⑴ 小學數學概念大全
小學數學概念大全
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
)*c
⑵ 小學數學的基本概念都有哪些
統計概率與小學數學教學
北京師范大學教育學院 劉京莉
《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。
3.概率的古典定義。
對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:
某試驗具有以下性質
(1)試驗的結果是有限個(n個)
(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)
如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。
例:擲一顆均勻的骰子,求出現2點的概率。
由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。
又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3
出現偶數點的概率是,即。
概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。
在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。
二、在學習統計與概率的過程中發展學生的能力
統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。
例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:
從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。
三、統計、概率與小學其它內容的聯系
例1
上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。
例2
從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。
例3下面是用扇形統計圖統計的資料
對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。
從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。
總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
⑶ 小學數學基礎知識概念
六年級數學上冊概念與公式匯總
1.分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
2. (1)分數乘整數的運演算法則:分子與整數相乘,分母不變。
(2)分數乘分數的運演算法則:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)
3.積與因數的關系:
一個數(0除外)乘大於1的數,積大於這個數。當b >1時,a×b >a.
一個數(0除外)乘小於1的數,積小於這個數。當b <1時,a×b <a (b≠0).
一個數(0除外)乘等於1的數,積等於這個數。當b =1時,a×b =a .
4.分數乘法混合運算順序與整數相同,先乘、除後加、減,有括弧的先算括弧裡面的,再算括弧外面的。整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
5. (1)數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。作用:確定一個點的位置。經度和緯度就是這個原理。圖形左、右平移:列變,行不變 ;圖形上、下平移: 行變,列不變。
(2)位置與方向 確定物體位置的條件:一是確定方向,二是確定距離。
6. 倒數的意義:乘積為1的兩個數互為倒數。1的倒數是它本身,因為1×1=1,0沒有倒數,因為任何數乘0積都是0,且0不能作分母。真分數的倒數是假分數,真分數的倒數大於1,也大於它本身。 假分數的倒數小於或等於1。帶分數的倒數小於1。
7.分數除法計演算法則:除以一個數(0除外),等於乘上這個數的倒數。
8.比:兩個數相除也叫兩個數的比。比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。
9比和除法、分數的聯系與區別:
除法
被除數
除號(÷)
除數(不能為0)
商不變性質
除法是一種運算
分數
分子
分數線(—)
分母(不能為0)
分數的基本性質
分數是一個數
比
前項
比號(∶)
後項(不能為0)
比的基本性質
比表示兩個數的關系
10. 比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。根據比的基本性質可以化簡比,化簡之後結果還是一個比,不是一個數。
11.圓的特徵
(1)圓是平面內封閉曲線圍成的平面圖形。
(2)圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。直徑d: 通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。同圓或等圓內直徑是半徑的2倍。
12.畫圓
(1)圓規兩腳間的距離是圓的半徑。
(2)畫圓步驟:定半徑、定圓心、旋轉一周。
13.圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
(1)圓的周長總是直徑的三倍多一些。
(2)圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
(3)周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
(4)半圓周長=圓周長一半+直徑=2(1)×2πr=πr+dw
(5)前進的米數=圓周長×轉數 轉數=前進的米數÷圓周長 時間=前進的米數÷(圓周長×轉數)
14.圓面積
(1)公式的推導如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。圓的半徑 = 長方形的寬,圓的周長的一半 = 長方形的長,長方形面積 = 長 ×寬,所以:圓的面積 = 長方形的面積 = 長 ×寬 = 圓的周長的一半(πr)×圓的半徑(r),圓的面積S = πr × r = πr2
(2)圓、正方形、長方形幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。
(3)圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
15.跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
16.任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π
17.有關圓的常用公式與數據
(1)r=2(d)(已知直徑求半徑) d=2r(已知半徑求直徑) C=πd(已知直徑求周長) C=2πr(已知半徑求周長) d=π(C)(已知周長求直徑)
r=2π(C)(已知周長求半徑) S=πr2(已知半徑求面積) S=π(2(d))2 (已知直徑求面積) S=π(2π(C))2 (已知周長求面積) S環=π(R2-r2)
(2)3.14×1=3.14 3.14×2=6.28 3.14×3=9.42 3.14×4=12.56 3.14×5=15.70
3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26xKb 1.Com
(3)112 =121 122 =144 132 =169 142=196 152 =225 162 =256 172=289 182=324 192 =361 202=400
18. (1)表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。
(2)百分數和分數的區別和聯系:
