導航:首頁 > 小學學科 > 小學6年級上冊數學

小學6年級上冊數學

發布時間:2020-11-29 05:51:55

㈠ 小學6年級數學上冊比的概念。

比是由一個前項和一個後項組成的除法算式,只不過把「÷」(除號)改成了「:」(比號)而已,但除法算式表示的是一種運算,而比則表示兩個數的關系。和分數的分數線類似。

舉一個例子,比如6÷4用比的形式寫作6:4。「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。而本例中6是這個比的前項,4是這個比的後項。

(1)小學6年級上冊數學擴展閱讀:

一、比值

比前項除以後項得到這個數就叫做比值。比值可以用分數表示,也可以用小數或整數表示。

例如:1:3的比值=1÷3=1/3;1/3也是一種寫法,作比時讀作一比三,做分數時讀作三分之一。

兩個比值相等的比可以組成比例,用=號連接,當比值里的分母為1時,可以寫作整數。

例如:50:25=2或者2/1或者2

二、基本性質

1、比的前項和後項同時乘或除以相同的數(0除外),比值不變。

2、最簡比的前項和後項互質,且比的前項、後項都為整數。

3、比值通常整數表示,也可以用分數或小數表示。

4、比的後項不能為0 。

5、比的後項乘以比值等於比的前項。

人教版小學六年級數學上冊概念都是有哪些

人教版小學六年級數學上冊概念如下:

第一單元位置:

1、找位置:先列後行。格式為:(列,行)。例如:(a,b)。

2、位置的表示方法:兩邊小括弧,中間是逗號,先寫列,再寫行。

3、平移方法:左右平移,列變行不變;上下平移,行變列不變。

第二單元分數乘法:

1、分數乘整數的意義和整數乘法的意義相同:就是求幾個相同加數的和的簡便運算。

2、分數乘整數的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。

3、整數乘分數:分數乘以整數,可以看作是求幾個分數相加的和是多少。整數乘以分數,可以看作是求整數的幾分之幾是多少。

4、分數乘分數的計演算法則:分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

5、乘積是1的兩個數叫互為倒數。

6、求一個數(0除外)的倒數的方法:把這個分數的分子、分母調換位置。1的倒數是1。0沒有倒數。真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。

7、一個數(0除外)乘以一個真分數,所得的積小於它本身。

8、一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。

9、一個數(0除外)乘以一個帶分數,所得的積大於它本身。

第三單元分數除法:

1、分數除法的意義:分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。

2、分數除以整數(0除外),等於分數乘這個整數的倒數。

3、整數除以分數等於整數乘以這個分數的倒數。

4、分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。

5、兩個數相除又叫做兩個數的比。

6、「:」是比號,讀做「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。

7、比同除法比較:比的前項相當於被除數,後項相當於除數,比值相當於商。

8、根據分數與除法的關系,比的前項相當於分子,比的後項相當於分母,比值相當於分數的值。

9、比的基本性質:比的前項和後項同時乘上或者同時除以相同的數(0除外),比值不變。

10、在工農業生產中和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。

11、一個數(0除外)除以一個真分數,所得的商大於它本身。

12、一個數(0除外)除以一個假分數,所得的商小於或等於它本身。

13、一個數(0除外)除以一個帶分數,所得的商小於它本身。

第四單元圓

1、圓的定義:平面上的一種曲線圖形。

2、將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等。

3、半徑:連接圓心到圓上任意一點的線段叫做半徑。半徑一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。

4、圓心確定圓的位置,半徑確定圓的大小。

5、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。直徑一般用字母d表示。

6、在同一個圓內,所有的半徑都相等,所有的直徑都相等。

7、在同一個圓內,有無數條半徑,有無數條直徑。

8、在同一個圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的一半。

9、圓的周長:圍成圓的曲線的長度叫做圓的周長,用「C」表示。

10、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數。我們把圓的周長和直徑的比值叫做圓周率,用字母「π」表示。圓周率是一個無限不循環小數。在計算時,取π≈3.14。

11、圓的周長公式:C=πd或C=2πr

12、圓的面積:圓所佔面積的大小叫圓的面積。

13、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。

14、在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。

15、一個環形,外圓的半徑是R,內圓的半徑是r,它的面積是S=πR²-πr²或S=π(R²-r²)。

16、環形的周長=外圓周長+內圓周長。

17、半圓的周長等於圓的周長的一半加直徑。半圓的周長公式:C=πd÷2+d或C=πr+2r

18、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小以上倍數的平方倍。

19、兩個圓的半徑比等於直徑比等於周長比,而面積比等於以上比的平方。

20、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;

