導航:首頁 > 小學學科 > 小學6年級數學上冊

小學6年級數學上冊

發布時間:2020-11-29 20:52:08

小學數學六年級上冊難題答案

鹽與水1、含鹽5%的鹽水中,鹽和水的比是(1:19 )。_____________________________________________________________________3、在含鹽率是15%的鹽水中,加入3克鹽17克水,這時的含鹽率是(15 )%。_____________________________________________________________________4、鹽占鹽水的3/20,那麼鹽占水的( 3/17),水占鹽的(17/3 )。_____________________________________________________________________5、一種鹽水的含鹽率是15%,鹽和水的比是(3:17 )。_____________________________________________________________________6、把20克鹽放入200克水中,鹽與水的比是(1:10 ),鹽占鹽水的質量比是(1:11 ),鹽占鹽水的( 9.09)%。甲與已1、甲比已數多1/4,已數比甲數少(1/5 )%。_____________________________________________________________________2、已數占甲數的3/5,兩數的差是( 2/5),和是(8/5 )。_____________________________________________________________________3、甲數是17.5,比已數的2倍少1.5,兩數的和是(27 )。_____________________________________________________________________4、甲數比已數多1/4,甲數和已數的比是(5/4 ),甲數是已數的3/5,甲乙的比是(3/5 )。_____________________________________________________________________5、「甲數的20%是已數」是把( 甲)當做單位一,「已數相當於甲數的15%」是把(甲 )當做單位一。6、甲比已多10%,已比甲少(9.09% )。_____________________________________________________________________7、甲、已兩數的比是5:4,甲數是54,已數是(43.2 )。_____________________________________________________________________8、甲數是5,比已數少10%,乙數(50/9 )。_____________________________________________________________________9、甲數的2/3和已數的3/4相等,甲數比已數多( 12.5)%。_____________________________________________________________________綜合題1、某電視機一次降價10%,又降價10%後,現在的價格是原來的( 81)%_____________________________________________________________________2、小明讀一本故事書,讀了的頁數是未讀的40%,已知讀了36頁,全書共( 126)頁。_____________________________________________________________________3、完成一項任務,計劃5天完成,只用了4天,工作效率提高了( 20%)_____________________________________________________________________4、工地上有5噸水泥,第一次用去50%,第二次用去1/5,還剩( 1.5)5、一個數的1/5是1/6,這個數的1/2是(5/12 )____________________________________________________6、把甲倉糧食的1/5調入已倉後,兩倉存糧相等,原來已倉存糧是甲倉的(3/5 )_______________________________________________________7、食堂原來有大米80千克,吃去3/5後,在買進(24 )千克,食堂里的大米是原來的9/10._________________________________________________________8、一袋大米,第一次用去40%,第二次用去總量的一半,兩次共用去36千克,這袋大米原來重(40 )千克,還剩( 4)千克。_____________________________________________________________9、一件商品原價100元,提價10%後,有降價10%,現價(99 )元_________________________________________________________________橫線上列豎式累死我了,選我行不?

小學六年級數學上冊最難題

1
、一根繩長
4/5

,
先用去
1/4,
又用去
1/4

,
一共用去多少米
?
2
、山羊
50

,
綿羊比山羊的

4/5

3

,
綿羊有多少只
?
3
、看一本
120
頁的書
,
已看全書的

1/3,
再看多少頁正好是全書的

5/6?
4
、一瓶油
4/5
千克
,
已用去
3/10
千克
,
再用去多少千克正好是這桶油的

1/2?
5
、一袋大米
120
千克
,
第一天吃去
1/4,
第二天吃去餘下的

1/3,
第二天吃去多少千克
?
6
、一批貨物,汽車每次可運走它的

1/8

4
次可運走它的幾分之幾?如果這批貨物重
116
噸,已經
運走了多少噸?

7
、某廠九月份用水
28
噸,十月份計劃比九月份節約

1/7
,十月份計劃比九月份節約多少噸?

8
、一塊平行四邊形地底邊長
24
米,高是底的

3/4
,它的面積是多少平方米?

