導航:首頁 > 小學學科 > 小學數學應用題類型

小學數學應用題類型

發布時間:2020-11-29 01:21:40

小學數學典型應用題有哪些類型

1 歸一問題
【含義】 在解題時,先求出一份是多少(即單一量),然後以單一量為標准,求出所要求的數量。這類應用題叫做歸一問題。

【數量關系】 總量÷份數=1份數量 1份數量×所佔份數=所求幾份的數量
另一總量÷(總量÷份數)=所求份數

【解題思路和方法】 先求出單一量,以單一量為標准,求出所要求的數量。

例1 買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?
解(1)買1支鉛筆多少錢? 0.6÷5=0.12(元)
(2)買16支鉛筆需要多少錢?0.12×16=1.92(元)
列成綜合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉機3天耕地90公頃,照這樣計算,5台拖拉機6 天耕地多少公頃?
解(1)1台拖拉機1天耕地多少公頃? 90÷3÷3=10(公頃)
(2)5台拖拉機6天耕地多少公頃? 10×5×6=300(公頃)
列成綜合算式 90÷3÷3×5×6=10×30=300(公頃)
答:5台拖拉機6 天耕地300公頃。
例3 5輛汽車4次可以運送100噸鋼材,如果用同樣的7輛汽車運送105噸鋼材,需要運幾次?
解 (1)1輛汽車1次能運多少噸鋼材? 100÷5÷4=5(噸)
(2)7輛汽車1次能運多少噸鋼材? 5×7=35(噸)
(3)105噸鋼材7輛汽車需要運幾次? 105÷35=3(次)
列成綜合算式 105÷(100÷5÷4×7)=3(次)
答:需要運3次。
2 歸總問題
【含義】 解題時,常常先找出「總數量」,然後再根據其它條件算出所求的問題,叫歸總問題。所謂「總數量」是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。

【數量關系】 1份數量×份數=總量 總量÷1份數量=份數
總量÷另一份數=另一每份數量

【解題思路和方法】 先求出總數量,再根據題意得出所求的數量。
例1 服裝廠原來做一套衣服用布3.2米,改進裁剪方法後,每套衣服用布2.8米。原來做791套衣服的布,現在可以做多少套?
解 (1)這批布總共有多少米? 3.2×791=2531.2(米)
(2)現在可以做多少套? 2531.2÷2.8=904(套)
列成綜合算式 3.2×791÷2.8=904(套)
答:現在可以做904套。
例2 小華每天讀24頁書,12天讀完了《紅岩》一書。小明每天讀36頁書,幾天可以讀完《紅岩》?
解 (1)《紅岩》這本書總共多少頁? 24×12=288(頁)
(2)小明幾天可以讀完《紅岩》? 288÷36=8(天)
列成綜合算式 24×12÷36=8(天)
答:小明8天可以讀完《紅岩》。
例3 食堂運來一批蔬菜,原計劃每天吃50千克,30天慢慢消費完這批蔬菜。後來根據大家的意見,每天比原計劃多吃10千克,這批蔬菜可以吃多少天?
解 (1)這批蔬菜共有多少千克? 50×30=1500(千克)
(2)這批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成綜合算式 50×30÷(50+10)=1500÷60=25(天)
答:這批蔬菜可以吃25天。
3 和差問題
【含義】 已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。

【數量關系】 大數=(和+差)÷ 2 小數=(和-差)÷ 2

【解題思路和方法】 簡單的題目可以直接套用公式;復雜的題目變通後再用公式。

例1 甲乙兩班共有學生98人,甲班比乙班多6人,求兩班各有多少人?
解 甲班人數=(98+6)÷2=52(人)
乙班人數=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。
解 長=(18+2)÷2=10(厘米) 寬=(18-2)÷2=8(厘米)
長方形的面積 =10×8=80(平方厘米)
答:長方形的面積為80平方厘米。
例3 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
解 甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數,丙是小數。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?
解 「從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐」,這說明甲車是大數,乙車是小數,甲與乙的差是(14×2+3),甲與乙的和是97,因此 甲車筐數=(97+14×2+3)÷2=64(筐)
乙車筐數=97-64=33(筐)
答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。
4 和倍問題
【含義】 已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。