21、當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。

22、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾。

23、當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小。

24、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。

25、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。

26、只有2條對稱軸的圖形是:長方形。

27、只有3條對稱軸的圖形是:等邊三角形。

28、只有4條對稱軸的圖形是:正方形。

29、有無數條對稱軸的圖形是:圓、圓環。

30、直徑所在的直線是圓的對稱軸。

第五單元百分數

1、百分數的定義:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

2、百分數的意義:表示一個數是另一個數的百分之幾。百分數表示兩個數之間的比率關系,不表示具體的數量,無單位名稱。

3、百分數通常不寫成分數形式,而在原來分子後面加上「%」來表示。分子部分可為小數、整數,可以大於100,小於100或等於100。

4、小數與百分數互化的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,只要把百分號去掉,同時把數點向左移動兩位。

5、百分數與分數互化的方法:把分數化成百分數,通常先把分數化成小數(除不盡的保留三位小數),再把小數化成百分數。

6、百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

7、百分率公式:

合格率=合格人數÷總人數100%發芽率=發芽數量÷總數量100%

出勤率=出勤人數÷總人數100%

8、應納稅額:繳納的稅款叫應納稅額。

9、應納稅額的計算:應納稅額=各種收入×稅率。

10、本金:存入銀行的錢叫做本金。

11、利息:取款時銀行多支付的錢叫做利息。

12、利率:利息與本金的比值叫做利率。

13、國債利息的計算公式:利息=本金×利率×時間。

13、本息:本金與利息的總和叫做本息。

單位換算:

1、長度單位換算

1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米

2、面積單位換算

1平方千米=100公頃1公頃10000平方米1平方米=100平方分米

1平方分米=100平方厘米

3、體(容)積單位換算

1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米

1立方厘米=1毫升

4、重量單位換算:1噸=1000千克1千克=1000克

運算定律:

1、加法交換律:兩數相加交換加數的位置,和不變。a+b=b+a

2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。如:a+b+c=a+c+b=a+(b+c)

3、乘法交換律:兩數相乘,交換因數的位置,積不變。ab=ba

4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。如:a×b×c=a×c×b=a×(b×c)

5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(ab)×c=acbc

6、加、減法性質:一個數連續減去幾個數,可以改寫成減去這幾個數的和。如:a-b-c=a-(b+c)

7、乘、除法性質:一個數連續除以幾個數,可以改寫成乘以這幾個數的積。a÷b÷c=a÷(b×c)


(2)小學6年級上冊數學擴展閱讀:

小學六年級數學學習方法

1、抓住課堂

平日學習最重要的是課堂學習,聽課要認真,思維要跟著老師,總結老師所講的數學思想、數學方法。

2、高質量完成作業

不僅要高速度,還要高正確率。寫作業時,如果同一類型的題重復練習,就要多注意速度和准確率,並且在每做完一次要對此類題目進行思考總結,進一步提升自己,解題的規律、技巧等。

3、勤思考,多提問

對於老師給出的規律、定理,不僅要知其然還要知其所以然,對於老師的講解,課本的內容,有疑問應盡管提出,清除學習隱患。

4、總結比較,理清思緒

要進行知識點總結比較。每學完一個章節都應要本章內容在腦中過一遍,對於相似易混淆的知識點應分項歸納比較,將其區分開來。

要對題目進行比較。平時作業或者考試的錯題,選擇性地記下來,並用在一旁記下注意事項,經常翻看,這對數學學習有極大的幫助。

5、有選擇地做課外練習

課余時間並不充足,因此在做課外練習時要少而精,多反思

㈢ 小學人教版數學六年級上冊知識點

基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

僅供參考:

【和差問題公式】

(和+差)÷2=較大數;

(和-差)÷2=較小數。

【和倍問題公式】

和÷(倍數+1)=一倍數;

一倍數×倍數=另一數,

或 和-一倍數=另一數。

【差倍問題公式】

差÷(倍數-1)=較小數;

較小數×倍數=較大數,

或 較小數+差=較大數。

【平均數問題公式】

總數量÷總份數=平均數。

【一般行程問題公式】

平均速度×時間=路程;

