級數學小論文

「對我來說什麼都可以變成數學。」數學家笛卡兒曾這樣說過。「宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,日用之繁,無處不用數學。」我國家喻戶曉的數學家華羅庚也曾下過這樣的結論。的確,正如兩位前輩所說,數學與我們的生活息息相關,數學的腳步無處不在。
2006年已經接近尾聲了,迎面而來的是新的一年——2007年。行走在繁華的大街上,隨處可見商家打出的「滿400送400」,「滿300送300」的促銷招牌。「這真實惠!」消費者們蜂擁而至,商場里人山人海,搶購成風。此情此景,真讓人以為回到了物資短缺的年代。實際上商家心裡早打好了如意算盤。俗話說:只有買虧,沒有賣虧,「滿400送400元券」只是商家的一種促銷手段,其中暗藏著數學問題,暗藏著商業機密,暗藏著許多玄機。
去年,我們一家三口,也在新年之際在商場里「血拚」,當時是滿400送400元券。我們先用980元買了一件蘋果牌的皮夾克給爸爸,送來了800元購物券。我們並沒有過分浪費,花了298元券買了一件藏青色的李寧牌棉襖,又用剩下的500元券中的488買了一件太子龍男裝(由於是購物券,不設找零)。到底便宜了多少?298+488+980=1766(元)——這是原來不打折時需要花的錢。980/1776,所打的折扣大約是五五折。
我的姑姑和姑夫從前也做過服裝生意,我對服裝的進貨成本與銷售價的關系也有些了解。服裝的進價一般只佔建議零售價的20%~30%。隨著競爭的加劇和商場促銷力度越來越大,為了保持利潤,商家或廠家還不斷地把衣服的建議零售價標高。就如前幾天在電視中看見的一位消費者所說,某一品牌同一款式的一條尼料的褲子,三年前建議零售價還只是299元,今年標價變成了999元。這么一算,進價大概只有商場里售價的10%~20%。就算打了五五折,商家還穩賺三至五成的毛利。
廣告,廣告,便是廣而告之。許多人一窩蜂似的趕來搶購、血拚,商場的人流量多了,商品銷售量也快速增長。就按人流量是平時的三倍算,這里又出現了一個數學問題。假設平時人流量少時,一件商品按8折銷售。8折減去進價2折,標價部分的6成就成了毛利。雖然現在「滿400送400元券」時同一件商品可能只賺三至五成,但銷量起碼是平時的三倍以上。就按三成毛利和三倍銷量來計算,3×3=9,與平時的6成毛利相比,一天能多賺50%。雖說這樣賣每件單位毛利率有所下降,毛利額卻因銷售量的增加而增長,更因大量銷售而加快了資金周轉,帶來額外的收益。
商品標價和促銷中有數學,購物消費中有數學,裝修房子有數學,織毛衣中有數學……總而言之,數學在現實生活中無處不在!
滿意嗎?``祝你成功!~

❼ 小學數學論文範文4年級大全

駁論是以有力的論據反駁別人錯誤論點的論證方式。有三種方法:反駁論點、反駁論據、反駁論證。由於議論文是由論點、論據、論證三部分有機構成的,因此駁倒了論據或論證,也就否定了論點,與直接反駁論點具有同樣效果。一篇駁論文可以幾種反駁方式結合起來使用,以加強反駁的力量和說服力。
1)反駁論點,即直接反駁對方論點本身的片面、虛假或謬誤,這是駁論中最常用的方法。
2)反駁論據,即揭示對方論據的錯誤,以達到推倒對方論點的目的;因為錯誤的論據必定得出錯誤的論點。
3)反駁論證,即揭露對方在論證過程中的邏輯錯誤,如大前提、小前提與結論的矛盾,對方各論點之間的矛盾,論點與論據之間矛盾等等。
立論和駁論都是一種證明,無非一個是從正面證明其正確,而另一個是從反面證明其錯誤。它們可以使用基本相同的論證方法。
(二)論證的基本結構層次:三段論式的結構。提出問題(引論)→分析問題(本論)→解決問題(結論)
常見的論證結構:a、總分式結構 b、對照式結構 c、層進式結構 d、並列式結構
(三)論證方法有以下幾種:
1)舉例論證(例證法):列舉確鑿、充分、有代表性的事例證明論點;(作用:具體有力地論證了觀點(主論點或分論點),增強文章的說服力)
2)道理論證:用經典著作中的精闢見解和古今中外名人的名言警句以及人們公認的定理公式等來證明論點;(作用:有力地論證了觀點(主論點或分論點),增強文章的權威性和說服力)
3)對比論證:拿正反兩方面的論點或論據作對比,在對比中證明論點;(作用:突出全面地論證觀點(主論點或分論點),讓人印象深刻)

❽ 小學五年級下冊數學論文(300字左右)