【數量關系】 總和 ÷(幾倍+1)=較小的數 總和 - 較小的數 = 較大的數
較小的數 ×幾倍 = 較大的數

【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 果園里有杏樹和桃樹共248棵,桃樹的棵數是杏樹的3倍,求杏樹、桃樹各多少棵?
解 (1)杏樹有多少棵? 248÷(3+1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:杏樹有62棵,桃樹有186棵。
例2 東西兩個倉庫共存糧480噸,東庫存糧數是西庫存糧數的1.4倍,求兩庫各存糧多少噸?
解 (1)西庫存糧數=480÷(1.4+1)=200(噸)
(2)東庫存糧數=480-200=280(噸)
答:東庫存糧280噸,西庫存糧200噸。
例3 甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天後乙站車輛數是甲站的2倍?
解 每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當於每天從甲站開往乙站(28-24)輛。把幾天以後甲站的車輛數當作1倍量,這時乙站的車輛數就是2倍量,兩站的車輛總數(52+32)就相當於(2+1)倍,那麼,幾天以後甲站的車輛數減少為 (52+32)÷(2+1)=28(輛)
所求天數為 (52-28)÷(28-24)=6(天)
答:6天以後乙站車輛數是甲站的2倍。
例4 甲乙丙三數之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數各是多少?
解 乙丙兩數都與甲數有直接關系,因此把甲數作為1倍量。
因為乙比甲的2倍少4,所以給乙加上4,乙數就變成甲數的2倍;
又因為丙比甲的3倍多6,所以丙數減去6就變為甲數的3倍;
這時(170+4-6)就相當於(1+2+3)倍。那麼,
甲數=(170+4-6)÷(1+2+3)=28
乙數=28×2-4=52
丙數=28×3+6=90
答:甲數是28,乙數是52,丙數是90。
5 差倍問題
【含義】 已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。

【數量關系】 兩個數的差÷(幾倍-1)=較小的數
較小的數×幾倍=較大的數

【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 果園里桃樹的棵數是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?
解 (1)杏樹有多少棵? 124÷(3-1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:果園里杏樹是62棵,桃樹是186棵。
例2 爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?
解 (1)兒子年齡=27÷(4-1)=9(歲)
(2)爸爸年齡=9×4=36(歲)
答:父子二人今年的年齡分別是36歲和9歲。
例3 商場改革經營管理辦法後,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個月盈利各是多少萬元?
解 如果把上月盈利作為1倍量,則(30-12)萬元就相當於上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(萬元)
本月盈利=18+30=48(萬元)
答:上月盈利是18萬元,本月盈利是48萬元。
例4 糧庫有94噸小麥和138噸玉米,如果每天運出小麥和玉米各是9噸,問幾天後剩下的玉米是小麥的3倍?
解 由於每天運出的小麥和玉米的數量相等,所以剩下的數量差等於原來的數量差(138-94)。把幾天後剩下的小麥看作1倍量,則幾天後剩下的玉米就是3倍量,那麼,(138-94)就相當於(3-1)倍,因此
剩下的小麥數量=(138-94)÷(3-1)=22(噸)
運出的小麥數量=94-22=72(噸)
運糧的天數=72÷9=8(天)
答:8天以後剩下的玉米是小麥的3倍。
6 倍比問題
【含義】 有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數,再用倍比的方法算出要求的數,這類應用題叫做倍比問題。

【數量關系】 總量÷一個數量=倍數 另一個數量×倍數=另一總量

【解題思路和方法】 先求出倍數,再用倍比關系求出要求的數。

例1 100千克油菜籽可以榨油40千克,現在有油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成綜合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植樹節這天,某小學300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植樹多少棵? 400×160=64000(棵)
列成綜合算式 400×(48000÷300)=64000(棵)
答:全縣48000名師生共植樹64000棵。
例3 鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉800畝果園共收入多少元?全縣16000畝果園共收入多少元?
解 (1)800畝是4畝的幾倍? 800÷4=200(倍)
(2)800畝收入多少元? 11111×200=2222200(元)
(3)16000畝是800畝的幾倍?16000÷800=20(倍)
(4)16000畝收入多少元? 2222200×20=44444000(元)
答:全鄉800畝果園共收入2222200元,全縣16000畝果園共收入
44444000元。
7 相遇問題
【含義】 兩個運動的物體同時由兩地出發相向而行,在途中相遇。這類應用題叫做相遇問題。