聯系:都可以用來表示兩個量的倍比關系。區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只以是整數。
註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。
19小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉「%」。(2)小數化百分數:小數點向右移動兩位,添上「%」。
(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。
(5)小數 化 分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數 化 小數:分子除以分母。
20.有關百分數的常用數據與公式
(1)2(1)=0.5=50% 4(1)=0.25=25% 4(3)=0.75=75% 5(1)=0.2=20% 5(2)=0.4=40% 5(3)=0.6=60% 5(4)=0.8=80%
8(1)=0.125=12.5% 8(3)=0.375=37.5% 8(5)=0.625=62.5% 8(7)=0.875=87.5% 20(1)=0.05=5% 25(1)=0.04=4% 50(1)=0.02=2%
(2)及格率=全班人數(及格人數)×100% 優分率=全班人數(優分人數)×100% 合格率=產品總數(合格產品數)×100% 發芽率=試驗種子數(發芽種子數)×100%
出油率=花生仁千克數(出油千克數)×100% 出粉率=小麥千克數(麵粉千克數)×100% 出勤率=應出勤人數(實際出勤人數)×100% 成活率=種植總棵數(成活棵數)×100%
註:一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。
21. 扇形統計圖
用整個圓的面積表示總數,用扇形面積表示各部分所佔總數的百分數。優點:很清楚地表示出各部分同總數之間的關系。
制扇形統計圖的一般步驟:
(1)先算出各部分數量占總量的百分之幾。
(2)再算出表示各部分數量的扇形的圓心角度數。
(3)取適當的半徑畫一個圓,並按照上面算出的圓心角的度數,在圓里畫出各個扇形。
(4)在每個扇形中標明所表示的各部分數量名稱和所佔的百分數,並用不同顏色或條紋把各個扇形區別開。
22. 數學廣角——數與形: 連續奇數的等差數列之和等於某平方數。 等比數列之和等於1。
⑷ 小學數學知識點有哪些
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
⑸ 小學數學最簡單的基本知識都不會。
1. 穩抓課堂,理科的學習重要的是平時的積累,不適合進行突擊復習.做到在每一節課上都能認真的聽講,緊跟老師講課的思路,將每一節需要記住的概念、公式了如指掌,萬萬不能讓一個題目限制了思維.
2. 完成作業質量要高,在寫作業的時對於同一類的題目就要有意識的去考量准確率和速度,並且在完成時候對此類題目進行總結,掌握其中的規律.所謂的做題不單單只是將題作對,是要在最對的基礎之上進行方法和技巧的總結.對於老師留置的作業要認真准確的完成,面對較難的題目,多利用空閑的時間進行思考,你會發現靈感的存在.
3. 勤思多問,對於課本上的定理,規律不懂的知識點要盡早解決,盡早提問.學習學問要做到盤根問底,用懷疑的態度去學習理科才是正確的方式.當天的問題不要放在次日解決,掃除學習中的隱患是學習的最佳途徑.
⑹ 小學數學教學基本概念解讀家長要看嗎
家長最好過一下,平時和老師溝通,看孩子的學習進展
⑺ 小學數學定義
1.合數,質數,分解質因數,偶數,基數的含義
質數和合數 1、 一個數只有1和它本身兩個約數,這個數叫做質數(素數)。2、 一個數除了1和它本身外,還有別的約數,這個數叫做合數。3、 1既不是質數,也不是合數。4、 自然數按約數的個數可分為:1、質數、合數5、 自然數按能否被2整除分為:奇數、偶數
分解質因數
1、 每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。例如:18=3×3×2,3和2叫做18的質因數。
2、 把一個合數用幾個質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。
2.小數,分數,比,比例的基本性質
小數的基本性質:小數末尾添上0或者去掉0,小數的大小不變。
分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
比的基本性質:比的前項和後項同時乘或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩個外項的積等於兩個內項的積。
3.百分比,比例的含義
百分比:把一個數分成100份,取其中的幾份
比例的意義
(1)正比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做成正比例關系. ①用字母表示:如果用字母x和y表示兩種相關聯的量,用k表示它們的比值,(一定)
(2)反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,這兩種量中相對應的兩個數的積一定。這兩種量叫做成反比例的量。它們的關系叫做反比例關系。
⑻ 小學數學的基礎知識有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑼ 小學數學教學活動的基本理念是什麼
4.數學教學活動必須建立在學生的認知發展水平和已有的知識經驗的基礎上。教師應激發學生學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識和技能、數學思想和方法,獲得廣泛的數學活動的經驗。學生是數學學習的主人,教師是數學學習的組織者、引導者和合作者。
祝願工作順利!
⑽ 小學數學基本概念大全
統計概率與小學數學教學
北京師范大學教育學院 劉京莉
《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。
3.概率的古典定義。
對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:
某試驗具有以下性質
(1)試驗的結果是有限個(n個)
(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)
如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。
例:擲一顆均勻的骰子,求出現2點的概率。
由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。
又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3
出現偶數點的概率是,即。
概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。
在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。
二、在學習統計與概率的過程中發展學生的能力
統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。
例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:
從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。
三、統計、概率與小學其它內容的聯系
例1
上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。
例2
從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。
例3下面是用扇形統計圖統計的資料
對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。
從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。
總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh