導航:首頁 > 小學學科 > 小學數學概念形成過程

小學數學概念形成過程

發布時間:2021-03-07 05:46:10

小學數學概念的小學數學概念定義

小學數學中有很多概念,包括:數的概念、運算的概念、量與計量的概念、幾何形體的概回念、比和比例的概答念、方程的概念,以及統計初步知識的有關概念等。這些概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的。如只有明確牢固地掌握數的概念,才能理解運算概念,而運算概念的掌握,又能促進數的整除性概念的形成。在數學科學中,數學概念的含義都要給出精確的規定,因而數學概念比一般概念更准確。

Ⅱ 小學數學概念的小學數學概念教學過程與方法

小學數學概念教學的過程
根據數學概念學習的心理過程及特徵,數學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。
(一)數學概念的引入
數學概念的引入,是數學概念教學的第一個環節,也是十分重要的環節。概念引入得當,就可以緊緊地圍繞課題,充分地激發起學生的興趣和學習動機,為學生順利地掌握概念起到奠基作用。
引出新概念的過程,是揭示概念的發生和形成過程,而各個數學概念的發生形成過程又不盡相同,有的是現實模型的直接反映;有的是在已有概念的基礎上經過一次或多次抽象後得到的;有的是從數學理論發展的需要中產生的;有的是為解決實際問題的需要而產生的;有的是將思維對象理想化,經過推理而得;有的則是從理論上的存在性或從數學對象的結構中構造產生的。因此,教學中必須根據各種概念的產生背景,結合學生的具體情況,適當地選取不同的方式去引入概念。一般來說,數學概念的引入可以採用如下幾種方法。
1、以感性材料為基礎引入新概念。
用學生在日常生活中所接觸到的事物或教材中的實際問題以及模型、圖形、圖表等作為感性材料,引導學生通過觀察、分析、比較、歸納和概括去獲取概念。
例如,要學習「平行線」的概念,可以讓學生辨認一些熟悉的實例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然後分化出各例的屬性,從中找出共同的本質屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個平面內、兩條邊可以無限延長、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過比較可以發現,它們的共同屬性是:可以抽象地看成兩條直線;兩條直線在同一平面內;彼此間距離處處相等;兩條直線沒有公共點等,最後抽象出本質屬性,得到平行線的定義。
以感性材料為基礎引入新概念,是用概念形成的方式去進行教學的,因此教學中應選擇那些能充分顯示被引入概念的特徵性質的事例,正確引導學生去進行觀察和分析,這樣才能使學生從事例中歸納和概括出共同的本質屬性,形成概念。
2、以新、舊概念之間的關系引入新概念。
如果新、舊概念之間存在某種關系,如相容關系、不相容關系等,那麼新概念的引入就可以充分地利用這種關系去進行。
例如,學習「乘法意義」時,可以從「加法意義」來引入。又如,學習「整除」概念時,可以從「除法」中的「除盡」來引入。又如,學習「質因數」可以從「因數」和「質數」這兩個概念引入。再如,在學習質數、合數概念時,可用約數概念引入:「請同學們寫出數1,2,6,7,8,12,11,15的所有約數。它們各有幾個約數?你能給出一個分類標准,把這些數進行分類嗎?你能找出多種分類方法嗎?你找出的所有分類方法中,哪一種分類方法是最新的分類方法?」
3、以「問題」的形式引入新概念。
以「問題」的形式引入新概念,這也是概念教學中常用的方法。一般來說,用「問題」引入概念的途徑有兩條:①從現實生活中的問題引入數學概念;②從數學問題或理論本身的發展需要引入概念。
例如,在學習「平均數」時,教師可以先向學生呈現一個「幼兒園小朋友爭拿糖果」的生活情境,讓學生思考,為什麼有的小朋友很高興,有的小朋友很不高興?應該怎樣做才能使大家都高興?接下來應該怎麼做?這個幼兒園的老師可能會怎麼做?
4、從概念的發生過程引入新概念。
數學中有些概念是用發生式定義的,在進行這類概念的教學時,可以採用演示活動的直觀教具或演示畫圖說明的方法去揭示事物的發生過程。例如,小數、分數等概念都可以這樣引入。這種方法生動直觀,體現了運動變化的觀點和思想,同時,引入的過程又自然地、無可辯駁地闡明了這一概念的客觀存在性。
(二)小學數學概念的形成 引入概念,僅是概念教學的第一步,要使學生獲得概念,還必須引導學生准確地理解概念,明確概念的內涵與外延,正確表述概念的本質屬性。為此,教學中可採用一些具有針對性的方法。
1、對比與類比。