【數量關系】 相遇時間=總路程÷(甲速+乙速)
總路程=(甲速+乙速)×相遇時間

【解題思路和方法】 簡單的題目可直接利用公式,復雜的題目變通後再利用公式。

例1 南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,經過幾小時兩船相遇?
解 392÷(28+21)=8(小時)
答:經過8小時兩船相遇。
例2 小李和小劉在周長為400米的環形跑道上跑步,小李每秒鍾跑5米,小劉每秒鍾跑3米,他們從同一地點同時出發,反向而跑,那麼,二人從出發到第二次相遇需多長時間?
解 「第二次相遇」可以理解為二人跑了兩圈。因此總路程為400×2
相遇時間=(400×2)÷(5+3)=100(秒)
答:二人從出發到第二次相遇需100秒時間。
例3 甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。
解 「兩人在距中點3千米處相遇」是正確理解本題題意的關鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,
相遇時間=(3×2)÷(15-13)=3(小時)
兩地距離=(15+13)×3=84(千米)
答:兩地距離是84千米。
8 追及問題
【含義】 兩個運動物體在不同地點同時出發(或者在同一地點而不是同時出發,或者在不同地點又不是同時出發)作同向運動,在後面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內,後面的追上前面的物體。這類應用題就叫做追及問題。
【數量關系】 追及時間=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及時間
【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?
解 (1)劣馬先走12天能走多少千米? 75×12=900(千米)
(2)好馬幾天追上劣馬? 900÷(120-75)=20(天)
列成綜合算式 75×12÷(120-75)=900÷45=20(天)
答:好馬20天能追上劣馬。
例2 小明和小亮在200米環形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發,同向而跑。小明第一次追上小亮時跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮時比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用〔40×(500÷200)〕秒,所以小亮的速度是 (500-200)÷〔40×(500÷200)〕=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?
解 敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是〔10×(22-6)〕千米,甲乙兩地相距60千米。由此推知
追及時間=〔10×(22-6)+60〕÷(30-10)=220÷20=11(小時)
答:解放軍在11小時後可以追上敵人。
例4 一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。
解 這道題可以由相遇問題轉化為追及問題來解決。從題中可知客車落後於貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,
這個時間為 16×2÷(48-40)=4(小時)
所以兩站間的距離為 (48+40)×4=352(千米)
列成綜合算式 (48+40)×〔16×2÷(48-40)〕=88×4=352(千米)
答:甲乙兩站的距離是352千米。
例5 兄妹二人同時由家上學,哥哥每分鍾走90米,妹妹每分鍾走60米。哥哥到校門口時發現忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學校有多遠?
解 要求距離,速度已知,所以關鍵是求出相遇時間。從題中可知,在相同時間(從出發到相遇)內哥哥比妹妹多走(180×2)米,這是因為哥哥比妹妹每分鍾多走(90-60)米,那麼,二人從家出走到相遇所用時間為
180×2÷(90-60)=12(分鍾)
家離學校的距離為 90×12-180=900(米)
答:家離學校有900米遠。
例6 孫亮打算上課前5分鍾到學校,他以每小時4千米的速度從家步行去學校,當他走了1千米時,發現手錶慢了10分鍾,因此立即跑步前進,到學校恰好准時上課。後來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鍾到學校。求孫亮跑步的速度。
解 手錶慢了10分鍾,就等於晚出發10分鍾,如果按原速走下去,就要遲到(10-5)分鍾,後段路程跑步恰准時到學校,說明後段路程跑比走少用了(10-5)分鍾。如果從家一開始就跑步,可比步行少9分鍾,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分鍾。所以
步行1千米所用時間為 1÷〔9-(10-5)〕=0.25(小時)=15(分鍾)
跑步1千米所用時間為 15-〔9-(10-5)〕=11(分鍾)
跑步速度為每小時 1÷11/60=1×60/11=5.5(千米)
答:孫亮跑步速度為每小時5.5千米。
9 植樹問題
【含義】 按相等的距離植樹,在距離、棵距、棵數這三個量之間,已知其中的兩個量,要求第三個量,這類應用題叫做植樹問題。

【數量關系】 線形植樹 棵數=距離÷棵距+1
環形植樹 棵數=距離÷棵距
方形植樹 棵數=距離÷棵距-4
三角形植樹 棵數=距離÷棵距-3
面積植樹 棵數=面積÷(棵距×行距)

