導航:首頁 > 小學學科 > 小學數學概念教學中應注意的問題

小學數學概念教學中應注意的問題

發布時間:2021-03-05 22:13:41

小學數學教學應注意哪些問題

1.設法喚起學生學好數學的熱情。 學生學不好數學,不能全怪學生,教師首先要找自己的原因,教師的任務就是把學生從不懂教懂,從不會教會,學生答不出教師的問題,教師先要檢查自己的教學工作有沒有漏洞。教師發現學生作業中的普遍性錯誤,先要自我檢查,這樣會使學生受感動,自覺去糾正錯誤。 2.鋪設台階,引導探索。 教學中適當地分解知識難點,合理劃分課堂教學層次,讓學生在數學學習中由低向高一步步攀登,讓學生嘗到探索之樂、成功之樂。教師在指導學生做課堂練習時,首先要建立起使每個學生獲得成功的條件,即給他們一些鋪墊性的容易解出來的問題。然後預先告訴學生,老師將要給你們一些難題(而實際上還是他們力所能及的題)。事後,當學生對自己的能力和信心因此增強,從而產生了再想解題的願望時,教師再給他們一些稍有難度的題,這種做法對增強學生自信心會起到極好的作用。 3.抓好測試,善於訓練。 學生對學習成績是很敏感的,分數對情緒的刺激亦是很大的。特別是差生,他們因各種原因每次考試成績普遍低,心理上受到的打擊較深,為此,我對訓練和測試大膽進行改革。訓練時,在學生自願的基礎上,根據學生的需要、動機、性格和學習的基礎等諸方面因素,將學生分成A、B、C、D四個程度組;A組獨立練,B組指導練,C組討論練,D組扶著練,並輔以激勵的評價方法,讓學生體驗成功之樂。測試時,分別提出不同的要求,分類要求,分類評價,發揮測試的反饋功能作用。 4.進行學法指導,讓學生掌握學習的主動權。 有些學生不願自己動腦筋,一切知識等著老師「喂」。為了改變這一局面,我開展了「四環一步」(預習——上課——整理——作業)的學習法講座,讓他們學會怎樣預習、怎樣上課、怎樣整理知識、怎樣做作業,知道只有忠實完成這四個環節中的每一環節,才能躍過章、段這一大步,進入下一階段內容的學習。也就是說,只有當學生掌握了好的學習方法,掌握了學習主動權,才能使思維活動更加持久,更加深入,從而促進學生智力發展並學好數學。

Ⅱ 小學數學概念教學中應注意的幾個問題

01
最小的一位數是0還是1?
這個問題在很長一段時間存在爭論。先來看看《九年義務教育六年制小學數學第八冊教師教學用書》第98頁「關於幾位數」的敘述:「通常在自然數里,含有幾個數位的數,叫做幾位數。例如「2」是含有一個數位的數,叫做一位數;「30」是含有兩個數位的數,叫做兩位數;「405」是含有三個數位的數,叫做三位數……但是要注意:一般不說0是幾位數。
再來聽聽專家的說明:在自然數的理論中,對「幾位數」是這樣定義的,「只用一個有效數字表示的數,叫做一位數;只用兩個數字(其中左邊第一個數字為有效數字)表示的數,叫做兩位數……所以,在一個數中,數字的個數是幾(其中最左邊第一個數字為有效數字),這個數就叫幾位數。
於此,所謂最大的幾位數,最小的幾位數,通常是在非零自然數的范圍研究。所以一位數共有九個,即:1、2、3、4、5、6、7、8、9。
0不是最小的一位數。
02
為什麼0也是自然數?
課標教材對「0也是自然數」的規定,顛覆了人們對自然數的傳統認識。
於此,中央教科所教材編寫組主編陳昌鑄如是說:國際上對自然數的定義一直都有不同的說法,以法國為代表的多數國家都認為自然數從0開始,我國教材以前一直都是遵循前蘇聯的說法,認為0不是自然數。2000年教育部主持召開教材改編會議時,已明確提出將0歸為自然數。這次改版也是與國際慣例接軌。
從教學實踐層面來說,將「0」規定為「自然數」也有著積極的現實意義。
「0」作為自然數的「好處」