對比概念,可以找出概念間的差異,類比概念,可以發現概念間的相同或相似之處。例如,學習「整除」概念時,可以與「除法」中的「除盡」概念進行對比,去比較發現兩者的不同點。用對比或類比講述新概念,一定要突出新、舊概念的差異,明確新概念的內涵,防止舊概念對學習新概念產生的負遷移作用的影響。
2、恰當運用反例。
概念教學中,除了從正面去揭示概念的內涵外,還應考慮運用適當的反例去突出概念的本質屬性,尤其是讓學生通過對比正例與反例的差異,對自己出現的錯誤進行反思,更利於強化學生對概念本質屬性的理解。
用反例去突出概念的本質屬性,實質是使學生明確概念的外延從而加深對概念內涵的理解。凡具有概念所反映的本質屬性的對象必屬於該概念的外延集,而反例的構造,就是讓學生找出不屬於概念外延集的對象,顯然,這是概念教學中的一種重要手段。但必須注意,所選的反例應當恰當,防止過難、過偏,造成學生的注意力分散,而達不到突出概念本質屬性的目的。
3、合理運用變式。
依靠感性材料理解概念,往往由於提供的感性材料具有片面性、局限性,或者感性材料的非本質屬性具有較明顯的突出特徵,容易形成干擾的信息,而削弱學生對概念本質屬性的正確理解。因此,在教學中應注意運用變式,從不同角度、不同方面去反映和刻畫概念的本質屬性。一般來說,變式包括圖形變式、式子變式和字母變式等。
例如,講授「等腰三角形」概念,教師除了用常見的圖形(圖6-1(1))展示外,還應採用變式圖形(圖6-1(2)、(3)、(4))去強化這一概念,因為利用等腰三角形的性質去解題時,所遇見的圖形往往是後面幾種情形。
(三)小學數學概念的鞏固
為了使學生牢固地掌握所學的概念,還必須有概念的鞏固和應用過程。教學中應注意如下幾個方面。
1、注意及時復習
概念的鞏固是在對概念的理解和應用中去完成和實現的,同時還必須及時復習,鞏固離不開必要的復習。復習的方式可以是對個別概念進行復述,也可以通過解決問題去復習概念,而更多地則是在概念體系中去復習概念。當概念教學到一定階段時,特別是在章節末復習、期末復習和畢業總復習時,要重視對所學概念的整理和系統化,從縱向和橫向找出各概念之間的關系,形成概念體系。
2、重視應用
在概念教學中,既要引導學生由具體到抽象,形成概念,又要讓學生由抽象到具體,運用概念,學生是否牢固地掌握了某個概念,不僅在於能否說出這個概念的名稱和背誦概念的定義,而且還在於能否正確靈活地應用,通過應用可以加深理解,增強記憶,提高數學的應用意識。
概念的應用可以從概念的內涵和外延兩方面進行。
(1)概念內涵的應用
①復述概念的定義或根據定義填空。
②根據定義判斷是非或改錯。
③根據定義推理。
④根據定義計算。
例4(1)什麼叫互質數?答:是互質數。
(2)判斷題:
27和20是互質數()
34與85是互質數()
有公約數1的兩個數是互質數()
兩個合數一定不是互質數()
(3)鈍角三角形的一個角是82o,另兩個角的度數是互質數,這兩個角可能是多少度?
(4)如果P是質數,那麼比P小的自然數都與P互質。這句話對嗎?請說明理由?
2.概念外延的應用
(1)舉例
(2)辨認肯定例證或否定例證。並說明理由。
(3)按指定的條件從概念的外延中選擇事例。
(4)將概念按不同標准分類。
例5(1)列舉你所見到過的圓柱形物體。
(2)下列圖形中的陰影部分,哪些是扇形?(圖6-2)
圖6—2
(3)分母是9的最簡真分數有_分子是9的假分數中,最小的一個是
(4)將自然數2-19按不同標准分成兩類(至少提出3種不同的分法)
概念的應用可分為簡單應用和綜合應用,在初步形成某一新概念後通過簡單應用可以促進對新概念的理解,綜合應用一般在學習了一系列概念後,把這些概念結合起來加以應用,這種練習可以培養學生綜合運用知識的能力。
(三)注意辨析
隨著學習的深入,學生掌握的概念不斷增多,有些概念的文字表述相同,有些概念內涵相近,使得學生容易產生混淆,如質數與互質數,整除與除盡,體積與容積等等。因此在概念的鞏固階段,要注意組織學生運用對比的方法,弄清易混淆概念的區別和聯系,以促使概念的精確分化。
例6關於面積和周長,可組織學生從下列幾個方面進行對見
(1)什麼叫做長方形的周長?什麼叫做長方形的面積?
(2)周長和面積常用的計量單位分別有哪些?
(3)在圖6—3中,A,B兩個圖形的周長相等嗎?面積相等嗎?
圖6—4
圖6—3
(4)圖6—4中的每一小方格代表一平方厘米,這個圖的面積是,周長是,剪一刀,然後將它拼成一個正方形,這個正方形的周長是,面積是。
數學概念是用詞或片語來表達的,但有些詞語受日常用語的影響,會給學生造成認識和理解上的錯覺和障礙。如幾何知識中的高」、「底」、「腰」等概念,從字面上容易使學生產生「鉛垂方向」與「下方」、「兩側」的錯覺。而「倒數」則強化了分子與分母顛倒位置的直觀認識,弱化了「兩個數的乘積等於1」的本質屬性,因此在教學時,要幫助學生分清一些詞的日常意義和專門的數學意義,正確地理解表示概念的詞語,從而准確地掌握概念。