9
、人體的血液占體重的

1/13
,血液里約

2/3
是水,爸爸的體重是
78
千克,他的血液大約含水多少
千克?

10

六年級學生參加植樹勞動,
男生植了
160
棵,
女生植的比男生的

3/4

5
棵。
女生植樹多少棵?

11

新光小學
四年級人數是
五年級


4/5
,三年級人數是四年級的

2/3
,如果
五年級

120
人,那麼
三年級是多少人?

12
、甲、乙兩車同時從相距
420
千米的
A

B
兩地相對開出,
5
小時後甲車行了全程的

3/4
,乙車行
了全程的

2/3
,這時兩車相距多少千米?

13

五年級
植樹
120
棵,六年級植樹的棵數是五年級的
7/5
,五、六年級一共植樹多少棵?

14
、修一條
12/5
千米的路,第一周修了
2/3
千米,第二周修了全長的
1/3
,兩周共修了多少千米?

15
、一條公路長
7/8
千米,第一天修了
1/8
千米,再修多少千米就正好是

1/2
全長的



16
、小華看一本
96
頁的故事書,第一天看了

1/4
,第二天看了

1/8
。兩天共看了多少頁?

17
、一本書有
150
頁,小王第一天看了總數的
1/10
,第二天看了總數的

1/15
,第三天應從第幾頁看
起?

18
、學校運來
2/5
噸水泥,運來的黃沙是水泥的
5/8
還多

1/8
噸,運來黃沙多少噸?

19
、小偉和
小英
給希望工程捐款錢數的比是
2 :5

小英
捐了
35
元,小偉捐了多少元?

20
、電視機廠今年計劃比去年增產
2/5
。去年生產電視機
1/5
萬台,今年計劃增產多少萬台?

21
、某村要挖一條長
2700
米的水渠,已經挖了
1050
米,再挖多少米正好挖完這條水渠的
2/3


22
、某校少先隊員採集樹種,四年級採集了
1/2
千克,五年級比四年級多採集
1/3
千克,六年級採集
的是五年級的
6/5
。六年級採集樹種多少千克?

23
、倉庫運來大米
240
噸,運來的大豆是大米噸數的
5/6
,大豆的噸數又是麵粉的
3/4
。運來麵粉多
少噸?

24
、甲筐蘋果
9/10
千克
,
把甲的
1/9
給乙筐
,
甲乙相等
,
求乙筐蘋果多少千克
?
25
、一桶油倒出
2/3
,剛好倒出
36
千克,這桶油原來有多少千克?

26
、甲、乙兩個工程隊共修路
360
米,甲乙兩隊長度比是
5 : 4
,甲隊比乙隊多修了多少米?

27
、服裝廠第一車間有工人
150
人,第二車間的工人數是第一車間的
2/5
,兩個車間的人數正好是全
廠工人總數的
5/6
,全廠有工人多少人?

28
、一批水果
120
噸,其中梨占總數的
2/5
,又是蘋果的
4/5
,蘋果有多少千克?

29
、甲乙兩數的和是
120
,把甲的
1/3
給乙,甲、乙的比是
2:3
,求原來的甲是多少?

30

小紅
採集標本
24
件,送給小芳
4
件後,
小紅
恰好是小芳的
4/5
,小芳原有多少件?