【解題思路和方法】 先弄清楚植樹問題的類型,然後可以利用公式。

例1 一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?
解 136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2 一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?
解 400÷4=100(棵)
答:一共能栽100棵白楊樹。
例3 一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?
解 220×4÷8-4=110-4=106(個)
答:一共可以安裝106個照明燈。
例4 給一個面積為96平方米的住宅鋪設地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?
解 96÷(0.6×0.4)=96÷0.24=400(塊)
答:至少需要400塊地板磚。
例5 一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?
解 (1)橋的一邊有多少個電桿? 500÷50+1=11(個)
(2)橋的兩邊有多少個電桿? 11×2=22(個)
(3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)
答:大橋兩邊一共可以安裝44盞路燈。
10 年齡問題
【含義】 這類問題是根據題目的內容而得名,它的主要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數關系隨著年齡的增長在發生變化。

【數量關系】年齡問題往往與和差、和倍、差倍問題有著密切聯系,尤其與差倍問題的解題思路是一致的,要緊緊抓住「年齡差不變」這個特點。

【解題思路和方法】 可以利用「差倍問題」的解題思路和方法。

例1 爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?
解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)
答:今年爸爸的年齡是亮亮的7倍,明年爸爸的年齡是亮亮的6倍。
例2 母親今年37歲,女兒今年7歲,幾年後母親的年齡是女兒的4倍?
解 (1)母親比女兒的年齡大多少歲? 37-7=30(歲)
(2)幾年後母親的年齡是女兒的4倍?30÷(4-1)-7=3(年)
列成綜合算式 (37-7)÷(4-1)-7=3(年)
答:3年後母親的年齡是女兒的4倍。
例3 3年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?
解 今年父子的年齡和應該比3年前增加(3×2)歲,今年二人的年齡和為 49+3×2=55(歲)
把今年兒子年齡作為1倍量,則今年父子年齡和相當於(4+1)倍,因此,今年兒子年齡為
55÷(4+1)=11(歲)
今年父親年齡為 11×4=44(歲)
答:今年父親年齡是44歲,兒子年齡是11歲。
例4 甲對乙說:「當我的歲數曾經是你現在的歲數時,你才4歲」。乙對甲說:「當我的歲數將來是你現在的歲數時,你將61歲」。求甲乙現在的歲數各是多少?

這里涉及到三個年份:過去某一年、今年、將來某一年。列表分析:
過去某一年 今 年 將來某一年
甲 □歲 △歲 61歲
乙 4歲 □歲 △歲
表中兩個「□」表示同一個數,兩個「△」表示同一個數。
因為兩個人的年齡差總相等:□-4=△-□=61-△,也就是4,□,△,61成等差數列,所以,61應該比4大3個年齡差,因此二人年齡差為 (61-4)÷3=19(歲)
甲今年的歲數為 △=61-19=42(歲)
乙今年的歲數為 □=42-19=23(歲)
答:甲今年的歲數是42歲,乙今年的歲數是23歲。
11 行船問題
【含義】 行船問題也就是與航行有關的問題。解答這類問題要弄清船速與水速,船速是船隻本身航行的速度,也就是船隻在靜水中航行的速度;水速是水流的速度,船隻順水航行的速度是船速與水速之和;船隻逆水航行的速度是船速與水速之差。

【數量關系】 (順水速度+逆水速度)÷2=船速
(順水速度-逆水速度)÷2=水速
順水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-順水速=順水速-水速×2

【解題思路和方法】 大多數情況可以直接利用數量關系的公式。

例1 一隻船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?
解 由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時 320÷8-15=25(千米)
船的逆水速為 25-15=10(千米)
船逆水行這段路程的時間為 320÷10=32(小時)
答:這只船逆水行這段路程需用32小時。
例2 甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?
解由題意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可見 (36-20)相當於水速的2倍,
所以, 水速為每小時(36-20)÷2=8(千米)
又因為, 乙船速-水速=360÷15,
所以, 乙船速為 360÷15+8=32(千米)
乙船順水速為 32+8=40(千米)
所以, 乙船順水航行360千米需要 360÷40=9(小時)
答:乙船返回原地需要9小時。
例3 一架飛機飛行在兩個城市之間,飛機的速度是每小時576千米,風速為每小時24千米,飛機逆風飛行3小時到達,順風飛回需要幾小時?
解 這道題可以按照流水問題來解答。
(1)兩城相距多少千米? (576-24)×3=1656(千米)
(2)順風飛回需要多少小時? 1656÷(576+24)=2.76(小時)
列成綜合算式〔(576-24)×3〕÷(576+24)=2.76(小時)
答:飛機順風飛回需要2.76小時。