Ⅲ 小學數學概念的形成有兩種形式是什麼

描述式和定義式。

Ⅳ 小學數學概念總結

1 正方形:
C周長 S面積 a邊長 周長=邊長× C=4a 面積=邊長×邊長 S=a×a
2 正方體
V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高V=abh
5 三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高 面積=底×高 s=ah
7 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 1 每份數×份數=總數 總數÷每份數=份數 總數份數=每份數
11倍數×倍數=幾倍數
被除數÷除數=商 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
12 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
13工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
14 加數+加數=和 和-一個加數=另一個加數
18被減數-減數=差 被減數-差=減數 差+減數=被減數
19因數×因數=積 積÷一個因數=另一個因數
20被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式
21 正方形
C周長 S面積 a邊長, 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
22 正方體
V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
23 長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
24 長方體
V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh
25 三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
26 平行四邊形
s面積 a底 h高 面積=底×高 s=ah
27 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2
28 圓形
S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏
29 圓柱體
v:體積
h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑
30 圓錐體
v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 和+差)÷=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題
31 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 32 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%)
每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數

小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2

8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)

常用單位換算

長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
時間單位換算
1世紀=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒

一、軸對稱圖形
1、只有1條對稱軸的圖形是(等腰三角形、等腰梯形、半圓)
有2條對稱軸的圖形是(長方形)
有3條對稱軸的圖形是(等邊三角形)
有4條對稱軸的圖形是(正方形)
有無數條對稱軸的圖形是(圓、圓環)
2、圓的對稱軸的圖形是(直徑所在的直線)
3、對稱軸是直線
4、圓是(平面圖形、曲線、軸對稱)圖形。
二、在同圓或等圓里(必不可少的前提),直徑是半徑的2倍,半徑是直徑的一半。
d=2r r=d÷2
三、在同圓或等圓里(必不可少的前提),直徑都相等、半徑都相等。
四、圓心確定圓的位置、半徑確定圓的大小。圓規兩腳之間的距離是圓的半徑。
五、圓的周長
1、圍成圓曲線的長度叫做圓的周長。
2、圓的周長除以直徑的商,(周長和直徑的比值),叫做圓周率,它是一個固定不變的數,和圓的大小無關。π>3.14。圓的周長大約是直徑的3.14倍。
3、c圓=πd c圓=2πr
4、長方形的周長=(長+寬)×2 =(a+b)×2
正方形的周長=邊長×4=4a
5、長度和周長單位有:km m dm cm mm
6、已知周長求直徑 d=C÷π
已知周長求半徑 r=C÷π÷2
7、3.14×(1――9)
六、半圓的周長
C半圓=d+πd÷2 C半圓=2r+πr
七、圓的面積
1、把圓平均分成若干份,可以拼成一個平行四邊形或長方形。
2、S圓=πr2=π(d÷2)2
3、S長方形=長×寬=ab
S正方形=邊長×邊長=a2
S平行四邊形=底×高=ah
S三角形=底×高÷2=ah÷2
S梯形=(上底+下底 )×高÷2=(a+b)×h÷2
S半圓=πr2÷2
S圓環=S大圓-S小圓=π(R2-r2)
4、面積和表面積單位有:平方千米 公頃 平方米 平方分米 平方厘米
1平方千米=100公頃 1公頃=10000平方米
5、如果長方形的周長=正方形的周長=圓的周長,那麼它們當中圓的面積最大。
6、(11――19)2
八、半徑擴大n倍,直徑擴大n倍,周長擴大n倍,面積擴大n2倍。