路程÷時間=平均速度;

路程÷平均速度=時間。

【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:

(速度和)×相遇(離)時間=相遇(離)路程;

相遇(離)路程÷(速度和)=相遇(離)時間;

相遇(離)路程÷相遇(離)時間=速度和。

【同向行程問題公式】

追及(拉開)路程÷(速度差)=追及(拉開)時間;

追及(拉開)路程÷追及(拉開)時間=速度差;

(速度差)×追及(拉開)時間=追及(拉開)路程。

【列車過橋問題公式】

(橋長+列車長)÷速度=過橋時間;

(橋長+列車長)÷過橋時間=速度;

速度×過橋時間=橋、車長度之和。

【行船問題公式】

(1)一般公式:

靜水速度(船速)+水流速度(水速)=順水速度;

船速-水速=逆水速度;

(順水速度+逆水速度)÷2=船速;

(順水速度-逆水速度)÷2=水速。

(2)兩船相向航行的公式:

甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度

(3)兩船同向航行的公式:

後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。

(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。

僅供參考:

【工程問題公式】

(1)一般公式:

工效×工時=工作總量;

工作總量÷工時=工效;

工作總量÷工效=工時。

(2)用假設工作總量為「1」的方法解工程問題的公式:

1÷工作時間=單位時間內完成工作總量的幾分之幾;

1÷單位時間能完成的幾分之幾=工作時間。

(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)

【盈虧問題公式】

(1)一次有餘(盈),一次不夠(虧),可用公式:

(盈+虧)÷(兩次每人分配數的差)=人數。

例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」

解(7+9)÷(10-8)=16÷2

=8(個)………………人數

10×8-9=80-9=71(個)………………………桃子

或8×8+7=64+7=71(個)(答略)

(2)兩次都有餘(盈),可用公式:

(大盈-小盈)÷(兩次每人分配數的差)=人數。

例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」

解(680-200)÷(50-45)=480÷5

=96(人)

45×96+680=5000(發)

或50×96+200=5000(發)(答略)

(3)兩次都不夠(虧),可用公式:

(大虧-小虧)÷(兩次每人分配數的差)=人數。

例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」

解(90-8)÷(10-8)=82÷2

=41(人)

10×41-90=320(本)(答略)

(4)一次不夠(虧),另一次剛好分完,可用公式:

虧÷(兩次每人分配數的差)=人數。

(例略)

(5)一次有餘(盈),另一次剛好分完,可用公式:

盈÷(兩次每人分配數的差)=人數。

(例略)

【雞兔問題公式】

(1)已知總頭數和總腳數,求雞、兔各多少:

(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;

總頭數-兔數=雞數。

或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;

總頭數-雞數=兔數。

例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」

解一 (100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………雞。

解二 (4×36-100)÷(4-2)=22(只)………雞;

36-22=14(只)…………………………兔。

(答 略)

(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式

(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數

或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。

(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數。

或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:

(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。

例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」

解一 (4×1000-3525)÷(4+15)

=475÷19=25(個)

解二 1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(個)(答略)

(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)

(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:

〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;

〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。

例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」

解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………雞

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

【植樹問題公式】

(1)不封閉線路的植樹問題:

間隔數+1=棵數;(兩端植樹)

路長÷間隔長+1=棵數。

或 間隔數-1=棵數;(兩端不植)

路長÷間隔長-1=棵數;

路長÷間隔數=每個間隔長;

每個間隔長×間隔數=路長。

(2)封閉線路的植樹問題:

路長÷間隔數=棵數;

路長÷間隔數=路長÷棵數

=每個間隔長;

每個間隔長×間隔數=每個間隔長×棵數=路長。

(3)平面植樹問題:

佔地總面積÷每棵佔地面積=棵數

【求分率、百分率問題的公式】

比較數÷標准數=比較數的對應分(百分)率;

增長數÷標准數=增長率;

減少數÷標准數=減少率。

或者是

兩數差÷較小數=多幾(百)分之幾(增);

兩數差÷較大數=少幾(百)分之幾(減)。

【增減分(百分)率互求公式】

增長率÷(1+增長率)=減少率;

減少率÷(1-減少率)=增長率。

比甲丘面積少幾分之幾?」

解 這是根據增長率求減少率的應用題。按公式,可解答為

百分之幾?」

解 這是由減少率求增長率的應用題,依據公式,可解答為

【求比較數應用題公式】

標准數×分(百分)率=與分率對應的比較數;

