導航:首頁 > 小學學科 > 小學數學應用

小學數學應用

發布時間:2020-11-27 15:59:02

1. 世界上最難的小學數學應用題10條

1.甲乙兩人年齡的和為29歲,已知甲比乙小3歲,甲、乙兩人各多少歲?
2.一個長方形的周長是240米,長是寬的1.4倍,求長方形的面積。
3.廣水電影院原有座位32排,平均每排坐38人;擴建後增加到40排,可比原來多坐584人。擴建後平均每排可以坐多少人?
4.吉陽村有糧食作物84公頃,比經濟作物的4倍多2公頃,經濟作物有多少公頃?
5.糧店運來大米和麵粉480包,大米的包數是麵粉的3倍,運來大米和麵粉各多少包?
6.爺爺今年71歲,比小華的6倍還多5歲,小華今年幾歲?
7.甲乙兩站距255千米,客車從甲站開出,貨車從乙站開出,2.5時相遇。客車每時48千米,求貨車速度8.一筐蘋果,連筐重45.5千克,取出一半後,連筐還重24.5千克,筐重多少千克?
8.商店運來8筐蘋果和10筐梨,一共重820千克。每筐蘋果 重45千克,每筐梨重多少千克?
9.36米布,正好裁成10件大人衣服和8件兒童衣服。每件成人2人衣服用布2.4米,每件兒童衣服
10.李暉買了一支筆和一個本子,共花0.48元,本子的價錢是筆的2倍,筆和本子的單價各是多少錢?
11.小強媽媽的年齡是小強的4倍,小強比媽媽小27歲,他們兩人的年齡各是多少?
12.甲袋大米的重是乙袋的3倍,若再往乙袋大米裝5千克大米,兩袋大米就一樣重,原兩袋大米各多少?
13.一輛雙層巴士共有乘客51人,下層乘客人數是上層的2倍,上層有乘客多少人?
14.在一個籠子里,有雞又有兔共8隻,數一下它們的腳,共有20隻。請問籠子里雞、兔各有幾只?
15.用一根長72cm的鐵絲圍成一個長方形,要使長是寬的2倍,圍成的長方形的長和寬各是多少?
16.爺爺家種龍眼樹的棵數是荔枝樹的4倍,龍眼樹比荔枝樹多48棵。龍眼樹有多少棵?
17.一幅長方形畫的長是寬的2倍。小芳做畫框用了1.8m木條。這幅畫的長、寬、面積分別是多少?
18. 一個長方形和一個正方形的面積相等,正方形的邊長是6厘米,長方形的長是10厘米,寬是多少?
19.果園里種的桃樹比杏樹多90棵,桃樹的棵數是杏樹的3倍,桃樹和杏樹各多少棵?
20.有兩筐蘋果,甲筐的重量是甲筐的1.8倍,如果從甲筐拿出6千克放入乙筐,則兩筐重量相等,甲、乙兩筐蘋果原來各重多少千克? 21.三個數的平均數是13.5,甲是乙的4倍,丙比甲多4.5,求三個數各是多少?
22、水結成冰時,體積增加十一分之一 ,當冰融成水後,體積要減少幾分之幾?