眾所周知,數學中的集合被分為有限集合和無限集合兩類。有限集合是含有有限個元素的集合,像某班學生的集合。無限集合是含有的元素個數是非有限的集合,如分數的集合。因為自然數具有「基數」的性質,因此用自然數來描述有限集合中元素的個數是很自然的。
但在有限集合中,有一個最主要也是最基本的集合,叫空集{},元素個數為0。如果不把0作為自然數,那麼空集的元素的個數就無法用自然數來表示了。如果把「0」作為一個自然數,那麼自然數就可以完成刻畫「有限集合元素個數」的任務了。於此,從「自然數的基數性」這個角度,我們看到了把「0」作為自然數的好處。
把「0」作為自然數,不會影響自然數的 「運算功能」
「0」加入傳統的自然數集合,所有的「運算規則」依舊保持,如新自然數集合{0,1,2,…,n,…}中的任何兩個自然數都可以進行加法和乘法運算,而運算結果仍然是自然數。同時,加法、乘法運算的結合律和交換律,以及乘法的分配律也不會受到影響。
所以,「0」加盟到自然數集合實屬理所當然,而不僅僅是人為的「規定」。它讓我們更好地理解自然數和它的功能,同時也讓我們意識到教學時不僅要知道和記住數學的「定義」和「規定」,還應該思考「規定」背後的數學涵義。
03
什麼是有效數字一無效數字?
有效數字是對一個數的近似值的精確程度而提出的。同一個近似數如果在取捨時,保留的有效數字多,就比保留的有效數字少更精確。
一般說,一個近似數四捨五入到哪一位,就說這個近似數精確到哪一位。這時,從左邊第一個非零的數字起,到那一位上的所有數字都叫做這個數的有效數字。
如近似數0.00309有三個有效數字:3、0、9;0.520也有三個有效字:5、2、0。
而0.00309中左邊的三個零,0.520中左邊的一個零,都叫做無效數字。
04
加法與減法、乘法與除法是否互為逆運算?
「加法與減法互為逆運算、乘法與除法互為逆運算」這似乎成了許多老師的口頭禪,這其實是一種誤解。例如:
加法「2+3=5」,其逆算為「5-2=3」,「5-3=2」。
故此,加法的逆運算只有減法;
減法「5-2=3」,其逆算有 「5-3=2」, 「2+3=5」。
故此,減法的逆運算有減法和加法兩種運算。
綜上可知,只能說減法是加法的逆運算,而不能說加法與減法互為逆運算。
同理,也只能說除法是乘法的逆運算,而不能說乘法與除法互為逆運算。
05
為什麼不寫「倍」?
在學習「求一個數是另一個數的幾倍」應用題時,很多小朋友會自然提出這樣的疑問,如:「飼養小組養了12隻小雞,3隻小鴨,小雞的只數是小鴨的幾倍?」為什麼「12÷3=4」的後面不寫「倍」呢?
我們首先應該肯定學生的質疑(學生有較強的解題規范意識)。但同時又該對學生說明:在解答應用題時,得數後面一般要寫上的是數的單位名稱
如:12隻的「只」;8克的「克」。一個數只有帶上單位名稱,才能准確地表示出一個物體的多少、大小、長短、輕重等等。但是,「倍」不是單位名稱,它表示兩個數量之間的一種關系。例如,上面的計算結果「4」,表示12裡面有4個3,就是12隻小雞是3隻小鴨的4倍。
所以,在算式里不寫「倍」,以免「倍」與單位名稱發生混淆。
06
「倍」和「倍數」的區別
在第一學段我們學習了「倍的初步認識」,認識了概念「倍」,而在第二學段,我們又學習到「倍數」這個概念。那麼,「倍」和「倍數」這兩個詞到底是不是一回事呢?這兩個詞之間有什麼區別呢?
「倍」指的是數量關系,它建立在乘除法概念的基礎上。例如:男生有10人,女生有30人,因為「10×3=30」或者「30÷10=3」,我們就說,女生人數(30)是男生人數(10)的3倍,也可以說,男生人數(10)的3倍等於女生人數(30)。勿寧說,「倍」其實表示的是兩個數的商(這個商可以是整數、小數、分數等各種表現形式)。
「倍數」指的是數與數之間的聯系,它建立在整除概念的基礎上。例如,30能被6整除,30就是6的倍數。可見,「倍數」是不能獨立存在的(具有特定的指向性),而且對數的形式有特別的要求(必須為整數)。
同時我們又看到,30也是6的5倍,因為6×5=30,「6×5」表示6的5倍。所以從這個角度來說,「倍」的涵義應寬泛於「倍數」,後者可以視為前者在特定情形下的一種表現。
07
「時」和「小時」有什麼不同?怎樣使用「時」和「小時」?
首先應該明確的是,〔小〕時並非國際時間單位。在1984年國務院發布的《關於我國統一法定計量單位的命令》中,把秒作為時間的基本單位,把非國際單位制的時間單位天(日)、〔小〕時、分作為輔助單位。
(註:〔〕里的字,在不致混淆的情況下,可以省略)。
這樣,在我國范圍內使用的法定時間單位就有:天(日)、〔小〕時、分、秒。
由此,「時」既可以表示時間,又可以表示時刻。由於「時間」和「時刻」這兩個不同的概念容易產生混淆,在實際應用時間單位「時」時,現行教材作了如下處理:
7.1當列式計算出時間的長短時,在得數的括弧里寫上時間的單位「時」。例如:超市營業時間:21-9=12(時)。(此處可省略「小」字)
7.2在用語言表述時間的長短時,為避免「時間」和「時刻」這兩個概念產生混淆,則在「時」的前面加上一個「小」字。例如:超市營業時間12小時。
7.3 在用語言表示時刻時,一律不得出現「小時」字樣。例如:公園每天早上7時30分開園(而非7小時30分)。