標准數×增長率=增長數;

標准數×減少率=減少數;

標准數×(兩分率之和)=兩個數之和;

標准數×(兩分率之差)=兩個數之差。

【求標准數應用題公式】

比較數÷與比較數對應的分(百分)率=標准數;

增長數÷增長率=標准數;

減少數÷減少率=標准數;

兩數和÷兩率和=標准數;

兩數差÷兩率差=標准數;

【方陣問題公式】

(1)實心方陣:(外層每邊人數)2=總人數。

(2)空心方陣:

(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。

或者是

(最外層每邊人數-層數)×層數×4=中空方陣的人數。

總人數÷4÷層數+層數=外層每邊人數。

例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?

解一 先看作實心方陣,則總人數有

10×10=100(人)

再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是

10-2×3=4(人)

所以,空心部分方陣人數有

4×4=16(人)

故這個空心方陣的人數是

100-16=84(人)

解二 直接運用公式。根據空心方陣總人數公式得

(10-3)×3×4=84(人)

【利率問題公式】利率問題的類型較多,現就常見的單利、復利問題,介紹其計算公式如下。

(1)單利問題:

本金×利率×時期=利息;

本金×(1+利率×時期)=本利和;

本利和÷(1+利率×時期)=本金。

年利率÷12=月利率;

月利率×12=年利率。

(2)復利問題:

本金×(1+利率)存期期數=本利和。

例如,「某人存款2400元,存期3年,月利率為10.2‰(即月利1分零2毫),三年到期後,本利和共是多少元?」

解 (1)用月利率求。

3年=12月×3=36個月

2400×(1+10.2%×36)

=2400×1.3672

=3281.28(元)

(2)用年利率求。

先把月利率變成年利率:

10.2‰×12=12.24%

再求本利和:

2400×(1+12.24%×3)

=2400×1.3672

=3281.28(元)(答略)

小學數學六年級上冊難題答案

鹽與水1、含鹽5%的鹽水中,鹽和水的比是(1:19 )。_____________________________________________________________________3、在含鹽率是15%的鹽水中,加入3克鹽17克水,這時的含鹽率是(15 )%。_____________________________________________________________________4、鹽占鹽水的3/20,那麼鹽占水的( 3/17),水占鹽的(17/3 )。_____________________________________________________________________5、一種鹽水的含鹽率是15%,鹽和水的比是(3:17 )。_____________________________________________________________________6、把20克鹽放入200克水中,鹽與水的比是(1:10 ),鹽占鹽水的質量比是(1:11 ),鹽占鹽水的( 9.09)%。甲與已1、甲比已數多1/4,已數比甲數少(1/5 )%。_____________________________________________________________________2、已數占甲數的3/5,兩數的差是( 2/5),和是(8/5 )。_____________________________________________________________________3、甲數是17.5,比已數的2倍少1.5,兩數的和是(27 )。_____________________________________________________________________4、甲數比已數多1/4,甲數和已數的比是(5/4 ),甲數是已數的3/5,甲乙的比是(3/5 )。_____________________________________________________________________5、「甲數的20%是已數」是把( 甲)當做單位一,「已數相當於甲數的15%」是把(甲 )當做單位一。6、甲比已多10%,已比甲少(9.09% )。_____________________________________________________________________7、甲、已兩數的比是5:4,甲數是54,已數是(43.2 )。_____________________________________________________________________8、甲數是5,比已數少10%,乙數(50/9 )。_____________________________________________________________________9、甲數的2/3和已數的3/4相等,甲數比已數多( 12.5)%。_____________________________________________________________________綜合題1、某電視機一次降價10%,又降價10%後,現在的價格是原來的( 81)%_____________________________________________________________________2、小明讀一本故事書,讀了的頁數是未讀的40%,已知讀了36頁,全書共( 126)頁。_____________________________________________________________________3、完成一項任務,計劃5天完成,只用了4天,工作效率提高了( 20%)_____________________________________________________________________4、工地上有5噸水泥,第一次用去50%,第二次用去1/5,還剩( 1.5)5、一個數的1/5是1/6,這個數的1/2是(5/12 )____________________________________________________6、把甲倉糧食的1/5調入已倉後,兩倉存糧相等,原來已倉存糧是甲倉的(3/5 )_______________________________________________________7、食堂原來有大米80千克,吃去3/5後,在買進(24 )千克,食堂里的大米是原來的9/10._________________________________________________________8、一袋大米,第一次用去40%,第二次用去總量的一半,兩次共用去36千克,這袋大米原來重(40 )千克,還剩( 4)千克。_____________________________________________________________9、一件商品原價100元,提價10%後,有降價10%,現價(99 )元_________________________________________________________________橫線上列豎式累死我了,選我行不?