23、某商店同時賣出兩件商品,每件各得30元,其中一件賺20%,另一件虧本20%,這個商店賣出這兩件商品是賺錢還是虧本?
24人民機械廠加工一批零件,甲車間加工這批零件的20%,乙車間加工餘下的25%,丙車間加工再餘下的40%,還剩下3600個沒加工,這批零件共有多少個?
25、四個孩子合買一隻60元的小船。第一個孩子付的錢是其他孩子付的總錢數的一半,第二個孩子付的錢是其他孩子付的總錢數的三分之一,第三個孩子付的錢是其他孩子付的總錢數的四分之一,第四個孩子付多少錢?
26、有10千克蘑菇,它們的含水量是99%,稍經晾曬,含水量下降到98%,晾曬後的蘑菇多重? 27、有兩只桶共裝油44千克,若第一桶里倒出5% ,第二桶里倒進2.8千克,則兩桶油重量相等,原來每隻桶各裝油多少千克
28、化肥廠用大、小兩輛汽車運47噸化肥,大汽車運了8次,小汽車運了6次正好運完,大汽車每次運4噸,小汽車每次運多少噸?
29、甲車每小時行48千米,乙車每小時行56千米,兩車從相距12千米的兩地同時背向而行,幾小時後兩車相距272千米?
30、甲、乙兩車同時從相距528千米的兩地相向而行,6小時後相遇,甲車每小時比乙車快6千米,求甲、乙兩車每小時各行多少千米?
31、購買的文藝書比科技書多156本,文藝書的本數比科技書 的3倍還多12本,文藝書和科技書各買了多少本?
32、一隻兩層書架,上層放的書是下層的3倍,如果把上層的書搬60本到下層,那麼兩層的書一樣多,求上、下層原來各有書多少本.
33、熊貓電視機廠生產一批電視機,如果每天生產40台,要比原計劃多生產6天,如果每天生產60台,可以比原計劃提前4天完成,求原計劃生產時間和這批電視機的總台數.
34、甲倉存糧32噸,乙倉存糧57噸,以後甲倉每天存人4噸,乙倉每天存人9噸.幾天後,乙倉存糧是甲倉的2倍?
35、甲、乙兩堆煤共100噸,如從甲堆運出10噸給乙堆,這時甲堆煤的質量正好是乙堆煤質量的1.5倍,求甲、乙兩堆煤原來各有多少噸?
36、甲倉存糧32噸,乙倉存糧57噸,以後甲倉每天存人4噸,乙倉每天存人9噸,幾天後乙倉存糧是甲倉的2倍?
37、一批香蕉,賣掉140千克後,原來香蕉的質量正好是剩下香蕉的5倍,這批香蕉共有多少千克?
38、師徒倆加工同一種零件,徒弟每小時加工12個,工作了3小時後,師傅開始工作,6小時後,兩人加工的零件同樣多, 師傅每小時加工多少個零件.
39、甲、乙、丙三條鐵路共長1191千米,甲鐵路長比乙鐵路的2倍少189千米,乙鐵路長比丙鐵路少8千米,求甲鐵路的長.
40、電視機廠裝配一批電視機,計劃25天完成,如每天多裝35台,24天能超額完成60台.求原計劃每天裝配多少台.