第二單元
1. 一、
1、是、等於、相當於,意思相同。
2、幾成=幾折
1. 二、求提高了、降低了、增加了、減少了、節約了、多了、少了百分之幾,都是用:甲÷乙
2. 三、小數、分數和百分數的互化
1. 四、解答分數應用題的一般步驟
1. 找單位「1」
2. 判斷單位「1」是已知的還是未知的
3. 如果單位「1」已知的,用乘法計算:單位「1」×對應分率
4. 如果單位「1」未知的,用除法計算:已知量÷對應分率=單位「1」;另外,也可以用方程。
5、減數=被減數-差 除數=被除數÷商
五、常見的數量關系
1、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
2、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
3、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
4、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
六、方程
1、含有未知數的等式叫做方程。
2、解方程就是「唱反調」
七、利息=本金×利率×時間

第三單元
圖形變換和圖案設計時,會用到:軸對稱、平移和旋轉。
1. 軸對稱
2. 平移:關注是上下平移還是左右平移,尤其是平移了多少格
3. 旋轉:關注是順時針還是逆時針方向旋轉,關注旋轉的角度是多少度
4. 運算定律:
加法交換律和性質
a+b=b+a

加法結合律
a+b+c=a+(b+c) 25+37+63=25+(37+63)

乘法交換律
a×b×c=a×c×b 25×9×4=25×4×9

乘法結合律
a×b×c=(a×c)×b 128×3×8=(125×8) ×3

乘法分配律
兩個數的和與一個數相乘,可以把這兩個加數分別和這個數相乘,再把兩個級相加。
a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25

2.37×99
=2.37× (100-1 )
=2.37×100-2.37×1

減法的運算性質
a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)

第四單元
1. 兩個數相除又叫做這兩個數的比。其中,比號前面的數是比的前項,比號後面的數是比的後項,前項÷後項=比值
2. 比和除法、分數的關系
a÷b=a :b= (b≠0,除數、分母和後項不能為0)
例如:15÷25=( ):( )==( )%=( )(填小數)=( )折=( )成
再如:甲數和乙數的比是4:3,甲數是乙數的( / ),乙數是甲數的( / ),甲數是乙數的( )%,乙數是甲數的( )%,甲數比乙數多( )%,乙數比甲數少( )%。
(提示:甲數=4 乙數=3)
3. 化簡比
化簡比就是把一個比化成最簡單的整數比。也就是:前項和後項都是整數,並且前項和後項只能有公因數1。
4. 注意:比值是一個數,而化簡比結果是一個比。
例如::0.75化成最簡單的整數比是( ),比值是( )。
5. 比的應用
重點關註:類似已知長方形的周長是28厘米,長和寬的比是4:3,求長方形的長、寬或面積。
6. 三角形三個內角度數的比是1:2:3或1:1:2,這個三角形是(直角)三角形。
7. 質量單位:噸 千克 克
8. 容積單位:升 毫升
9. 體積單位:立方米 立方分米 立方厘米
1升=1立方分米 1毫升=1立方厘米
10、人民幣單位:元 角 分

11、大於0的數叫做正數,小於0的數叫做負數。正數和負數可以用來表示具有相反意義的量。0既不是正數也不是負數。
12、正數和負數可以抵消,比如:+5和-5能完全抵消;-8和+3抵消後得-5。
13、統計圖有:(復式)條形統計圖、(復式)折線統計圖、扇形統計圖。
14、條形統計圖:很容易看出各種數量的多少。
15、折線統計圖:不但可以看出數量的多少,而且能夠表示數量的增減變化。
16、扇形統計圖:能呈現各部分與總數的百分比。