08
「改寫」和「省略」是一樣的嗎?
從形式上看,此例將「改寫」與「省略」兩種對數的變化置於了同一個要求之下(即改寫成用「億」作單位的數)。我們真希望編者不是有意而為之,因為「改寫」與「省略」其本質是完全不同的。表現在:
8.1目的不同
「改寫」的目的是方便對大數的讀寫,而「省略」則是取數的近似值。
8.2方法不同
此處的「改寫」是去掉「億」位後面的0,再寫上一個「億」字,而「省略」除了要找准「億」位,還要考慮被省略的尾數的最高位是幾,然後用四捨五入法求出近似數。
8.3符號不同
「改寫」只改變了數的表現形式,大小並未改變,所以用「=」號連接;而「省略」既改變了數的形式,又改變的數的大小,所以用「≈」連接。
09
「路程」就是「距離」嗎?
這兩個詞在許多老師的教學語言中是替代使用的,其實不然。
「路程」是指從一個地點到另一個地點所經過路線的長度;而「距離」則指連接兩個地點而成的直線段的長度。
「路程」所經過的路線可以是曲形線,也可以是直形線,還可能是折形線。
一般情況下,兩個地點之間的「路程」要大於它們之間的「距離」,只有當兩個地點之間的路線為直線時,路程和距離才相等。
雖然老師們都知道這個等式是成立的,但我們的學生卻沒有相應的知識儲備,怎樣繞開」極限」尋找能為小學生所理解和接受的證明途徑。
10
最大的分數單位是1/2還是1/1?
先看看分數單位的含義:把單位「1」平均分成若干份,表示這樣一份的數。
顯然,在分數意義中,關鍵是「分」,沒有「分」,就沒有「份」。
因為把單位「1」平均分成的最少份數是2份(如果是1份,也就無所謂「分」),由此得到的分數單位是1/2,所以1/2是最大的分數單位。
盡管就廣義的分數來說,1/1也可視作分數,但它已不是我們通常意義上認識的與整數對立的那種分數(在平均分的基礎上所產生),故此,最大的分數單位應以1/2為宜。
11
像 0/3、0.2/3、3/0.2這樣的數是不是分數?
分數的定義明確告訴我們:把單位「1」平均分成若干份,表示這樣一份或幾份的數,叫分數。其中,分成的份數叫做分數的分母,要表示的份數叫做分子。
由此可知,分數的分子和分母都應該是非零自然數。從這個意義來說,以上這幾個數徒具分數的形式,而不具分數的實質,因此都不應該視為分數。
進而,在考查學生對「分數」涵義的理解時,應著眼於通常意義上的分數,將上述這些變異形式納入思考的范圍,其本身對訓練學生的思維並無多大實際意義,而且會令諸如「分數都大於0」等命題的真與假陷入尷尬。
12
比6多1/2的數應該是「6+1/2」還是「6+(1+1/2)」
要弄清這個問題,先得弄清「6」的性質。顯然,此處的「6」其實質是一個「數」,而非一個「量」,求「比6多1/2的數」應屬於「求比一個數多幾的數」的范疇,問題中的「多幾」都是確定的具體數,這里的「幾」既可以是整數,也可以是小數或分數。所以,這里的「1/2」是指在6的基礎上「多1/2」這個「1/2」數的本身,而非「6的1/2」。
所以,「比6多1/2的數」應該是「6+1/2」。
當然,如果題目確定為「比6多它的1/2的數」,那答案則屬於後者。
13
計算出勤率可不可以不乘100%?
先來看看新人教版、北師大版和蘇教版三個不同版本的教材對類似問題的理解。
同一課程標准下,不同的教材給出了不同的理解,這給執教者帶來了困惑:到底可不可以不乘100%呢?筆者以為,求「××率」其結果必定為百分率。以出勤率為例,就是求實際出勤人數占應出勤人數的百分之幾。
如果公式只寫成:出勤率=實際出勤人數/應出勤人數,我們說這只是分數形式(也即是求實際出勤人數占應出勤人數的「幾分之幾」),並不是百分數。
因此,在公式後面乘上「100%」,既可以使計算數值大小不變,又能保證結果形式滿足百分數的要求。因此,計算出勤率、發芽率、出粉率、合格率……的公式中,都應乘「100%」。
同時建議各版本教材的編委統一思想,以免給一線教師造成認識上的混亂。
14
小於90度的角都是銳角嗎?
根據課標教材定義:小於90度的角叫做銳角。答案似乎是肯定的,但由此又產生一個新的問題:0度的角是什麼角,也是銳角嗎?
事實是,銳角定義有一個隱含的前提,就是小學數學中所討論的角都是正角。習慣上,我們把射線按逆時針方向旋轉而得到的角叫做正角,射線按順時針方向旋轉而得到的角叫做負角,當一條射線沒有做任何旋轉時,就把它看成零角。如果將角的概念推廣到任意大小的角,就應分為正角、負角、和零角。
由此,嚴格意義上的銳角定義應是:大於0度而小於90度的角叫做銳角。
15
足球比賽記分牌上的「3︰2」是數學中的「比」嗎?
我們至少可以從兩個方面來理解它們的差別。
第一,球類比賽中的「3︰2」表示的是比賽雙方的得分情況,是「差」比,即表示相差關系,一方得3分,另一方得2分,雙方相差1分;數學中的「3︰2」表示的是「3÷2」,是「倍」比,商為1.5。有鑒於此,球類比賽中的「比」(其實是比分),其後數可以為0的,而數學中的「比」,其後數(相當於除數)是不可以為0的。
第二,數學中的「比」是可以化簡的,如「4︰2=2︰1」;同樣的「4︰2」放在球類比賽中,卻不可以化簡,如果化簡就不能反映雙方在比賽中的實際得分了。

