導航:首頁 > 小學學科 > 小學數學頂點

小學數學頂點

發布時間:2021-03-09 02:57:58

1. 小學數學題:過某一點畫角,就是以這個點為頂點嗎

小學是數學課本中沒有說圓形有角的,只說圓是個曲線圍成的圖形,是個平面圖形。圓本身是沒有角的,因為沒有頂點,也沒有邊﹙通常在小學課本中說的邊是線段或者射線﹚。

2. 小學的數學知識點總結歸納

1、數與代數:數的認識、數的運算、式與方程、比和比例。

2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。

3、統計與可能性:量的計量、統計、可能性。

4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。

(2)小學數學頂點擴展閱讀:

整數

1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。

2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。

3、計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。

如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

解比例的依據是比例的基本性質。

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化法。

16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數:公因數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整,即能用2進行

約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。

32、一天的時間:一天有24小時,一小時60分,1分60秒

3. 小學數學知識點總結(全部)

對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?

由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.

4. 小學數學。4個頂點上的4個數指的是哪4個數。

5. 數學 頂點是什麼

1.角的兩條邊的交點;錐體的尖頂。
2.頂點:曲線的最高點或終點,或者是多邊形或任意多邊形中兩條線段交會的地方。
3. 數學名詞。三角形中頂角的兩條邊的交點或錐體的尖頂。

6. 小學數學1到6年級全部重點

小學生數學復習考試全圖
這些知識歸結了小學全部數學重點。這些知識可能在每次考試中以不同形式(填空、選擇、判斷、連線、解答應用題等)出現,也是學生將來進入初中、高中的基礎,所以一定要牢固掌握。
一、 小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條:
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條:
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則:
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序去處;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法:
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;末位不管有幾個0都不讀。
(五)四位數寫法:
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。

(六)四位數減法也要注意三條:
1、相同數位對齊;
2、從個位減起;
3、位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則:
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則:
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則:
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則:
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,再試除前三位數;
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則:
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。

(十二)多位數的讀法法則:
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。
(十三)小數大小的比較:
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則:
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數簡潔的計演算法則:
計算小數乘法,先按照簡潔的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則:
除數是整數的小數除法,按照整數除法的法則卻除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則:
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足),然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟:
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。

(十九)列方程解應用題的一般步驟:
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;檢驗、寫出答案。
(二十)同分母分數加減的法則:
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則:
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則:
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則:
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則:
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則:
一個數除以,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法:
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。

二、 小學教學口訣定義歸類
1、 什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、 什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、 加法各部分之間的關系:
一個加數=和-另一個加數
4、 減法各部分之間的關系:
差數=被減數-差,被減數=差數+差
5、 乘法各部分之間的關系:
一個因數=積÷另一個因數
6、 除法各部分之間的關系:
除數=被除數÷商,被除數=商×除數
7、 角:
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角叫直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。

(6)什麼是銳角?
小於90°的角叫銳角。
(7)什麼是鈍角?
大於90°而小於180°的角叫做鈍角。
(8)什麼是周角?
一條射線繞它的閃電戰旋轉一周所在的角叫周角,一個周角是360°。
8、
(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、 三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
在等腰三角形里,相等的兩個邊叫等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫做等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?
什麼叫三角形的底?從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形的內角和是180°。
10、 四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平行四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。

(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平行的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平行的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、 什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、 什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。
這種求近似數的方法,叫做四捨五入法。
13、 加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、 什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、 什麼是被減數?
什麼是減數?什麼叫差?在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、 加法各部分之間的關系:
和=加數+加數,加數=和-另一加數
17、 減法各部分之間的關系:
差=被減數-減數,減數=被減數-差,被減數=減數+差
18、 乘法:
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、 除法:
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。