㈤ 六年級小學生上冊數學學習計劃

學習計劃啊,先看目錄,然後把你認為重點的寫一起,層層寫出,然後就可以慢慢一步一步的開始計劃怎麼學習了,在開學第一節課老師肯定告訴你那部分是重點的你就和你的計劃對照進一步完善,完成後就可以慢慢的開始一步步的開始。
1.理解分數乘、除法的意義,掌握分數乘、除法的計算方法,比較熟練地計算簡單的分數乘、除法,會進行簡單的分數四則混合運算。
2. 理解倒數的意義,掌握求倒數的方法。
3. 理解比的意義和性質,會求比值和化簡比,會解決有關比的簡單實際問題。
4. 掌握圓的特徵,會用圓規畫圓;探索並掌握圓的周長和面積公式,能夠正確計算圓的 周長和面積。
5. 知道圓是軸對稱圖形,進一步認識軸對稱圖形;能運用平移、軸對稱和旋轉設計簡單的圖案。
6. 能在方格紙上用數對表示位置,初步體會坐標的思想。
7. 理解百分數的意義,比較熟練地進行有關百分數的計算,能夠解決有關百分數的簡單實際問題。
8. 認識扇形統計圖,能根據需要選擇合適的統計圖表示數據。
9. 經歷從實際生活中發現問題、提出問題、解決問題的過程,體會數學在日常生活中的作用,初步形成綜合運用數學知識解決問題的能力。
10. 體會解決問題策略的多樣性及運用假設的數學思想方法解決問題的有效性,感受數學的魅力。形成發現生活中的數學的意識,初步形成觀察、分析及推理的能力。
11. 體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。
12. 養成認真作業、書寫整潔的良好習慣。

㈥ 小學六年級數學上冊最難題

1
、一根繩長
4/5

,
先用去
1/4,
又用去
1/4

,
一共用去多少米
?
2
、山羊
50

,
綿羊比山羊的

4/5

3

,
綿羊有多少只
?
3
、看一本
120
頁的書
,
已看全書的

1/3,
再看多少頁正好是全書的

5/6?
4
、一瓶油
4/5
千克
,
已用去
3/10
千克
,
再用去多少千克正好是這桶油的

1/2?
5
、一袋大米
120
千克
,
第一天吃去
1/4,
第二天吃去餘下的

1/3,
第二天吃去多少千克
?
6
、一批貨物,汽車每次可運走它的

1/8

4
次可運走它的幾分之幾?如果這批貨物重
116
噸,已經
運走了多少噸?

7
、某廠九月份用水
28
噸,十月份計劃比九月份節約

1/7
,十月份計劃比九月份節約多少噸?

8
、一塊平行四邊形地底邊長
24
米,高是底的

3/4
,它的面積是多少平方米?

9
、人體的血液占體重的

1/13
,血液里約

2/3
是水,爸爸的體重是
78
千克,他的血液大約含水多少
千克?

10

六年級學生參加植樹勞動,
男生植了
160
棵,
女生植的比男生的

3/4

5
棵。
女生植樹多少棵?

11

新光小學
四年級人數是
五年級


4/5
,三年級人數是四年級的

2/3
,如果
五年級

120
人,那麼
三年級是多少人?

12
、甲、乙兩車同時從相距
420
千米的
A

B
兩地相對開出,
5
小時後甲車行了全程的

3/4
,乙車行
了全程的

2/3
,這時兩車相距多少千米?

13

五年級
植樹
120
棵,六年級植樹的棵數是五年級的
7/5
,五、六年級一共植樹多少棵?

14
、修一條
12/5
千米的路,第一周修了
2/3
千米,第二周修了全長的
1/3
,兩周共修了多少千米?