Ⅲ 小學數學概念教學存在的問題及對策

一、小學數學概念教學中存在的問題
1.引入不當,缺乏科學性
由於教師學科素養不足和受日常概念的影響等原因,有的教師在概念教學時引入不當,缺乏科學性,導致對概念的理解不準確。下面是一位教師對於倒數概念引進的過程:今天我們來做個游戲,名字叫倒著說,例如我說「1、2」,你們說「2、1」,我說「1、2、3」,你們說「3、2、1」,我說「老師愛我們」,你們說「我們愛老師」。在數學中這種現象也存在,比如「八分之三的倒過來就是三分之八」。這種概念的引入方法就缺乏科學性,會造成學生對概念的理解不清。
2.注重結論,輕視過程
現在部分教師教授概念表現為讀概念,引導學生讀概念,讓學生背定義,忽視對概念形成過程的理解,缺乏對概念的講解和分析,缺乏對概念本質屬性的理解和概念外延的了解,在這樣的教學模式下學習了概念之後,學生既不能很好地將概念內容應用到具體題目中,久而久之還會對概念有遺忘。
二、解決數學概念中存在問題的措施
1.從實際生活中引入
數學來源於生活,學生數學概念的構建,是建立在自身已有知識經驗基礎上的,從生活中已有的概念理解上入手,進行實際的引進,能讓學生更好地接受。例如,在學習平行四邊形的不穩定性這一概念時,教師可以舉一些生活中利用此性質製造的物品,如學校的大門,家裡的伸縮式牆掛等等,由生活的具體實例引入概念,可以讓學生記憶深刻,更容易理解。
2.重視概念理解
概念的學習不僅僅局限於文字,而是要體會文字背後的真正意義,只有深刻地理解才能更好地應用,越深刻,越准確,所掌握的內容越容易應用。教師在概念教學時要注重概念本身含義的講解,讓學生能深刻地理解概念的本質。
小學數學概念是學習數學的基礎,但目前的教學方式仍存在一些問題,因此,教師在教學方面應多注意概念的引進和概念本質的傳授,讓學生能全面地理解,從而達到學習目的。

Ⅳ 什麼是小學數學概念教學概念教學主要存在哪些問題該怎麼解決

畢業論文題目是:小學數學概念教學存在的問題及對策。請問這篇論文應該以一個什麼思路來寫呢,大致應該分為哪幾個部分呢,需要闡述哪些問題,大體的格式是什麼樣子的呢,請大家多多幫助! 但這個論文重點不是數學教學那麼寬泛的范圍,而是集中在概念教學上面想一想你們是否重視數學,喜歡數學。然後再想應該怎麼提升數學成績,提高對數學的重視。然後再寫你對數學的看法與觀點。 小學數學教學論文--在小學數學教學中培養學生的思維能力

培養學生的思維能力是現代學校教學的一項基本任務。我們要培養社會主義現代化建設所需要的人才,其基本條件之一就是要具有獨立思考的能力,勇於創新的精神。小學數學教學從一年級起就擔負著培養學生思維能力的重要任務。下面就如何培養學生思維能力談幾點看法。

一 培養學生的邏輯思維能力是小學數學教學中一項重要任務

思維具有很廣泛的內容。根據心理學的研究,有各種各樣的思維。在小學數學教學中應該培養什麼樣的思維能力呢?《小學數學教學大綱》中明確規定,要「使學生具有初步的邏輯思維能力。」這一條規定是很正確的。下面試從兩方面進行一些分析。首先從數學的特點看。數學本身是由許多判斷組成的確定的體系,這些判斷是用數學術語和邏輯術語以及相應的符號所表示的數學語句來表達的。並且藉助邏輯推理由一些判斷形成一些新的判斷。而這些判斷的總和就組成了數學這門科學。小學數學雖然內容簡單,沒有嚴格的推理論證,但卻離不開判斷推理,這就為培養學生的邏輯思維能力提供了十分有利的條件。再從小學生的思維特點來看。他們正處在從具體形象思維向抽象邏輯思維過渡的階段。這里所說的抽象邏輯思維,主要是指形式邏輯思維。因此可以說,在小學特別是中、高年級,正是發展學生抽象邏輯思維的有利時期。由此可以看出,《小學數學教學大綱》中把培養初步的邏輯思維能力作為一項數學教學目的,既符合數學的學科特點,又符合小學生的思維特點。

值得注意的是,《大綱》中的規定還沒有得到應有的和足夠的重視。一個時期內,大家談創造思維很多,而談邏輯思維很少。殊不知在一定意義上說,邏輯思維是創造思維的基礎,創造思維往往是邏輯思維的簡縮。就多數學生說,如果沒有良好的邏輯思維訓練,很難發展創造思維。因此如何貫徹《小學數學教學大綱》的目的要求,在教學中有計劃有步驟地培養學生邏輯思維能力,還是值得重視和認真研究的問題。

《大綱》中強調培養初步的邏輯思維能力,只是表明以它為主,並不意味著排斥其他思維能力的發展。例如,學生雖然在小學階段正在向抽象邏輯思維過渡,但是形象思維並不因此而消失。在小學高年級,有些數學內容如質數、合數等概念的教學,通過實際操作或教具演示,學生更易於理解和掌握;與此同時學生的形象思維也會繼續得到發展。又例如,創造思維能力的培養,雖然不能作為小學數學教學的主要任務,但是在教學與舊知識有密切聯系的新知識時,在解一些富有思考性的習題時,如果採用適當的教學方法,可以對激發學生思維的創造性起到促進作用。教學時應該有意識地加以重視。至於辯證思維,從思維科學的理論上說,它屬於抽象邏輯思維的高級階段;從個體的思維發展過程來說,它遲於形式邏輯思維的發展。據初步研究,小學生在10歲左右開始萌發辨證思維。因此在小學不宜過早地把發展辯證思維作為一項教學目的,但是可以結合某些數學內容的教學滲透一些辯證觀點的因素,為發展辯證思維積累一些感性材料。例如,通用教材第一冊出現,可以使學生初步地直觀地知道第二個加數變化了,得數也隨著變化了。到中年級課本中還出現一些表格,讓學生說一說被乘數(或被除數)變化,積(或商)是怎樣跟著變化的。這就為以後認識事物是相互聯系、變化的思想積累一些感性材料。