❸ 六年級小學生上冊數學學習計劃

學習計劃啊,先看目錄,然後把你認為重點的寫一起,層層寫出,然後就可以慢慢一步一步的開始計劃怎麼學習了,在開學第一節課老師肯定告訴你那部分是重點的你就和你的計劃對照進一步完善,完成後就可以慢慢的開始一步步的開始。
1.理解分數乘、除法的意義,掌握分數乘、除法的計算方法,比較熟練地計算簡單的分數乘、除法,會進行簡單的分數四則混合運算。
2. 理解倒數的意義,掌握求倒數的方法。
3. 理解比的意義和性質,會求比值和化簡比,會解決有關比的簡單實際問題。
4. 掌握圓的特徵,會用圓規畫圓;探索並掌握圓的周長和面積公式,能夠正確計算圓的 周長和面積。
5. 知道圓是軸對稱圖形,進一步認識軸對稱圖形;能運用平移、軸對稱和旋轉設計簡單的圖案。
6. 能在方格紙上用數對表示位置,初步體會坐標的思想。
7. 理解百分數的意義,比較熟練地進行有關百分數的計算,能夠解決有關百分數的簡單實際問題。
8. 認識扇形統計圖,能根據需要選擇合適的統計圖表示數據。
9. 經歷從實際生活中發現問題、提出問題、解決問題的過程,體會數學在日常生活中的作用,初步形成綜合運用數學知識解決問題的能力。
10. 體會解決問題策略的多樣性及運用假設的數學思想方法解決問題的有效性,感受數學的魅力。形成發現生活中的數學的意識,初步形成觀察、分析及推理的能力。
11. 體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。
12. 養成認真作業、書寫整潔的良好習慣。

人教版小學六年級數學上冊概念都是有哪些

人教版小學六年級數學上冊概念如下:

第一單元位置:

1、找位置:先列後行。格式為:(列,行)。例如:(a,b)。

2、位置的表示方法:兩邊小括弧,中間是逗號,先寫列,再寫行。

3、平移方法:左右平移,列變行不變;上下平移,行變列不變。

第二單元分數乘法:

1、分數乘整數的意義和整數乘法的意義相同:就是求幾個相同加數的和的簡便運算。

2、分數乘整數的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

3、整數乘分數:分數乘以整數,可以看作是求幾個分數相加的和是多少。整數乘以分數,可以看作是求整數的幾分之幾是多少。

4、分數乘分數的計演算法則:分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

5、乘積是1的兩個數叫互為倒數。

6、求一個數(0除外)的倒數的方法:把這個分數的分子、分母調換位置。1的倒數是1。0沒有倒數。真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。

7、一個數(0除外)乘以一個真分數,所得的積小於它本身。

8、一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。

9、一個數(0除外)乘以一個帶分數,所得的積大於它本身。

第三單元分數除法:

1、分數除法的意義:分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。

2、分數除以整數(0除外),等於分數乘這個整數的倒數。

3、整數除以分數等於整數乘以這個分數的倒數。

4、分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

5、兩個數相除又叫做兩個數的比。

6、「:」是比號,讀做「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。

7、比同除法比較:比的前項相當於被除數,後項相當於除數,比值相當於商。

8、根據分數與除法的關系,比的前項相當於分子,比的後項相當於分母,比值相當於分數的值。

9、比的基本性質:比的前項和後項同時乘上或者同時除以相同的數(0除外),比值不變。

10、在工農業生產中和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。

11、一個數(0除外)除以一個真分數,所得的商大於它本身。

12、一個數(0除外)除以一個假分數,所得的商小於或等於它本身。

13、一個數(0除外)除以一個帶分數,所得的商小於它本身。

第四單元圓

1、圓的定義:平面上的一種曲線圖形。

2、將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等。

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。半徑一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。

4、圓心確定圓的位置,半徑確定圓的大小。

5、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。直徑一般用字母d表示。

6、在同一個圓內,所有的半徑都相等,所有的直徑都相等。

7、在同一個圓內,有無數條半徑,有無數條直徑。

8、在同一個圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的一半。

9、圓的周長:圍成圓的曲線的長度叫做圓的周長,用「C」表示。

10、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數。我們把圓的周長和直徑的比值叫做圓周率,用字母「π」表示。圓周率是一個無限不循環小數。在計算時,取π≈3.14。

11、圓的周長公式:C=πd或C=2πr

12、圓的面積:圓所佔面積的大小叫圓的面積。

13、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。

14、在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。

15、一個環形,外圓的半徑是R,內圓的半徑是r,它的面積是S=πR²-πr²或S=π(R²-r²)。

16、環形的周長=外圓周長+內圓周長。

17、半圓的周長等於圓的周長的一半加直徑。半圓的周長公式:C=πd÷2+d或C=πr+2r

18、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小以上倍數的平方倍。

19、兩個圓的半徑比等於直徑比等於周長比,而面積比等於以上比的平方。

20、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;