15
、一條公路長
7/8
千米,第一天修了
1/8
千米,再修多少千米就正好是

1/2
全長的



16
、小華看一本
96
頁的故事書,第一天看了

1/4
,第二天看了

1/8
。兩天共看了多少頁?

17
、一本書有
150
頁,小王第一天看了總數的
1/10
,第二天看了總數的

1/15
,第三天應從第幾頁看
起?

18
、學校運來
2/5
噸水泥,運來的黃沙是水泥的
5/8
還多

1/8
噸,運來黃沙多少噸?

19
、小偉和
小英
給希望工程捐款錢數的比是
2 :5

小英
捐了
35
元,小偉捐了多少元?

20
、電視機廠今年計劃比去年增產
2/5
。去年生產電視機
1/5
萬台,今年計劃增產多少萬台?

21
、某村要挖一條長
2700
米的水渠,已經挖了
1050
米,再挖多少米正好挖完這條水渠的
2/3


22
、某校少先隊員採集樹種,四年級採集了
1/2
千克,五年級比四年級多採集
1/3
千克,六年級採集
的是五年級的
6/5
。六年級採集樹種多少千克?

23
、倉庫運來大米
240
噸,運來的大豆是大米噸數的
5/6
,大豆的噸數又是麵粉的
3/4
。運來麵粉多
少噸?

24
、甲筐蘋果
9/10
千克
,
把甲的
1/9
給乙筐
,
甲乙相等
,
求乙筐蘋果多少千克
?
25
、一桶油倒出
2/3
,剛好倒出
36
千克,這桶油原來有多少千克?

26
、甲、乙兩個工程隊共修路
360
米,甲乙兩隊長度比是
5 : 4
,甲隊比乙隊多修了多少米?

27
、服裝廠第一車間有工人
150
人,第二車間的工人數是第一車間的
2/5
,兩個車間的人數正好是全
廠工人總數的
5/6
,全廠有工人多少人?

28
、一批水果
120
噸,其中梨占總數的
2/5
,又是蘋果的
4/5
,蘋果有多少千克?

29
、甲乙兩數的和是
120
,把甲的
1/3
給乙,甲、乙的比是
2:3
,求原來的甲是多少?

30

小紅
採集標本
24
件,送給小芳
4
件後,
小紅
恰好是小芳的
4/5
,小芳原有多少件?

㈦ 小學六年級上冊數學題

小學六年級上學期試題精選
考前15天精練
應用題:分數應用題和行程問題是小學數學應用題的難點。

1、甲乙丙三堆煤,甲堆煤重是乙丙重量的2/5,乙堆煤重是甲、丙重量的1/4,丙堆煤重90噸,甲乙各重多少?(很少人做對)

2、甲乙兩輛汽車同時從兩地相向而行,甲車每小時行45千米,乙車每小時行42千米。兩車在距離中點12千米處相遇。
兩車同時開出後經過多少小時相遇? 兩地相距多少千米?
(此題,全班只有4人做對.很多同學誤以為甲乙兩車相差12千米。就列為:12 ÷(45-42)

3、一項工作,甲單獨做8小時完成,乙每小時做30個。現在甲乙二人合做,完成時,甲做了這項工程的5/8,乙做了多少個?(很少人做對)

4、一個鍾的時針長4厘米,這個時針的尖端轉動一晝夜所走的路程是多少厘米?
(注意:一晝夜,時針則走2圈)

5、商店運來三種水果,其中梨的重量占。蘋果的重量和其它兩種水果重量之和的比是1 :3。蘋果比梨多20千克。共運來水果多少千克?(把「比」轉換成「分率」題。即:蘋果的重量占)

6、運送一批貨,第一天運了總數的1/5,第二天運了9噸,這時已運的與剩下的噸數的比是7 :5。這批貨物有多少噸?(把「比」轉換成「分率」題。即:已運的占總數的7/12)

7、一種花生每100克能榨生油32克,現有這樣的花生1噸,可以榨生油多少千克?
(用比例解)

8、快慢兩車分別從A、B兩站同時相對開出,當快車到達兩站的中點時,慢車離中點還有12.5千米,當快車到達B站時,慢車行了全程的7/8,A、B兩站相距多少千米?
12.5×2÷(1-)=200(千米)

9、一項工程,甲乙兩隊合做48天完成,已知甲乙兩隊工效的比是6 :4。甲隊單獨完成這項工程要多少天?