2. 小學數學有哪些應用題,

應用題是指將所學知識應用到實際生活實踐的題目。在數學上,應用題分兩大類:一個是數學應用。另一個是實際應用。數學應用就是指單獨的數量關系,構成的題目,沒有涉及到真正實量的存在及關系。實際應用也就是有關於數學與生活題目。
小學數學中把含有數量關系的實際問題用語言或文字敘述出來,這樣所形成的題目叫做應用題。任何一道應用題都由兩部分構成。第一部分是已知條件(簡稱條件),第二部分是所求問題(簡稱問題)。應用題的條件和問題,組成了應用題的結構。
應用題可分為一般應用題與典型應用題。
沒有特定的解答規律的兩步以上運算的應用題,叫做一般應用題。 題目中有特殊的數量關系,可以用特定的步驟和方法來解答的應用題,叫做典型應用題。
(小學時學的應用題,一般使用算數方法解,只有一少部分使用方程、比例來解;而到了初中,所有應用題都必須用方程方法解)

3. 小學數學應用題分類及題

典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)

(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)

(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)

(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數 大數-差=小數
(和-差)÷2=小數 和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)

(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數 標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)

(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。

(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)

(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。

(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。

(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)

(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。

(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)

(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)

4. 小學數學應用題!!

1、學校買來100個小皮球和6個排球,共用去156元。每個排球的價格比20個小皮球的價格多4元。每個小皮球和每個排球各多少元?
設皮球每個的價格為X元,則根據題意得排球每個的價格為(20x+4)元。

100x+6*(20x+4)=156

100x+120x+24=156

220x=132 x=0.6

2、在比例為1:6000000的地圖上量得南京到北京的距離是15厘米。兩架飛機同時從南京和北京相對飛出,每小時各飛行500千米,幾小時後兩架飛機相遇?
兩地的實際距離是

15÷1/6000000=90000000厘米=900千米

相遇時間是

900÷(500+500)=0.9小

3、貨車速度與客車速度的比是3:4,兩車同時從甲、乙兩地相對開出,在離中點6千米處相遇。甲、乙兩弟相距多少千米?
設兩地距離為2S千米,則相遇時貨車行駛了 S-6千米,客車行駛了S+6千米,

由於兩車行駛時間相等,所以路程比等於速度比:

(s-6):(S+6)=3:4 ,

解得 S=42(千米),

所以兩地距離為 2*42=84(千米

望採納——————》》》

5. 小學數學應用題包括哪些種類

有以下30類典型應用題:

1、歸一問題
2、歸總問題
3、和差問題
4、和倍問題
5、差倍問題
6、倍比問題
7、相遇問題
8、追及問題
9、植樹問題
10、年齡問題

11、行船問題
12、列車問題
13、時鍾問題
14、盈虧問題
15、工程問題
16、正反比例問題
17、按比例分配
18、百分數問題
19、「牛吃草」問題
20、雞兔同籠問題

21、方陣問題
22、商品利潤問題
23、存款利率問題
24、溶液濃度問題
25、構圖布數問題
26、幻方問題
27、抽屜原則問題
28、公約公倍問題
29、最值問題
30、列方程問題

6. 小學數學應用題

純金在水中的重量是原來的
3.6÷3.8=19分之18
純銀在水中的重量是原來的
18÷20=10分之9
假設飾物全部是銀的,在水中的重量應該是
770×10分之9=693(克)
比實際少
720-693=27(克)
這27克就是金的
19分之18-10分之9=190分之9
金有
27÷190分之9=570(克)
銀有
770-570=200(克)

7. 小學數學在生活中的應用(舉例)

1、生活中的分工問題

創設情境:要求每個學生拿出9個桃子放在盤子里,每盤放的個數一樣多,有幾種放法,可以放幾盤。由此可知有以下五種:

(1)每盤放3個,9÷3=3(盤);(2)每盤放9個,9÷9=1(盤);(3)每盤放2個,9÷2=4(盤)多1個;(4)每盤放4個,9÷4=2(盤)多1個;(5)每盤放5個,9÷5=1(盤)多4個。

2、交水電費的計算

李大媽交水電費帶回一張發票,換衣服時忘了取出,不慎搓洗掉一角,能看到的數據如下:電160度,水25噸,每噸1.70元,總共交了138.5元。

由此可計算出所交的水電費數額。根據等量關系:總費用-水費=電費,列式算出(138.5-1.70×25)÷160=0.60元。

3、計算商品價格

在超市或商場購物時,利用買一贈一、打折等活動可以進行計算,根據價格x折扣可以計算出商品的實際價格。

4、比較商品價格高低

到不同的超市或商店摘錄、調查打聽同一種商品的價錢,再自由比較各種商品的價格高低,用「>」「<」或「=」連接,最後把所有商品的價格從高到低依次排列,可以得出最便宜的店鋪進行購買。

5、了解運動比賽名次

在運動會等比賽開展時,可以根據短跑時間、跳遠距離、跳高高度等進行比較,通過大小數進行比較得出排名和比賽名次。

8. 小學數學應用題

首先我們可以將整條路分成多少段6米。

420÷6=70

思考:如果起點不種,我們都在每段末尾種一顆。種樹數量,就是段數。

所以我們可以在起點再種一顆。
70+1=71

得到,左側和右側道路420米可以種樹71棵。

兩側共可以種植:71+71=142

閱讀全文

與小學數學應用相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99