(1) 平面圖形知識;(2)平面圖形的周長和面積;(3)立體圖形的認識;(4)立體圖形的表面積和體積。

(1) 平面圖形知識

①直線、射線、線段的特點、聯系與區別。

②角的特徵、角的分類、角的度量方法。

③垂直與平行。

④三角形的特徵,分類(按邊分、按角分)。

⑤四邊形。每類圖形的特徵,特殊與一般的關系。

⑥圓與扇形。圓的特徵、直徑、半徑的特點,扇形與圓的關系。

⑦軸對稱圖形。(能畫出學過的軸對稱圖形的對稱軸)

要求:①掌握特徵、建立聯系,讓學生感受到點到線,線到面、面到體的聯系。

②能根據圖形特徵進行合理的判斷、選擇。

(2) 平面圖形的周長和面積

①理解周長與面積概念。

②掌握每種圖形的周長與面積計算公式及推導過程。

③能應用公式靈活解決問題。

①長方體、正方體、圓柱、圓錐的特徵。

②長、正方體的關系。

(3) 立體圖形的表面積和體積

②會求長方體、正方體、圓柱的表面積和體積;圓錐的體積。

③建立這四種立體圖形體積計算的聯系。

④加強體積與表面積的區別、體積與容積的區別的對比訓練。

建議:幾何初步知識這部分內容,知識容量比較大,復習時要讓學生真正參與到學習中來,提高學習效率,教師就要設計一些具有思考性,挑戰性、綜合性強的問題激發學生積極思考,調動學生的積極性,充分發揮學生的主體作用,讓他們在探究的過程中進一步理解、鞏固所學的知識,體驗成功的快樂,掌握學習的方法。

如:平面圖形面積知識網路圖由學生獨立完成(獨立思考、查閱資料、尋求幫助);長方體、正方體表面積可讓學生自帶磁帶盒,設計包裝方案——

切忌:面面俱到,不停講解,不斷提問,大量練習,只求結果,不重過程。

6、簡單的統計

復習要點及要求:

(1) 平均數:理解平均數的意義;掌握求平均數的方法;能應用平均數解決實際問題。

(2) 統計表、統計圖:了解統計表、圖的種類,特點,製作方法,會分析統計圖表。

有些可能重復了.

Ⅳ 舉例說明小學數學運算定律(概念)的形成過程。

數形結合

Ⅵ 小學數學概念1至6年級

1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\\3\\5\\7\\8\\10\\12月
小月(30天)的有:4\\6\\9\\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh

Ⅶ 小學數學概念形成過程包括哪些方面

淺談小學數學中的概念教學
概念是客觀事物的本質屬性在人們頭腦中的反映,概念教學的過程是認識從感性上升到理性的過程。小學生年齡小,生活經驗不足,知識面窄,構成了概念教學中的障礙。而數學概念又是小學數學基礎知識的一項重要內容,是學生理解、掌握數學知識的首要條件,也是進行計算和解題的前提。因此,重視數學概念教學,對於提高教學質量有著舉足輕重的作用。那又如何搞好小學數學概念教學呢?下面我粗淺地談談自己的一些看法:概念教學一般都分四個階段:引入 、形成 、鞏固 、發展。 一、概念的引入
1、概念的引入是概念教學的第一步。教師應從學生的生活實際入手,充分運用實物、教具、圖表等直觀教具,以及動手操作等直觀手段,幫助學生獲得正確、完整、豐富的表象,把「純粹」的數學知識與學生在日常生活的、熟悉的、具體的材料相聯系,這樣就有利於抽象的數學概念具體化、形象化,便於學生的理解,同時也能激發學生的思維和探索新知的慾望。例如,「分數的初步認識」的教學,主要要說明「誰」的幾分之幾,為了說明這一點,可出示不同形狀和大小的圖形,折出它們的二分之一,讓學生明白雖然都是二分之一,卻表示不同的大小,所以一定要說明「誰」的二分之一。
2、同時,在概念的引入中要格外做到舊知識的遷移。
任何一個數學概念都是在以往概念的基礎上演變發展而來的,前一個概念是後一個概念的基礎和推理依據,舊概念鋪墊不好,就會影響新概念的建立,如,在「整除」概念基礎上建立了「約數」、「倍數」概念;由「約數」導出「公約數」、「最大公約數」;由「倍數」引出「公倍數」,再導出「最小公倍數」。 在幾何知識中,由長方形的面積導出正方形、平行四邊形、三角形、梯形等的面積公式。
3、最後還可以從計算引入新概念。有些概念不便於用具體事例來說明,而通過計算才能揭示數與形的本質屬性。如,教學「互為倒數」這個概念時,可先出示一組題讓學生口算:3×1/3,1/7×7,3/4×4/3,9/11×11/9??,算後讓學生觀察這些算式都是幾個數相乘,它們的乘積都是幾。根據學生的回答,教師指出:象這樣的乘積是1的兩個數叫做互為倒數。其它如比例、循環小數、約分、通分、最簡分數等都可以從計算引入。
或者幾個數字依次不斷重復出現,這樣的數叫循環小數。」這里要抓住兩點,一是前提是一個數的小數部分,與整數部分沒關系,二是屬性是一個數字或幾個數字重復出現,且是依次不斷的。明確了這兩點就能迅速的判斷出某些數字是不是循環小數,如7777.777、7.32132、2.??這樣的小數都不具備循環小數的本質屬性,所以都不是循環小數。而0.??、0.??具備了循環小數的本質屬性,它們都是循環小數。
2.注意比較有聯系的概念的異同。
數學中的一些概念是相互聯系的,既有相同點,又有不同之處。劃清了異同界線,才能建立明確的概念。而對這類概念,應用對比的方法找出它們之間的聯系、區別。使學生更加准確地理解和牢固記憶學過的概念。如教學「質數和合數」時,先給出一些自然數,讓學生分別找出這些數的所有約數,在比較每個數的約數的個數;然後根據約數的個數把這些數進行分類,①只有一個約數的,②只有1和它本身兩個約數的,③除了1和它本身,還有別的約數的,即約數有三個或三個以上的;最後引導學生根據三類數的不同特點,總結出「質數」和「合數」的定義。 3、運用變式,突出概念的本質屬性。
概念是客觀事物本質屬性的概括。學生理解概念的過程即是對概念所反映的本質屬性的把握過程,在教學過程中,通過變式的運用,可以使要領的本質屬性更加突出,達到化難為易的效果。例如,在三角形概念教學中,通過不同形態(銳角三角形、直角三角形和鈍角三角形)不同面積,不同位置的三角形與一些類似三角形的圖形進行比較,就可以幫助學生分清哪些屬於三角形的本質屬性,哪些
橫向、縱向聯系,促進概念系統的形成,培養學生綜合運用知識的能力,可以設計綜合性練習等。但千萬要按照由簡到繁、由易到難、由淺入深的原則,逐步加深練習的難度。如學過「加法和減法的關系」後,可以安排以下三個層次的練習:
a. 看誰填得又對又快!
237+69=306 502-387=115 306-□=237 387+□=502 □-237=69 □-115=387
這一層是基本練習,它是剛學完新課之後的單項的、帶有模仿性的練習,它可以幫助學生鞏固知識,形成正確的認知結構。

Ⅷ 小學數學概念的介紹

數學概念是客觀現實中的數量關系和空間形式的本質屬性在人腦中中的反映。內數學的研究對象是客觀事物的數量容關系和空間形式。在數學中,客觀事物的顏色、材料、氣味等方面的屬性都被看作非本質屬性而被舍棄,只保留它們在形狀、大小、位置及數量關系等方面的共同屬性。在數學科學中,數學概念的含義都要給出精確的規定,因而數學概念比一般概念更准確。