人教版小學數學應用題都有哪些類型

有分數應用題,分數方程,算圓的面積,周長,百分數,雞兔同籠這一類型的數學題

③ 小學數學應用題包括哪些種類

有以下30類典型應用題:

1、歸一問題
2、歸總問題
3、和差問題
4、和倍問題
5、差倍問題
6、倍比問題
7、相遇問題
8、追及問題
9、植樹問題
10、年齡問題

11、行船問題
12、列車問題
13、時鍾問題
14、盈虧問題
15、工程問題
16、正反比例問題
17、按比例分配
18、百分數問題
19、「牛吃草」問題
20、雞兔同籠問題

21、方陣問題
22、商品利潤問題
23、存款利率問題
24、溶液濃度問題
25、構圖布數問題
26、幻方問題
27、抽屜原則問題
28、公約公倍問題
29、最值問題
30、列方程問題

④ 小學數學應用題有哪些類型

圖示法解應用題,假設法解應用題,比較法解應用題,消去法解應用題回,還原法解應用答題,對應法解應用題,代換法解應用題,用面積法圖解應用題,用列表法解應用題,牛吃草,分數應用題,列方程解應用題,二元一次方程組,不定方程,包容與排斥,抽取原則,推理方法,濃度問題,工程問題,水管問題,行程問題,復雜的行程問題,比和比例應用題,成本與利潤問題,圖形的面積。

⑤ 小學數學有哪些應用題,

應用題是指將所學知識應用到實際生活實踐的題目。在數學上,應用題分兩大類:一個是數學應用。另一個是實際應用。數學應用就是指單獨的數量關系,構成的題目,沒有涉及到真正實量的存在及關系。實際應用也就是有關於數學與生活題目。
小學數學中把含有數量關系的實際問題用語言或文字敘述出來,這樣所形成的題目叫做應用題。任何一道應用題都由兩部分構成。第一部分是已知條件(簡稱條件),第二部分是所求問題(簡稱問題)。應用題的條件和問題,組成了應用題的結構。
應用題可分為一般應用題與典型應用題。
沒有特定的解答規律的兩步以上運算的應用題,叫做一般應用題。 題目中有特殊的數量關系,可以用特定的步驟和方法來解答的應用題,叫做典型應用題。
(小學時學的應用題,一般使用算數方法解,只有一少部分使用方程、比例來解;而到了初中,所有應用題都必須用方程方法解)

⑥ 小學數學典型應用題有哪些類型

有以下30類典型應用題:

1、歸一問題
2、歸總問題
3、和差版問題
4、和倍問題
5、差倍問題
6、倍比問題
7、相遇問題
8、追及問權題
9、植樹問題
10、年齡問題

11、行船問題
12、列車問題
13、時鍾問題
14、盈虧問題
15、工程問題
16、正反比例問題
17、按比例分配
18、百分數問題
19、「牛吃草」問題
20、雞兔同籠問題

21、方陣問題
22、商品利潤問題
23、存款利率問題
24、溶液濃度問題
25、構圖布數問題
26、幻方問題
27、抽屜原則問題
28、公約公倍問題
29、最值問題
30、列方程問題

⑦ 小學數學應用題分類及題

典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數 大數-差=小數
(和-差)÷2=小數 和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數 標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。

(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)

(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。

(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。

(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)

⑧ 小學數學典型應用題類型練習題

工程問題(一)
【問題1】單獨干某項工程,甲隊需100天完成,乙隊需150天完成。甲、乙兩隊合干50天後,剩下的工程乙隊干還需多少天?
想:以全部工程量為單位1,兩隊合乾的工作效率是(1100 +1
150 )。根據「工作時
間=工作總量÷工作效率」用剩下的工作總量除以乙隊的工作效率。 解:1-(1100 +1150 )×50=16 16 ÷1150
=25(天)
答:剩下的工程乙隊干還需25天。