(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中已知的一個因數叫除數。
(4)什麼是商?
在除法中求出的未知因數叫商。
20、 乘法各部分之間的關系:
積=因數×因數,一個因數=積÷另一個因數。
21、(1)除法各部分之間的關系:
商=被除數÷除數,除數=被除數÷商,被除數=商×除數。
(2)有餘數的除法各部分之間的關系:
被除數=商×除數+余數。
22、 什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、 什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、 什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、 什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、 什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、 什麼是而有限小數?
小數部分的位數是有限的小數叫有限小數。
28、 什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、 什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、 什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、 什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、 什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、 什麼是方程?
含有未知數的等式叫方程。
34、 什麼是解方程?
求方程解的過程叫解方程。
35、 什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數。b就叫a的約數(或a的因數)。
36、 什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、 什麼是偶數?
能被2整除的數叫偶數。
38、 什麼是奇數?
不能被2整除的數叫奇數。
39、 什麼樣的數能被5整除?
個位上是「0」或是「5」的數能被5整除。

40、 什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、 什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、 什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、 什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、 什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、 什麼是公約數?
什麼叫最大公約數?幾個數公有的約數叫公約數,其中最大的一個叫最大公約數。
46、 什麼是互質數?
公約數只有1的兩個數叫互質數。
47、 什麼是公倍數?
什麼叫最小公倍數?幾個數公有的倍數叫這幾個數的公倍數,其中最小的一個叫這幾個數的最小公倍數。
48、 分數:
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、 怎麼比較分數大小?
(1)分母相同兩個分數,
分子大的分數比較大。
(2)分子相同的兩個分數,
分母小的分數較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、 比:
(1)什麼是比?
兩個數相除又叫兩個數的比。

(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、 長方體和正方體:
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體的體積?
物體所佔空間的大小叫做物體的體積。
52、 圓
(1)什麼是圓心?
圓中心的點叫圓心。

(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心,並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是弧?
在圓上兩點之間的部分叫弧。
(8)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、 什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、 比例:
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、 圓柱:
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。

三、 小學數學量的計算單位及進率歸類
(1)長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃,
1平方千米=1000000平方米
1公頃=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)質量單位及進率:噸、千克、公斤、克
1噸=1000千克,
1千克=1公斤,
1千克=1000克

(5)時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年,
1年=12個月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,閏年2月29天),
1天=24小時,
1小時=60分,
1分=60秒
四、 常用計算公式表
(1)長方形面積=長×寬,計算公式:S=a×b
(2)正方形面積=邊長×邊長,計算公式:S=a×a
(3)長方形周長=(長+寬)×2,計算公式:C=(a+b)×2
(4)正方形周長=邊長×4,計算公式:C=4a
(5)平行四邊形面積=底×高,計算公式:S=ah
(6)三角形面積=底×高÷2,計算公式:S=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式:S=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式:V=abh
(9)圓的面積=圓周率×半徑平方,計算公式:S=πr2
(10)正方體體積=棱長×棱長×棱長,計算公式:V=a3
(11)長方體和正方體的體積都可以寫成:底面積×高,計算公式:V=sh
(12)圓柱的體積=底面積×高,計算公式:V=sh
(13)圓錐的體積=底面積×高÷3,計算公式:V=s×h÷3
等底等高的圓柱體積是圓錐體積的3倍。

7. 小學數學1—6年級全部重點

人教版小學四年級下冊數學復習資料
一、四則運算
1.四則運算的運算順序:在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要按從左到右的順序計算;既有乘、除法又有加、減法時,要先算乘、除法,後算加、減法;有括弧的,要先算括弧裡面的。
2.有關0的運算:一個數加上0,還得原數;被減數等於減數,差是0;一個數減去0,還得原數;一個數和0相乘,仍得0;0除以一個非0的數還得0;0不能作除數,0可以作被除數, 0可以作減數和差,0可以作加數,0還可以作乘數。
二、運算定律和簡便運算
1.加法交換律:兩個加數交換位置,和不變。用字母表示: a + b= b + a。
2.加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個相加,和不變。用字母表示:((a + b ) + c= a + (b + c )。
3.乘法交換律:交換兩個因數的位置,積不變。用字母表示:a×b= b×a。
4.乘法結合律:三個數相乘,先乘前兩個數,或者先乘後兩個數,積不變。用字母表示:(a×b )×c= a×(b×c )。
5.乘法分配律:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。用字母表示:(a + b ) ×c= a×c + b×c或a×(b + c )= a×b + a×c。
6.減法的性質:一個數連續減去兩個數,可以用這個數減去兩個減數的和。用字母表示:a - b – c= a - (b + c )。②在連減運算中,任意交換減數的位置,差不變。用字母表示:a-b-c=a- c - b。
7.除法的性質:①一個數連續除以兩個數,可以用這個數除以兩個除數的積。用字母表示:a÷b÷c= a÷(b×c )。②在連除運算中,任意交換除數的位置,商不變。用字母表示:a÷b÷c= a÷c÷b
三、小數的意義和性質
1.小數的意義:分母是10、100、1000 ……的分數可以用小數表示。小數的計數單位是十分之一,百分之一,千分之一…… 分別寫作0.1、0.01、0.001…… 每相鄰兩個計數單位之間的進率都是10。
2.小數的讀法:先讀整數部分,按整數的讀法讀;再讀小數點,小數點讀作「點」;最後讀小數部分,依次讀出每一位上的數字。
3.小數的寫法:先寫整數部分,按整數的寫法寫,如果整數部分是零,就直接寫「0」;再在各位的又下角點上小數點;最後依次寫出小數部分每一位上的數字。
4.小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
5.小數點移動引起小數大小變化的規律:①小數點向右移動一位,小數就擴大到原數的10倍;小數點向右移動定兩位小數,小數就擴大到原數的100倍;小數點向右移動三位小數,小數就擴大到原數的1000倍……小數點向右移動一位,小數就擴大到原數的10倍;小數點向右移動定兩位小數,小數就擴大(到原數的100倍;小數點向右移動三位小數,小數就擴大到原數的1000倍……
②小數點向左移動一位,小數就縮小到原數的 ;小數點向左移動兩位小數,小數就縮小到原數的 ;小數點向左移動三位小數,小數就縮小到原數的 ……
6.低級單位的單名數改寫成高級單位的單名數的方法:用這個數除以兩個單位間的進率,如果兩個單位間的進率是10、100、1000……可以直接把小數點向左移動相應的數位(低級單位的數÷進率=高級單位) 。
復名數改寫成小數的方法:復名數中高級到位的數不動,作為小數的整數部分,把復名數中低級單位的數改寫成高級單位的數,作為小數部分。
7.高級單位的單名數改寫成低級單位的單名數的方法:用這個數乘以兩個單位間的進率,如果兩個單位間的進率是10、100、1000……可以直接把小數點向右移動相應的數位(高級單位的數×進率=低級單位的數)。
8.求小數近似數的方法:求小數的近似數用「四捨五入」法。保留整數,表示精確到個位;保留一位小數,表示精確到十分位;保留兩位小數,表示精確到百分位……
9.把不是整萬或整億的數改寫成以「萬」或「億」作單位的數:只需在「萬」位或「億」位的右下角點上小數點,在數的後面寫「萬」字或「億」字。如果小數末尾有0要去掉,改寫後還可以根據要求保留小數。
四、小數的加法和減法
1.列豎式計算小數的加、減法時應注意:⑴小數點要對齊,也就是相同數位要對齊;⑵得數末尾有0,要把0去掉。
2.小數的加減混合運算的運算順序:同整數加減混合運算的運算順序相同。在沒有括弧的算式里,如果只有加法和減法,就按從左到右的順序計算;算式里有括弧的,要先算括弧裡面的。
3.小數的加、減法的漸變運算:整數的運算定律在小數運算中同樣適用。簡算時如果需要加括弧,一定要注意變號規則:如果括弧前面是加號,括弧里不變;如果括弧前面是減號,括弧里要變號。
五、植樹問題
1.關於一條線段兩端都植樹的問題:間隔數=路線長度÷棵距 棵數=間隔數+1
2.關於一條線段兩端都不植樹的問題:間隔數=路線長度÷棵距 棵數=間隔數-1
3.關於一條線段只有一段植樹的問題(封閉曲線):棵數=間隔數
4.棋盤類型題:最外層總數=最外層每邊數×4-4
六、位置與方向
1.確定物體位置的條件:方向和距離,兩個條件缺一不可。
2.在平面圖上標出物體位置的方法:先確定方向,再確定距離,最後畫出物體的具體位置,並標明名稱。確定方向時,選擇物體所在方向離得較勁(夾腳較小的方位),距離必須以選定的單位長度為基準來確定。
3.物體位置的相對性:敘述物體的位置具有相對性。物體的位置與觀測點有關,觀測點不同,物體位置的敘述就不同。
4.描述路線圖的方法:按行駛(走)路線,確定觀測點及行走的方向和路程描述。
七、三角形
1.三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
2.三角形各部分的名稱:角(3個),頂點(3個),邊(3條)
3.三角形的高和底:從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條垂線所在的邊叫做三角形的底。畫高時,用虛線。
4.三角形的特性:三角形具有穩定性。
5.三角形三邊的關系:三角形任意兩邊之和大於第三邊。
6.三角形的分類:
銳角三角形
⑴按角分類 直角三角形
鈍角三角形
①銳角三角形:三個角都是銳角的三角形叫做銳角三角形。
②直角三角形:有一個角是直角的三角形叫做直角三角形。
③鈍角三角形:有一個角是鈍角的三角形叫做鈍角三角形。
不等邊三角形
⑵按邊分類
等腰三角形(等邊三角形)
①不等邊三角形:三條邊都不相等的三角形叫做不等邊三角形。
②等腰三角形:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰。其餘的一條邊叫做底。兩腰的夾腳叫做頂角。腰與底邊的夾腳叫做底角,兩個底角相等。
特點:兩腰長度相等,兩個底角度數相等。
等腰直角三角形:在直角三角形中,如果兩條直角邊相等,那麼這個直角三角形叫做等腰直角三角形。
③等邊三角形:三條邊都相等的三角形叫做等邊三角形。等邊三角形是特殊的等腰三角形。
特點:三條邊都相等;三個角都相等,每個角都是60°。等邊三角形也是銳角三角形。
7.三角形的內角和:三角形的內角和是180°。
8.三角形的拼組:兩個完全相同的三角形可以拼成一個平行四邊形;兩個完全相同的直角三角形可以拼成一個長方形;兩個完全一樣的等腰直角三角形可以拼成一個正方形;三個完全相同的三角形可以拼成一個梯形。
八、統計
1.折線統計圖及其特點:用一個單位長度表示一定的數量,根據數量的多少描出各點,然後把各點用線段順次鏈接起來,所得的統計圖就是折線統計圖。它的特點是既可以反應數量的多少,又能清晰地反應出數量的增減變化情況。
2.繪制折線統計圖的方法:⑴用縱軸表示一種量,用橫軸表示另一種量;⑵根據數據的大小確定一個單位長度;⑶根據所給數據,過橫軸、縱軸作相應點的垂線,兩垂線交點即為所描的點;⑷用線段順次連接各點,在各點旁邊註明數據;⑸標注名稱。
3.折線統計圖的應用:可以根據折線統計圖發現問題、解決問題,並進行簡單的預測。
九、進率:
1元=10角 1角=10分 1年=12月 1天=24小時 1小時=60分鍾
1分鍾=60秒 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
1公頃=10000平方千米 1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米 1升=1000毫升1噸=1000千克 1千克=1000克
十、小數的數位順序表
整 數 部 分 小數點 小 數 部 分



萬位 千位 百位 十位 個位


十分位 百分位 千分位 萬分為


計數單位





十 一
個 十分之一 百分之一 千分之一 萬分之一

8. 數學中頂點是啥子意思

3. 數學名詞。三角形中頂角的兩條邊的交點或錐體的尖頂。

9. 小學的數學知識點(全部)

1 正方形
C周長 S面積 a邊長
周長=邊長×
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數

小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

常用單位換算

長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
時間單位換算
1世紀=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒

10. 小學人教版數學1-6年級所有的概念 ,公式。

小學人教版數學1-6年級所有的概念 ,公式。

推薦內容

小學人教版數學1-6年級所有的概念 ,公式。

小學人教版數學1-6年級所有的概念 ,公式

1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑 ?=πr 11、長方體的表面積=(長×寬+長×高+寬×高)×2 12、長方體的體積 =長×寬×高 V =abh 13、正方體的表面積=棱長×棱長×6 S =6a 14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a 15、圓柱的側面積=底面圓的周長×高 S=ch 16、圓柱的表面積=上下底面面積+側面積 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圓柱的體積=底面積×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圓錐的體積=底面積×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、長方體(正方體、圓柱體)的體積=底面積×高 V=Sh 4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高

閱讀全文

與小學數學頂點相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99