問問你的小學數學老師吧,他會告訴你的

❾ 小學數學論文

關於「0」

0,可以說是人類最早接觸的數了。我們祖先開始只認識沒有和有,其中的沒有便是0了,那麼0是不是沒有呢?記得小學里老師曾經說過「任何數減去它本身即等於0,0就表示沒有數量。」這樣說顯然是不正確的。我們都知道,溫度計上的0攝氏度表示水的冰點(即一個標准大氣壓下的冰水混合物的溫度),其中的0便是水的固態和液態的區分點。而且在漢字里,0作為零表示的意思就更多了,如:1)零碎;小數目的。2)不夠一定單位的數量……至此,我們知道了「沒有數量是0,但0不僅僅表示沒有數量,還表示固態和液態水的區分點等等。」

「任何數除以0即為沒有意義。」這是小學至中學老師仍在說的一句關於0的「定論」,當時的除法(小學時)就是將一份分成若干份,求每份有多少。一個整體無法分成0份,即「沒有意義」。後來我才了解到a/0中的0可以表示以零為極限的變數(一個變數在變化過程中其絕對值永遠小於任意小的已定正數),應等於無窮大(一個變數在變化過程中其絕對值永遠大於任意大的已定正數)。從中得到關於0的又一個定理「以零為極限的變數,叫做無窮小」。

「105、203房間、2003年」中,雖都有0的出現,粗「看」差不多;彼此意思卻不同。105、2003年中的0指數的空位,不可刪去。203房間中的0是分隔「樓(2)」與「房門號(3)」的(即表示二樓八號房),可刪去。0還表示……

愛因斯坦曾說:「要探究一個人或者一切生物存在的意義和目的,宏觀上看來,我始終認為是荒唐的。」我想研究一切「存在」的數字,不如先了解0這個「不存在」的數,不至於成為愛因斯坦說的「荒唐」的人。作為一個中學生,我的能力畢竟是有限的,對0的認識還不夠透徹,今後望(包括行動)能在「知識的海洋」中發現「我的新大陸」。

寫的不好,多多包涵!!

❿ 小學四年級數學小論文怎麼寫

連乘的簡便運算

今天,我做完作業,打開媽媽讓我做的一冊練習本。一翻開要做的那一頁,就看見許多簡便運算題。看到一題是這么寫的:25×125×32。我看了看,回憶起老師講過的方法:25和125無論哪一個乘32都不好算,而且把這兩個數拆開來和32去乘也不是很好算,這樣做肯定不對的,那隻能把32拆開來,拆成什麼呢?我想:老師教過,25×4=100,125×8=1000,這樣算起來最好算,而且32也是由4乘8得過來的,所以只要把32拆開來,變成25×125×(4×8),然後再把小括弧去掉,把數字換一下位置,就成了(25×4)×(125×8),這樣就好算多了,25×4=100,125×8=1000,100×1000=100000,這應該就是這題的簡便方法了。看來學習數學必須深入思考啊。

巧用高斯定律

在這個星期天,我過得很快樂,因為我學會了用高斯定律。

這天,媽媽看我整天在看電視,就出了一道題給我:0.1+0.4+0.7+„„+3.7+4,還告訴我,不能用計算器,而且要用簡便方法。這不是刁難人嗎,我發起了牢騷。媽媽提醒到,你可以參考數學書32頁的高斯定律。我一看,從1加到100,真難呢,不過我發現了規律:1、頭加尾的和,乘以所有個數的一半,最後是正確答案,就是:(1+100) ×(100÷2)。2、頭加倒數第二個數正好等於最後一個數時,可以把它們加起來乘所有個數的一半,最後加上中間的數,也是正確答案,就是:(1+99) ×50+50。依照這些結論,我把媽媽出的那道題的頭和尾,即0.1和0.4加起來,再乘以個數的一半14÷2,最後答案是28.7。

那天,媽媽獎勵我去看書。

裝燈問題

那天,徐老師叫我們做數學書的122頁,我翻開來先看了看,目光停留在第四題上。第四題的題目是這樣的:圓形滑冰場的一周全長是150米。如果沿著這一圈每隔15米安裝一盞燈,一共需裝幾盞燈?我想:圓形應該怎樣求出段數呢?因為徐老師在教這些內容,特地給了我們一句口訣,叫做:封閉路線求段數。只要求出段數,就可以求出東西的數量了。我在草稿紙上畫了一個圓形,先求出了大概可以裝10盞燈,然後再在圓形的邊上畫了10個小圓圈,一數,正好有10個間隔。我這才知道,原來圓形中盞數和間隔是一樣的。最後,我就列了一步算式:150÷15=10(盞)。

後來,徐老師在上課的時候講到:「在做這種圓形路線的題目時,可以在一盞燈的旁邊剪一刀,再把它拉直,就是一條直線了。因為是末尾端沒裝燈,所以每一盞燈對應的就是後面一段路,因此盞數和間隔才會相同。」我恍然大悟。

閱讀全文

與2013年小學數學論文相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99