【試一試】
1、一條水渠,甲乙兩隊合挖30天完工。現在合挖12天後,剩下的由乙隊挖,又用24天挖完。這條水渠由乙單獨挖,需要多少天?
2、一項工程,甲、乙兩隊合作60天可完成。如果甲、乙兩隊合作24天後,餘下的工程由乙隊再用48天才能完成。問:甲、乙兩隊單獨完成這項工程各需多少天?
3、某項工程,甲單獨做需36天完成,乙單獨做需45天完成。如果開工時甲、乙兩隊合做,中途甲隊退出轉做新的工程,那麼乙隊又做了18天才完成任務。問:甲隊幹了多少天?
【問題2】單獨完成某工程,甲隊需10天,乙隊需15天,丙隊需20天。開始三個隊一起干,因工作需要甲隊中途撤走了,結果一共用了6天完成這一工程。問:甲隊實際工作了幾天?
想:乙、丙兩隊自始至終工作了6天,去掉乙、丙兩隊6天的工作量,剩下的是甲隊乾的。
解:〔1-(115 +120 )×6〕÷1
10
=3(天)
答:甲隊實際工作了3天。

【試一試】
1、某工程甲隊單獨做需48天,乙隊單獨做需36天。甲隊先幹了幾天後乙隊加入一起干,前後共用了了24天將工程做完。乙隊工作了多少天?

2、有一條公路,甲隊修 10天可完成,乙隊修 12天可完成,丙隊修15天可完成.現在三隊合修,但中途甲隊調到另外工地,結果共花6天才把公路修完。問甲隊調走後,乙、丙兩隊又合修了多少天?
【問題3】一項工程,甲、乙兩隊合作需6天完成,現在乙隊先做7天,然後甲隊做4天,共完成這項工程的13
15 ,如果把其餘的工程交給乙隊單獨做,那麼還要幾天才能完
成?
想:題中沒有告訴甲、乙兩隊單獨的工作效率,只知道他們合作的工作效率是1
6 ,
但甲、乙兩隊一天也沒有合作過。為了解決這個問題,我們把「乙隊先做7天,然後甲隊做4天」的過程轉化為「甲、乙合做4天,乙再單獨做3天」,這樣,就可以把合作的工作效率16 用上了。甲、乙合做4天完成的工程量是16 ×4=2
3 ,乙再做3天就可完成
工程量的13
15
,由此可求出乙的工作效率。
解:(1315 -16 ×4)÷(7-4)=115 (1-1315 )÷115
=2(天)
答:還要2天才能完成。

【試一試】
1、師徒二人合作生產一批零件,6天可以完成任務.師傅先做5天後,因事外出,由徒弟接著做3天,共完成任務的7
10
。如果每人單獨做這批零件各需幾天?

2、一項工程,甲、乙合做8天可以完成,如果甲先做2天後,乙接著獨做11天,正好完成工程的5
8 。若乙隊獨做要多少天完成?

3、一項工程,由甲、乙兩隊合做12天完成。現在由甲、乙兩隊合做4天後,餘下的工程先由甲隊單獨做10天,再由乙隊單獨做5天,正好完成這項工程。求甲、乙兩隊單獨做各需多少天完成?
【問題4】有一項工作,甲需要6天完成,乙需要30天完成。現在甲、乙合做這項工作,但是中途甲休息了一天,問完成這項工作用了幾天時間?

想:甲、乙共同工作,但甲中途休息了一天,可以這樣考慮:假設甲不休息,那麼甲、乙兩人完成的總的工作量為1+16 =7
6

解:(1+16 )÷(16 +130 )=55
6 (天)
答:完成這項工作用了55
6
天。
只要一個

⑨ 小學數學應用題有哪些類型

分數:甲乙兩人共有錢150元。甲是乙的1/4。甲乙兩人各有多少元。
小數:小明每分鍾走回0.06千米。他家距學答校有1500千米。它上學時可以騎車,騎車每分鍾走120米。問如果用騎車上學,筆走路快幾分鍾?
百分數:機械廠,今年生產機械1500台,筆計劃增產了120%,原計劃生產多少台?
整數:甲乙兩地相距300千米,甲乙兩人同時相向出發。甲的速度是乙的4倍,問兩人相遇時,乙走多少千米?
一定要選我呀,字怪難打得。

閱讀全文

與小學數學應用題類型相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99