21、當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

22、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾。

23、當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小。

24、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。

25、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。

26、只有2條對稱軸的圖形是:長方形。

27、只有3條對稱軸的圖形是:等邊三角形。

28、只有4條對稱軸的圖形是:正方形。

29、有無數條對稱軸的圖形是:圓、圓環。

30、直徑所在的直線是圓的對稱軸。

第五單元百分數

1、百分數的定義:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

2、百分數的意義:表示一個數是另一個數的百分之幾。百分數表示兩個數之間的比率關系,不表示具體的數量,無單位名稱。

3、百分數通常不寫成分數形式,而在原來分子後面加上「%」來表示。分子部分可為小數、整數,可以大於100,小於100或等於100。

4、小數與百分數互化的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,只要把百分號去掉,同時把數點向左移動兩位。

5、百分數與分數互化的方法:把分數化成百分數,通常先把分數化成小數(除不盡的保留三位小數),再把小數化成百分數。

6、百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

7、百分率公式:

合格率=合格人數÷總人數100%發芽率=發芽數量÷總數量100%

出勤率=出勤人數÷總人數100%

8、應納稅額:繳納的稅款叫應納稅額。

9、應納稅額的計算:應納稅額=各種收入×稅率。

10、本金:存入銀行的錢叫做本金。

11、利息:取款時銀行多支付的錢叫做利息。

12、利率:利息與本金的比值叫做利率。

13、國債利息的計算公式:利息=本金×利率×時間。

13、本息:本金與利息的總和叫做本息。

單位換算:

1、長度單位換算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

2、面積單位換算

1平方千米=100公頃1公頃10000平方米1平方米=100平方分米

1平方分米=100平方厘米

3、體(容)積單位換算

1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米

1立方厘米=1毫升

4、重量單位換算:1噸=1000千克1千克=1000克

運算定律:

1、加法交換律:兩數相加交換加數的位置,和不變。a+b=b+a

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。如:a+b+c=a+c+b=a+(b+c)

3、乘法交換律:兩數相乘,交換因數的位置,積不變。ab=ba

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。如:a×b×c=a×c×b=a×(b×c)

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(ab)×c=acbc

6、加、減法性質:一個數連續減去幾個數,可以改寫成減去這幾個數的和。如:a-b-c=a-(b+c)

7、乘、除法性質:一個數連續除以幾個數,可以改寫成乘以這幾個數的積。a÷b÷c=a÷(b×c)


(4)小學6年級數學上冊擴展閱讀:

小學六年級數學學習方法

1、抓住課堂

平日學習最重要的是課堂學習,聽課要認真,思維要跟著老師,總結老師所講的數學思想、數學方法。

2、高質量完成作業

不僅要高速度,還要高正確率。寫作業時,如果同一類型的題重復練習,就要多注意速度和准確率,並且在每做完一次要對此類題目進行思考總結,進一步提升自己,解題的規律、技巧等。

3、勤思考,多提問

對於老師給出的規律、定理,不僅要知其然還要知其所以然,對於老師的講解,課本的內容,有疑問應盡管提出,清除學習隱患。

4、總結比較,理清思緒

要進行知識點總結比較。每學完一個章節都應要本章內容在腦中過一遍,對於相似易混淆的知識點應分項歸納比較,將其區分開來。

要對題目進行比較。平時作業或者考試的錯題,選擇性地記下來,並用在一旁記下注意事項,經常翻看,這對數學學習有極大的幫助。

5、有選擇地做課外練習

課余時間並不充足,因此在做課外練習時要少而精,多反思

❺ 小學6年級數學上冊比的概念。

比是由一個前項和一個後項組成的除法算式,只不過把「÷」(除號)改成了「:」(比號)而已,但除法算式表示的是一種運算,而比則表示兩個數的關系。和分數的分數線類似。

舉一個例子,比如6÷4用比的形式寫作6:4。「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。而本例中6是這個比的前項,4是這個比的後項。