二 培養學生思維能力要貫穿在小學數學教學的全過程

現代教學論認為,教學過程不是單純的傳授和學習知識的過程,而是促進學生全面發展(包括思維能力的發展)的過程。從小學數學教學過程來說,數學知識和技能的掌握與思維能力的發展也是密不可分的。一方面,學生在理解和掌握數學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學習數學知識時,為運用思維方法和形式提供了具體的內容和材料。這樣說,絕不能認為教學數學知識、技能的同時,會自然而然地培養了學生的思維能力。數學知識和技能的教學只是為培養學生思維能力提供有利的條件,還需要在教學時有意識地充分利用這些條件,並且根據學生年齡特點有計劃地加以培養,才能達到預期的目的。如果不注意這一點,教材沒有有意識地加以編排,教法違背激發學生思考的原則,不僅不能促進學生思維能力的發展,相反地還有可能逐步養成學生死記硬背的不良習慣。

怎樣體現培養學生思維能力貫穿在小學數學教學的全過程?是否可以從以下幾方面加以考慮。

(一)培養學生思維能力要貫穿在小學階段各個年級的數學教學中。要明確各年級都擔負著培養學生思維能力的任務。從一年級一開始就要注意有意識地加以培養。例如,開始認識大小、長短、多少,就有初步培養學生比較能力的問題。開始教學10以內的數和加、減計算,就有初步培養學生抽象、概括能力的問題。開始教學數的組成就有初步培養學生分析、綜合能力的問題。這就需要教師引導學生通過實際操作、觀察,逐步進行比較、分析、綜合、抽象、概括,形成10以內數的概念,理解加、減法的含義,學會10以內加、減法的計算方法。如果不注意引導學生去思考,從一開始就有可能不自覺地把學生引向死記數的組成,機械地背誦加、減法得數的道路上去。而在一年級養成了死記硬背的習慣,以後就很難糾正。

(二)培養學生思維能力要貫穿在每一節課的各個環節中。不論是開始的復習,教學新知識,組織學生練習,都要注意結合具體的內容有意識地進行培養。例如復習20以內的進位加法時,有經驗的教師給出式題以後,不僅讓學生說出得數,還要說一說是怎樣想的,特別是當學生出現計算錯誤時,說一說計算過程有助於加深理解「湊十」的計算方法,學會類推,而且有效地消滅錯誤。經過一段訓練後,引導學生簡縮思維過程,想一想怎樣能很快地算出得數,培養學生思維的敏捷性和靈活性。在教學新知識時,不是簡單地告知結論或計演算法則,而是引導學生去分析、推理,最後歸納出正確的結論或計演算法則。例如,教學兩位數乘法,關鍵是通過直觀引導學生把它分解為用一位數乘和用整十數乘,重點要引導學生弄清整十數乘所得的部分積寫在什麼位置,最後概括出用兩位數乘的步驟。學生懂得算理,自己從直觀的例子中抽象、概括出計算方法,不僅印象深刻,同時發展了思維能力。在教學中看到,有的老師也注意發展學生思維能力,但不是貫穿在一節課的始終,而是在一節課最後出一兩道稍難的題目來作為訓練思維的活動,或者專上一節思維訓練課。這種把培養思維能力只局限在某一節課內或者一節課的某個環節內,是值得研究的。當然,在教學全過程始終注意培養思維能力的前提下,為了掌握某一特殊內容或特殊方法進行這種特殊的思維訓練是可以的,但是不能以此來代替教學全過程發展思維的任務。

(三)培養思維能力要貫穿在各部分內容的教學中。這就是說,在教學數學概念、計演算法則、解答應用題或操作技能(如測量、畫圖等)時,都要注意培養思維能力。任何一個數學概念,都是對客觀事物的數量關系或空間形式進行抽象、概括的結果。因此教學每一個概念時,要注意通過多種實物或事例引導學生分析、比較、找出它們的共同點,揭示其本質特徵,做出正確的判斷,從而形成正確的概念。例如,教學長方形概念時,不宜直接畫一個長方形,告訴學生這就叫做長方形。而應先讓學生觀察具有長方形的各種實物,引導學生找出它們的邊和角各有什麼共同特點,然後抽象出圖形,並對長方形的特徵作出概括。教學計演算法則和規律性知識更要注意培養學生判斷、推理能力。例如,教學加法結合律,不宜簡單地舉一個例子,就作出結論。最好舉兩三個例子,每舉一個例子,引導學生作出個別判斷〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結果相同〕。然後引導學生對幾個例子進行分析、比較,找出它們的共同點,即等號左端都是先把前兩個數相加,再同第三個數相加,而等號右端都是先把後兩個數相加,再同第一個數相加,結果不變。最後作出一般的結論。這樣不僅使學生對加法結合律理解得更清楚,而且學到不完全歸納推理的方法。然後再把得到的一般結論應用到具體的計算(如57+28+12)中去並能說出根據什麼可以使計算簡便。這樣又學到演繹的推理方法至於解應用題引導學生分析數量關系,這里不再贅述。

三 設計好練習題對於培養學生思維能力起著重要的促進作用

培養學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習。而且思維與解題過程是密切聯系著的。培養思維能力的最有效辦法是通過解題的練習來實現。因此設計好練習題就成為能否促進學生思維能力發展的重要一環。一般地說,課本中都安排了一定數量的有助於發展學生思維能力的練習題。但是不一定都能滿足教學的需要,而且由於班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學時往往要根據具體情況做一些調整或補充。為此提出以下幾點建議供參考。

(一)設計練習題要有針對性,要根據培養目標來進行設計。例如,為了了解學生對數學概念是否清楚,同時也為了培養學生運用概念進行判斷的能力,可以出一些判斷對錯或選擇正確答案的練習題。舉個具體例子:「所有的質數都是奇數。( )」如要作出正確判斷,學生就要分析偶數裡面有沒有質數。而要弄清這一點,要明確什麼叫做偶數,什麼叫做質數,然後應用這兩個概念的定義去分析能被2整除的數裡面有沒有一個數,它的約數只1和它自身。想到了2是偶數又是質數,這樣就可以斷定上面的判斷是錯誤的。

Ⅳ 小學數學教學中應注意的幾點問題

生活離不開數學,同樣數學是所有課程之母。通過學習數學,學生們能夠輕松解決生活中遇到的所有算數性日常問題。如果學不好數學,將直接影響一個人的發展前途。所以,數學教師一定要以高度的責任心上好數學課。為此,作為數學課任課教師,我們一定要注意以下幾點。
1、在教學方法上多加探索教學方法是教師在教學過程中,為完成教學任務所使用的一種教學手段。也就是說,教學方法是完成教學任務的重要橋梁。因此,教師要想過好這座橋梁,就要在教學方噶上不斷探索,更新知識。
2、該講清楚的內容要講的通俗易懂,要用最簡單的詞彙進行講解。這樣有利於學生能夠及時較全面的掌握當堂課的內容,並且具有很重要的意義。
3、備課的內容應要全面的、系統的、有計劃的、豐富多彩的去准備。備課內容決定課堂教學的質量。如果我們講課時,准備充分,教學計劃完善,盡然有序,突出重點和難點進行講解,學生就能很容易掌握所要傳授的知識。
4、教師的外表要整潔大方。平易近人,語言生動,精神抖擻,教師應特別注意自己的言行舉止,穿裝打扮。教師在課堂上講課能夠精神有力,講課生動有序,就能感染學生,與教師一起抖起精神,洗耳恭聽。相反,講課准備不充分,內容單一,學生就很容易分神,情緒低落,不想聽你講課,就會出現厭學、不願學等現象。除此,教師為了上好課,顯得自己又風趣,便在課堂上胡言亂語,將一些不著邊的話,那麼就會給學生帶來,負面影響。因此,教師一定要把握好課堂用語。
5、充分利用示範教學和電化教學手段。小學生是在具體的事物當中進行思考的,因此,在教學中充分利用示範教學和電化教學,同時,要注意示範教學的內容要和課題吻合。利用電化教學,能是教學內容得到進一步生動具體,學生能初步掌握情感教育,教師利用學生的好奇心和興趣熱親,可以將初步的情感教育轉化為知識教育。
6、利用啟蒙教學,通過激發學生的積極性,提出小問題,開拓學生的智能。教師在利用此教學方法是,要結合學生的實際知識層面,制定所要提問的問題等級,未辦理的後進生也提供答題的機會,通過激發學習興趣,使他們也養成獨立思考的能力。這樣才能使精神等到解放,對學習知識從滿信心。
通過以上的教學方法,我自認為能夠成功的上好小學數學課。

Ⅵ 談談數學概念教學應注意哪些問題

一、注重概念的本源,概念產生的基礎
每一個概念的產生都有豐富的知識背景,舍棄這些背景,直接拋給學生一連串的概念是傳統教學模式中司空見慣的做法,這種做法常常使學生感到茫然,丟掉了培養學生概括能力的極好機會。由於概念本身具有的嚴密性、抽象性和明確規定性,傳統教學中往往比較重視培養思維的邏輯性和精確性,在方式上以「告訴」為主讓學生「佔有」新概念,置學生於被動地位,使思維呈依賴,這不利於創新型人才的培養。「學習最好的途徑是自己去發現」。學生如能在教師創設的情景中像數學家那樣去「想數學」,「經歷」一遍發現、創新的過程,那麼在獲得概念的同時還能培養他們的創造精神。由於概念教學在整個數學教學中起著舉足輕重的作用,我們應重視在數學概念教學中培養學生的創造性思維。引入是概念教學的第一步,也是形成概念的基礎。概念引入時教師要鼓勵學生猜想,即讓學生依據已有的材料和知識作出符合一定經驗與事實的推測性想像,讓學生經歷數學家發現新概念的最初階段。牛頓曾說:「沒有大膽的猜想,就做不出偉大的發現。」猜想作為數學想像表現形式的最高層次,屬於創造性想像,是推動數學發展的強大動力,因此,在概念引入時培養學生敢於猜想的習慣,是形成數學直覺,發展數學思維,獲得數學發現的基本素質,也是培養創造性思維的重要因素。
例如,在立體幾何中異面直線距離的概念,傳統的方法是給出異面直線公垂線的概念,然後指出兩垂足間的線段長就叫做兩條異面直線的距離。教學可以先讓學生回顧一下過去學過的有關距離的概念,如兩點之間的距離,點到直線的距離,兩平行線之間的距離,引導學生思考這些距離有什麼特點,發現共同的特點是最短與垂直。然後,啟發學生思索在兩條異面直線上是否也存在這樣的兩點,它們間的距離是最短的?如果存在,應當有什麼特徵?於是經過共同探索,得出如果這兩點的連線段和兩條異面直線都垂直,則其長是最短的,並通過實物模型演示確認這樣的線段存在,在此基礎上,自然地給出異面直線距離的概念。這樣做,不僅使學生得到了概括能力的訓練,還嘗到了數學發現的滋味,認識到距離這個概念的本質屬性。
二、概念的教學中注重思維品質的培養
如何設計數學概念教學,如何在概念教學中有效地培養和開發學生的思維品質,是我們在教學中經常遇到並必須解決的問題。本文試圖以「兩條異面直線所成的角」一課的教學設計為例,談談概念教學中各個階段上培養思維能力,優化思維品質的一點粗淺體會。
1.展示概念背景,培養思維的主動性,思維的主動性,表現為學生對數學充滿熱情,以學習數學為樂趣,在獲得知識時有一種愜意的滿足感。(正方體為例觀察異面直線)揭示了異面直線所成的角出現的背景,將數學家的思維活動暴露給學生,使學生沉浸於對新知識的期盼、探求的情境之中,積極的思維活動得以觸發。
2.創設求知情境,培養思維的敏捷性思維的敏捷性表現在思考問題時,以敏銳地感知,迅速提取有效信息,進行「由此思彼」的聯想,果斷、簡捷地解決問題。(如何刻劃兩異面直線的相對位置呢?角和距離?揭示課題)。
3.精確表述概念,培養思維的准確性思維的准確性是指思維符合邏輯,判斷准確,概念清晰。新概念的引進解決了導引中提出的問題。學生自己參與形成和表述概念的過程培養了抽象概括能力(用相交直線的夾角刻劃異面直線的夾角)。
4.解剖新概念,培養思維的縝密性思維的縝密性表現在抓住概念的本質特徵,對概念的內涵與外延的關系全面深刻地理解,對數學知識結構的嚴密性和科學性能夠充分認識。(兩異面直線所成角的概念完全建立),在這個過程中滲透了把空間問題轉化為平面問題這一化歸的數學思想方法。
5.運用新概念,培養思維的深刻性。思維的深刻性主要表現在理解能力強,能抓住概念、定理的核心及知識的內在聯系,准確地掌握概念的內涵及使用的條件和范圍。在用概念判別命題的真偽時,能抓住問題的實質;在用概念解題時,能抓住問題的關鍵。鞏固深化階段:在學生深刻理解數學概念之後,應立即引導學生運用所學概念解決「引入概念」時提出的問題(或其他問題),在運用中鞏固概念。使學生認識到數學概念,既是進一步學習數學理論基礎,又是進行再認識的工具。如此往復,使學生的學習過程,成為實踐?認識?再實踐?再認識的過程,達到培養思維深刻性的目的。
6.分析錯解成因,培養思維的批判性。思維的批判是指思維嚴謹而不疏漏,能准確地辨別和判斷,善於覓錯、糾錯,以批判的眼光觀察事物和審視思維的活動。深化階段:對數學概念的理解要防止片面性。除在運用概念時,用典型的例子從正面加深對概念的理解、鞏固概念之外,還應針對?某些概念的定義中有些關鍵性的字眼不易被學生所理解,容易被忽視;某些概念的條件比較多,學生常顧此失彼,不易全面掌握;某些概念與它的鄰近概念相似,不易區別等等。我們還可以舉反例,從反面來加深學生對概念的內涵與外延的理解,培養思維的批判性。
當然,針對概念的特點我們要採用靈活的教學方法。我們應當在對不同概念的教學,在採用不同的教學方法和模式上下工夫。概念教學主要是要完成概念的形成和概念的同化這兩個環節。新知識的概念是學生初次接觸或較難理解的,所以在教學時應先列舉大量具體的例子,從學生實際經驗的肯定例證中,歸納出這一類事物的特徵,並與已有的概念加以區別和聯系,形成對這一特性的一種陳述性的定義,這就是形成一種概念的過程。在這一過程中同時要做到與學生認知結構中原有概念相互聯系、作用,從而領會新概念的本質屬性,獲得新概念,這就是概念的同化。在進行數學概念教學時,最能有效促進學生思維能力的主要是對實例的歸納及辨析。通過對實例的歸納和辨析對新問題的特性形成陳述性的理解,繼而與原有的知識結構相互聯系,完成概念教學的兩個環節。