10、 用24米長的籬笆靠牆圍成一個梯形形狀的菜地(如圖),求這塊菜地的面積。

操作與計算:
1、街心花園的直徑是5米,現在它的周圍修一條1米寬的環形路,請按的比例尺畫好設計圖,並求出路面的實際面積。

2、右面一個小方格是1平方厘米,請分別畫出底是3厘米,面積是9平方厘米的三角形。

A
3、經過P點作OA的平行線和OB的垂線。
.P

O B
4、畫出下列圖形底邊上的高:





5、過A點作直線L的平行線和垂線。

·A
L
A · L

·
L A

6、在圖形實物中釘一條木條使物體穩定:(畫出示意圖)

7、A村旁有一條河流過,現要從河的上流給A村供水,並向下游給A村排水,要怎樣設計管道,才能使兩根管道最短?


C

8、按要求作圖或填空:
(1) 右圖是一個三角形,由B點作AC的垂線。
(2) 量出這個三角形的底和高的長度(精確到厘米) A B
(3) 求了這個三角形的面積是( )平方厘米。

概念題:
1、A、B是正方形邊上的中點,陰影部分佔整個圖形的 ( / )。

2、一個圓錐和一個圓柱的底面積相等,圓錐的體積是圓柱的1/6,如果圓柱的高是9厘米,那麼圓錐的高是( )
4、一個數約是50萬,這個數最大的一位小數是( ),最小的一位小數是
( )。
5、169分解質因數是( ),289分解質因數是( )
6、A和B的兩個自然數的最大公約數是14,最小公倍數是84,這兩個數是( )和( )或( )和( )。
11、 一個長方形的寬如果增加3倍,面積就增加18平方厘米,這時剛好是一個正方形,原來長方形的面積是( )平方厘米。
12、 一個長方體的表面積是45平方分米,它正好可以鋸成兩個相等的正方體,這個正方體的表面積是( ).
13、 一個正方形的邊長增加3厘米,面積就增加45平方厘米,原來正方形的面積是( )
14、 加工一批零件,師傅和徒弟合做7.5小時後,已加工的零件個數和未加工的個數比是3:7,如果師傅單獨完成全部零件要30小時,徒弟每小時加工6個,這批零件一共有多少個?
15、 禮堂門口有兩根圓柱子,老師用軟尺圍了一圈,剛好是1米30厘米,高是5米,如果把圓柱都帖上馬賽克,至少要買馬賽克多少平方米?(很多人沒有看到兩根)
16、 右圖是一塊長方形鐵皮,以AC為高做一個圓柱形的水桶,現在要配上一塊正方形鐵皮,至少需要多大面積的正方形的鐵皮?(單位:分米)

(很多人誤以為是求圓的周長)
13、一個老壽星說:「我在2000年過了第23個生日」這位老壽星今年( )歲。
(許多人以為是92歲。今年應該加上去,如2003年,則是95歲等。)
14、在一杯40克的開水中加入6克白糖,含糖率是( )%,如果再加入糖( )克,含糖率是20%。(對後一問,較難)
15、3-2=( ),當( )時,結果是真分數。
17、 操作:把梯形分成相等的兩部分.

(很多人沒有理解只分成兩部分,應該是上下底的中點連線才對)
17、兩個( )的三角形能拼成平行四邊形。(填完全相同、完全一樣、完全重合均可。)
18、兩個( )三角形能拼成長方形。(完全一樣的直角)
19、兩個( )三角形能拼成正方形。(完全一樣的等腰直角三角形)
①兩個等底等高的三角形能拼成一個平行四邊形。( )
②兩個面積相等的三角形能拼成一個平行四邊形。( )
③兩個三角形的面積相等,它們一定是等底等高。( )
④兩個平行四邊形的面積相等,它們一定是等底等高。( )
20、2000年是21世紀。( ) (錯。2001年才是21世紀)
21、a是自然數,a÷b=3,那麼a能被b整除。( ) (錯。當b是時就不對了。)
22、圓的直徑是半徑的2倍。( ) (對。有「圓的」一詞限定就表明是同一個圓)
23、圓周率是圓的周長與直徑的比。 ( )
24、「九折優惠」比「買十送一」貴。 ( ) (錯)
25、甲數的等於乙數的,甲數小於乙數。( ) 對。甲數和乙數本身就不為0。
圖形不好發或不支持

閱讀全文

與小學6年級上冊數學相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99