(5)小學6年級數學上冊擴展閱讀:

一、比值

比前項除以後項得到這個數就叫做比值。比值可以用分數表示,也可以用小數或整數表示。

例如:1:3的比值=1÷3=1/3;1/3也是一種寫法,作比時讀作一比三,做分數時讀作三分之一。

兩個比值相等的比可以組成比例,用=號連接,當比值里的分母為1時,可以寫作整數。

例如:50:25=2或者2/1或者2

二、基本性質

1、比的前項和後項同時乘或除以相同的數(0除外),比值不變。

2、最簡比的前項和後項互質,且比的前項、後項都為整數。

3、比值通常整數表示,也可以用分數或小數表示。

4、比的後項不能為0 。

5、比的後項乘以比值等於比的前項。

❻ 小學六年級上冊人教版數學重要知識點

六年級上冊數學知識點
第一單元 位置
1、什麼是數對?
——數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。
作用:確定一個點的位置。經度和緯度就是這個原理。
例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
( 列 , 行 )
↓ ↓
豎排叫列 橫排叫行
(從左往右看)(從下往上看)
(從前往後看)
2、圖形左右平移行數不變;圖形上下平移列數不變。
3、兩點間的距離與基準點(0,0)的選擇無關,基準點不同導致數對不同,兩點間但距離不變。
第二單元 分數乘法
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
註:「分數乘整數」指的是第二個因數必須是整數,不能是分數。
例如: ×7表示: 求7個 的和是多少? 或表示: 的7倍是多少?
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
註:「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)
例如: × 表示: 求 的 是多少?
9 × 表示: 求9的 是多少?
A × 表示: 求a的 是多少?
(二)分數乘法計演算法則:
1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。
註:(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)
2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
註:(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。
(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b >1時,c>a.
一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b <1時,c<a (b≠0).
一個數(0除外)乘等於1的數,積等於這個數。a×b=c,當b =1時,c=a .
註:在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
附:形如 的分數可折成( )×
(四)分數乘法混合運算
1、分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a
乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒數的意義:乘積為1的兩個數互為倒數。
1、倒數是兩個數的關系,它們互相依存,不能單獨存在。單獨一個數不能稱為倒數。(必須說清誰是誰的倒數)
2、判斷兩個數是否互為倒數的唯一標準是:兩數相乘的積是否為「1」。
例如:a×b=1則a、b互為倒數。
3、求倒數的方法:
①求分數的倒數:交換分子、分母的位置。
②求整數的倒數:整數分之1。
③求帶分數的倒數:先化成假分數,再求倒數。
④求小數的倒數:先化成分數再求倒數。
4、1的倒數是它本身,因為1×1=1
0沒有倒數,因為任何數乘0積都是0,且0不能作分母。
5、任意數a(a≠0),它的倒數為 ;非零整數a的倒數為 ;分數 的倒數是 。
6、真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。
假分數的倒數小於或等於1。
帶分數的倒數小於1。
(六)分數乘法應用題 ——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
「1」× =
例如:求25的 是多少? 列式:25× =15
甲數的 等於乙數,已知甲數是25,求乙數是多少? 列式:25× =15
註:已知單位「1」的量,求單位「1」的量的幾分之幾是多少,用單位「1」的量與分數相乘。
2、( 什麼)是(什麼 )的 。
( )= ( 「1」 ) ×
例1: 已知甲數是乙數的 ,乙數是25,求甲數是多少?
甲數=乙數× 即25× =15
注:(1)「是」「的」字中間的量「乙數」是 的單位「1」的量,即 是把乙數看作單位「1」,把乙數平均分成5份,甲數是其中的3份。
(2)「是」「占」「比」這三個字都相當於「=」號,「的」字相當於「×」。
(3)單位「1」的量×分率=分率對應的量
例2:甲數比乙數多(少) ,乙數是25,求甲數是多少?
甲數=乙數±乙數× 即25±25× =25×(1± )=40(或10)
3、巧找單位「1」的量:在含有分數(分率)的語句中,分率前面的量就是單位「1」對應的量,或者「占」「是」「比」字後面的量是單位「1」。
4、什麼是速度?
——速度是單位時間內行駛的路程。速度=路程÷時間 時間=路程÷速度 路程=速度×時間
——單位時間指的是1小時1分鍾1秒等這樣的大小為1的時間單位,每分鍾、每小時、每秒鍾等。
5、求甲比乙多(少)幾分之幾?
多:(甲-乙)÷乙
少:(乙-甲)÷乙
第三單元 分數除法
一、分數除法的意義:分數除法是分數乘法的逆運算,已知兩個數的積與其中一個因數,求另一個因數的運算。
二、分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
1、被除數÷除數=被除數×除數的倒數。例 ÷3= × = 3÷ =3× =5
2、除法轉化成乘法時,被除數一定不能變,「÷」變成「×」,除數變成它的倒數。
3、分數除法算式中出現小數、帶分數時要先化成分數、假分數再計算。
4、被除數與商的變化規律:
①除以大於1的數,商小於被除數:a÷b=c 當b>1時,c<a (a≠0)
②除以小於1的數,商大於被除數:a÷b=c 當b<1時,c>a (a≠0 b≠0)
③除以等於1的數,商等於被除數:a÷b=c 當b=1時,c=a
三、分數除法混合運算
1、混合運算用梯等式計算,等號寫在第一個數字的左下角。
2、運算順序:
①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。
②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。
註:(a±b)÷c=a÷c±b÷c
四、比:兩個數相除也叫兩個數的比
1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
註:連比如:3:4:5讀作:3比4比5
2、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。
例:12∶20= =12÷20= =0.6 12∶20讀作:12比20
註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。
比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。
3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。
3、化簡比:化簡之後結果還是一個比,不是一個數。
(1)、 用比的前項和後項同時除以它們的最大公約數。
(2)、 兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。
(3)、 兩個小數的比,向右移動小數點的位置,也是先化成整數比。
4、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。
5、比和除法、分數的區別:
除法 被除數 除號(÷) 除數(不能為0) 商不變性質 除法是一種運算
分數 分子 分數線(——) 分母(不能為0) 分數的基本性質 分數是一個數
比 前項 比號(∶) 後項(不能為0) 比的基本性質 比表示兩個數的關系
附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。
分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
五、分數除法和比的應用
1、已知單位「1」的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙× (15× =9)
2、未知單位「1」的量用除法。例: 甲是乙的 ,甲是15,求乙是多少?即:甲=乙× (15÷ =25)(建議列方程答)
3、分數應用題基本數量關系(把分數看成比)
(1)甲是乙的幾分之幾?
甲=乙×幾分之幾 (例:甲是15的 ,求甲是多少?15× =9)
乙=甲÷幾分之幾 (例:9是乙的 ,求乙是多少?9÷ =15)
幾分之幾=甲÷乙 (例:9是15的幾分之幾?9÷15= )(「是」字相當「÷」號,乙是單位「1」)
(2)甲比乙多(少)幾分之幾?
A 差÷乙= (「比」字後面的量是單位「1」的量)(例:9比15少幾分之幾?(15-9)÷15= = = )
B 多幾分之幾是: –1 (例: 15比9少幾分之幾?15÷9= -1= –1= )
C 少幾分之幾是:1– (例:9比15少幾分之幾?1-9÷15=1– =1– = )
D 甲=乙±差=乙±乙× =乙±乙× =乙(1± ) (例:甲比15少 ,求甲是多少?15–15× =15×(1– )=9(多是「+」少是「–」)
E 乙=甲÷(1± )(例:9比乙少 ,求乙是多少?9÷(1- )=9 ÷ =15)(多是「+」少是「–」)
(例:15比乙多 ,求乙是多少?15÷(1+ )=15 ÷ =9)(多是「+」少是「–」)
4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。
例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分別是多少?
方法一:56÷(3+5)=7 甲:3×7=21 乙:5×7=35
方法二:甲:56× =21 乙:56× =35
例如:已知甲是21,甲、乙的比3∶5,求乙是多少?
方法一:21÷3=7 乙:5×7=35
方法二:甲乙的和21÷ =56 乙:56× =35
方法二:甲÷乙= 乙=甲÷ =21÷ =35
5、畫線段圖:
(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。
(2)分析數量關系。
(3)找等量關系。
(4)列方程。
註:兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。
第四單元 圓
一、.圓的特徵
1、圓是平面內封閉曲線圍成的平面圖形,.
2、圓的特徵:外形美觀,易滾動。
3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r 或 r=d÷2= d=
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。
同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環
6、畫圓
(1)圓規兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π= =周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π) ——周長公式: c=πd, c=2πr
註:圓周率π是一個無限不循環小數,3.14是近似值。
3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3
4、半圓周長=圓周長一半+直徑= ×2πr=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。