Ⅸ 小學數學概念的小學數學概念表現形式

在小學數學教材中的概念,根據小學生的接受能力,表現形式各不相同,其中描述式和定義式是最主要的兩種表示方式。 用一些生動、具體的語言對概念進行描述,叫做描述式。這種方法與定義式不同,描述式概念,一般藉助於學生通過感知所建立的表象,選取有代表性的特例做參照物而建立。如:「我們在數物體的時候,用來表示物體個數的1、2、3、4、5……叫自然數」;「象1.25、0.726、0.005等都是小數」等。這樣的概念將隨著兒童知識的增多和認識的深化而日趨完善,在小學數學教材中一般用於以下兩種情況。
一種是對數學中的點、線、體、集合等原始概念都用描述法加以說明。例如,「直線」這一概念,教材是這樣描述的:拿一條直線,把它拉緊,就成了一條直線。「平面」就用「課桌面」、「黑板面」、「湖面」來說明。
另一種是對於一些較難理解的概念,如果用簡練、概括的定義出現不易被小學生理解,就改用描述式。例如,對直圓柱和直圓錐的認識,由於小學生還缺乏運動的觀點,不能像中學生那樣用旋轉體來定義,因此只能通過實物形象地描述了它們的特徵,並沒有以定義的形式揭示它們的本質屬性。學生在觀察、擺拼中,認識到圓柱體的特徵是上下兩個底面是相等的圓,側面展開的形狀是長方形。
一般來說,在數學教材中,小學低年級的概念採用描述式較多,隨著小學生思維能力的逐步發展,中年級逐步採用定義式,不過有些定義只是初步的,是有待發展的。在整個小學階段,由於數學概念的抽象性與學生思維的形象性的矛盾,大部分概念沒有下嚴格的定義;而是從學生所了解的實際事例或已有的知識經驗出發,盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對於不容易理解的概念就暫不給出定義或者採用分階段逐步滲透的辦法來解決。因此,小學數學概念呈現出兩大特點:一是數學概念的直觀性;二是數學概念的階段性。在進行數學概念教學時,我們必須注意充分領會教材的這兩個特點。

Ⅹ 小學數學中如何進行概念教學案例

注重概念的形成過程

許多數學概念都是從現實生活中抽象出來的,講清它們的來源,既會讓學生感到不抽象,而且有利於形成生動活潑的學習氛圍。一般說來,概念的形成過程包括:引入概念的必要性,對一些感性材料的認識、分析、抽象和概括,注重概念形成過程,符合學生的認識規律。在教學過程中,如果忽視概念的形成過程,把形成概念的生動過程變為簡單的「條文加例題」,就不利於學生對概念的理解。因此,注重概念的形成過程,可以完整地、本質地、內在地揭示概念的本質屬性,使學生對理解概念具備思想基礎,同時也能培養學生從具體到抽象的思維方法。

例如,負數概念的建立,展現知識的形成過程如下:①讓學生總結小學學過的數,表示物體的個數用自然數1,2,3…表示;一個物體也沒有,就用自然數0表示:測量和計算有時不能得到整數的結果,這就用分數。②觀察兩個溫度計,零上3度。記作+3°,零下3度,記作-3°,這里出現了一種新的數――負數。③讓學生說出所給問題的意義,讓學生觀察所給問題有何特徵。④引導學生抽象概括正、負數的概念。

深入剖析,揭示概念的本質

數學概念是數學思維的基礎,要使學生對數學概念有透徹清晰的理解,教師首先要深入剖析概念的實質,幫助學生弄清一個概念的內涵與外延,也就是從質和量兩個方面來明確概念所反映的對象。如,掌握垂線的概念包括三個方面:①了解引進垂線的背景:兩條相交直線構成的四個角中,有一個是直角時,其餘三個也是直角,這反映了概念的內涵。②知道兩條直線互相垂直是兩條直線相交的一個重要的特殊情形,這反映了概念的外延。③會利用兩條直線互相垂直的定義進行推理,知道定義具有判定和性質兩方面的功能。另外,要讓學生學會運用概念解決問題

加深對概念本質的理解。如「一般地,式子根號a(a≥0]叫做二次根式」這是一個描述性的概念。式子根號a(a≥0)是一個整體概念,其中a≥0是必不可少的條件。又如,講授函數概念時,為了使學生更好地理解掌握函數概念,我們必須揭示其本質特徵,進行逐層剖析:①「存在某個變化過程」――說明變數的存在性;②「在某個變化過程中有兩個變數x和u」――說明函數是研究兩個變數之間的制約關系;③「對於x在某一范圍內的每一個確定的值」――說明變數x的取值是有范圍限制的,即允許值范圍;④「u有確定的值和它對應」――說明有確定的對應規律。由以上剖析可知,函數概念的本質是對應關系。

閱讀全文

與小學數學概念形成過程相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99