圓的半徑 = 長方形的寬
圓的周長的一半 = 長方形的長
長方形面積 = 長 ×寬
所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r)
S圓 = πr × r
S圓 = πr×r = πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。
周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
如果: r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4
則:S1∶S2∶S3=4∶9∶16
4、環形面積 = 大圓 – 小圓=πr大2 - πr小2=π(r大2 - r小2)
扇形面積 = πr2× (n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
註:一個圓的半徑增加a厘米,周長就增加2πa厘米
一個圓的直徑增加b厘米,周長就增加πb 厘米
6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
第五單元、百分數
一、百分數的意義:表示一個數是另一個數的百分之幾。
註:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
1、百分數和分數的區別和聯系:
(1)聯系:都可以用來表示兩個量的倍比關系。
(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。
百分數的分子可以是小數,分數的分子只以是整數。
註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。
(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數 化 分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數 化 小數:分子除以分母。
二、百分數應用題
1、 求常見的百分率 如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾
2、 求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾 (甲-乙)÷乙
求乙比甲少百分之幾 (甲-乙)÷甲
3、 求一個數的百分之幾是多少 一個數(單位「1」) ×百分率
4、 已知一個數的百分之幾是多少,求這個數 部分量÷百分率=一個數(單位「1」)
5、 折扣 折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣 成數 幾分之幾 百分之幾 小數 通用
八折 八成 十分之八 百分之八十 0.8
八五折 八成五 十分之八點五 百分之八十五 0.85
五折 五成 十分之五 百分之五十 0.5 半價
6、 納稅 繳納的稅款叫做應納稅額。
(應納稅額)÷(總收入)=(稅率)
(應納稅額)=(總收入)×(稅率)
7、 利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅後利息=利息-利息的應納稅額=利息-利息×5%
註:國債和教育儲蓄的利息不納稅
8、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100% = ×100% = 百分之幾
(2)求甲比乙多(少)百分之幾—— ×100% = ×100%

① 甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%
③ 乙是40,甲是乙的125%,甲數是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙數是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲數是多少?(一個數的80%是40,這個數是多少?)40÷80%=50
⑥ 甲是50,甲是乙的125%,乙數是多少?(一個數的125%是50,這個數是多少?)50÷125%=40
⑦ 甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%
⑧ 甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%
⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
⑪ 乙比甲少20%,少10,甲是多少?10÷20%=50
⑫ 乙比甲少20%,少10,乙是多少?10÷20%-10=40
⑬ 乙是40,甲比乙多25%,甲數是多少?(什麼數比40多25%?)40×(1+25%)=50
⑭ 甲是50,乙比甲少20%,乙數是多少?(什麼數比50多25%?)50×(1-20%)=40
⑮ 乙是40,比甲少20%,甲數是多少?(40比什麼數少20%?)40÷(1-20%)=50
⑯ 甲是50,比乙多25%,乙數是多少?(50比什麼數多25%?)40÷(1+25%)=40
第六單元、統計
1、 扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。
2、 常用統計圖的優點:
(1)、條形統計圖直觀顯示每個數量的多少。
(2)、折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。
(3)、扇形統計圖直觀顯示部分和總量的關系。
第七單元、數學廣角
一、研究中國古代的雞兔同籠問題。
1、 用表格方式解決有局限性,數目必須小,例:
頭數 雞(只)兔(只) 腿數
35 1 34
35 2 33
35 3 32
……
(逐一列表法、腿數少,小幅度跳躍;腿數多,大幅度跳躍。跳躍逐一相結合、取中列表)
2、 用假設法解決
(1) 假如都是兔
(2) 假如都是雞
(3) 假如它們各抬起一條腿
(4) 假如兔子抬起兩條前腿
3、 用代數方法解(一般規律)
注釋:這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?
二、和尚分饅頭
100個和尚吃100個饅頭,大和尚一人吃3個,小和尚三人吃一個。大小和尚各多少人?
國明代珠算家程大位的名著《直指演算法統宗》里有一道著名算題:
一百饅頭一百僧,
大僧三個更無爭,
小僧三人分一個,
大小和尚各幾丁?"
如果譯成白話文,其意思是:有100個和尚分100隻饅頭,正好分完。如果大和尚一人分3隻,小和尚3人分一隻,試問大、小和尚各有幾人?
方法一,用方程解:
解:設大和尚有x人,則小和尚有(100-x)人,根據題意列得方程:
3x + (100-x)=100
x=25
100-25=75人
方法二,雞兔同籠法:
(1)假設100人全是大和尚,應吃饅頭多少個?
3×100=300(個).
(2)這樣多吃了幾個呢?
300-100=200(個).
(3)為什麼多吃了200個呢?這是因為把小和尚當成大和尚。那麼把小和尚當成大和尚時,每個小和尚多算了幾個饅頭?
3- = (個)
(4)每個小和尚多算了8/3個饅頭,一共多算了200個,所以小和尚有:
小和尚:200÷ =75(人)
大和尚:100-75=25(人)
方法三,分組法:
由於大和尚一人分3隻饅頭,小和尚3人分一隻饅頭。我們可以把3個小和尚與1個大和尚編為一組,這樣每組4個和尚剛好分4個饅頭,那麼100個和尚總共分為100÷(3+1)=25組,因為每組有1個大和尚,所以有25個大和尚;又因為每組有3個小和尚,所以有25×3=75個小和尚。
這是《直指演算法統宗》里的解法,原話是:"置僧一百為實,以三一並得四為法除之,得大僧二十五個。"所謂"實"便是"被除數","法"便是"除數"。列式就是:
100÷(3+1)=25(組)
大和尚:25×1=25(人)
小和尚:100-25=75(人)或25×3=75(人)
我國古代勞動人民的智慧由此可見一斑。
三、整數、分數、百分數應用題結構類型
(一)求甲是乙的幾倍(或幾分之幾或百分之幾)的應用題。
解法:甲數除以乙數
例:校園里有楊樹40棵,柳樹有50棵,楊樹的棵樹占柳樹的百分之幾?(或幾分之幾?)
(二)求甲數的幾倍(或幾分之幾或百分之幾)是多少的應用題。
解答分數應用題,首先要確定單位「1」,在單位「1」確定以後,一個具體數量總與一個具體分數(分率)相對應,這種關系叫「量率對應」,這是解答分數應用題的關鍵。
求一個數的幾倍(幾分之幾或百分之幾)是多少用乘法,單位「1」×分率=對應數量
例:六年級有學生180人,五年級的學生人數是六年級人數的56 。五年級有學生多少人?
180×56 =150
(三)已知甲數的幾倍(或幾分之幾或百分之幾)是多少,求甲數(即求標准量或單位「1」)的應用題。
解法:對應數量÷對應分率=單位「1」
例:育紅小學六年級男生有120人,占參加興趣活動小組人數的35 . 六年級參加興趣活動小組人數共有學生多少人?
120÷35 =200(人)

請採納,謝謝

閱讀全文

與小學6年級數學上冊相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99