Ⅶ 小學數學概念教學需要注意什麼

小學數學概念教學需要注意:要讓學生徹底理解概念,需要多舉例子分析說明,並配合相應的練習讓學生理解這個概念。

Ⅷ 小學數學概念的小學數學概念教學注意問題

1、把握概念教學的目標,處理好概念教學的發展性與階段性之間的矛盾。
概念本身有自己嚴密的邏輯體系。在一定條件下,一個概念的內涵和外延是固定不變的,這是概念的確定性。由於客觀事物的不斷發展和變化,同時也由於人們認識的不斷深化,因此,作為人們反映客觀事物本質屬性的概念,也是在不斷發展和變化的。但是,在小學階段的概念教學,考慮到小學生的接受能力,往往是分階段進行的。如對「數」這個概念來說,在不同的階段有不同的要求。開始只是認識1、2、3、……,以後逐漸認識了零,隨著學生年齡的增大,又引進了分數(小數),以後又逐漸引進正、負數,有理數和無理數,把數擴充到實數、復數的范圍等。又如,對「0」的認識,開始時只知道它表示沒有,然後知道又可以表示該數位上一個單位也沒有,還知道「0」可以表示界限等。
因此,數學概念的系統性和發展性與概念教學的階段性成了教學中需要解決的一對矛盾。解決這一矛盾的關鍵是要切實把握概念教學的階段性目標。
為了加強概念教學,教師必須認真鑽研教材,掌握小學數學概念的系統,摸清概念發展的脈絡。概念是逐步發展的,而且諸概念之間是互相聯系的。不同的概念具體要求會有所不同,即使同一概念在不同的學習階段要求也有差別。
有許多概念的含義是逐步發展的,一般先用描述方法給出,以後再下定義。例如,對分數意義理解的三次飛躍。第一次是在學習小數以前,就讓學生初步認識了分數,「像上面講的、、、、、等,都是分數。」通過大量感性直觀的認識,結合具體事物描述什麼樣的是分數,初步理解分數是平均分得到的,理解誰是誰的幾分之幾。第二次飛躍是由具體到抽象,把單位「1」平均分成若干份,表示其中的一份或幾份都可以用分數來表示。從具體事物中抽象出來。然後概括分數的定義,這只是描述性地給出了分數的概念。這是感性的飛躍。第三次飛躍是對單位「1」的理解與擴展,單位「1」不僅可以表示一個物體、一個圖形、一個計量單位,還可以是一個群體等,最後抽象出,分誰,誰就是單位「1」,這樣單位「1」與自然數「1」的區別就更加明確了。這樣三個層次不是一蹴而就的,要展現知識的發展過程,引導學生在知識的發生發展過程中去理解分數。
再如長方體和立方體的認識在許多教材中是分成兩個階段進行教學的。在低年級,先出現長方體和立方體的初步認識,通過讓學生觀察一些實物及實物圖,如裝墨水瓶的紙盒、魔方等。積累一些有關長方體和立方體的感性認識,知道它們各是什麼形狀,知道這些形狀的名稱。然後,通過操作、觀察,了解長方體和立方體各有幾個面,每個面是什麼形狀,進一步加深對長方體和立方體的感性認識。再從實物中抽象出長方體和立方體的圖形(並非透視圖)。但這一階段的教學要求只要學生知道長方體和立方體的名稱,能夠辨認和區分這些形狀即可。僅僅停留在感性認識的層次上。第二階段是在較高年級。教學時仍要從實例引入。教學長方體的認識時,先讓學生收集長方體的物體,教師先說明什麼是長方體的面、棱和頂點,讓學生數一數面、棱和頂點各自的數目,量一量棱的長度,算一算各個面的大小,比較上下、左右、前後棱和面的關系和區別。然後歸納出長方體的特徵。再從長方體的實例中抽象出長方體的幾何圖形。進而可以讓學生對照實物,觀察圖形,弄清楚不改變觀察方向,最多可以看到幾個面和幾條棱。哪些是看不見的,圖中是怎樣來表示的。還可以讓學生想一想,看一看,逐步看懂長方體的幾何圖形,形成正確的表象。
在把握階段性目標時,應注意以下幾點:
(1)在每一個教學階段,概念都應該是確定的,這樣才不致於造成概念混亂的現象。有些概念不嚴格下定義,但也要依據學生的接受能力,或者用描述代替定義,或者用比較通俗易懂的語言揭示概念的本質特徵。同時注意與將來的嚴格定義不矛盾。
(2)當一個教學階段完成以後,應根據具體情況,酌情指出概念是發展的,不斷變化的。如:有一位學生在認識了長方體之後,認為課本中的任何一張紙的形狀也是長方體的。說明該學生對長方體的概念有了更進一步的理解,教師應加以肯定。
(3)當概念發展後,教師不但指出原來概念與發展後概念的聯系與區別,以便學生掌握,而且還應引導學生對有關概念進行研究,注意其發展變化。如「倍」的概念,在整數范圍內,通常所指的是,如果把甲量當作1份,而乙量有這樣的幾份,那麼乙量就是甲量的幾倍。在引入分數以後,「倍」的概念發展了,發展後的「倍」的概念,就包含了原來的「倍」的概念。如果把甲量當作l份,乙量也可以是甲量的幾分之幾。
因此,在數學概念教學中,要搞清概念之間的順序,了解概念之間的內在聯系。數學概念隨著客觀事物本身的發展變化和研究的深入不斷地發展演變。學生對數學概念的認識,也需要隨著數學學習的程度的提高,由淺入深,逐步深化。教學時既要注意教學的階段性,不能把後面的要求提到前面,超越學生的認識能力;又要注意教學的連續性,教前面的概念要留有餘地,為後繼教學打下埋伏。從而處理好掌握概念的階段性與連續性的關系。
2、加強直觀教學,處理好具體與抽象的矛盾
盡管教材中大部分概念沒有下嚴格的定義,而是從學生所了解的實際事例或已有的知識經驗出發,盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對於不容易理解的概念就暫不給出定義或者採用分階段逐步滲透的辦法來解決。但對於小學生來說,數學概念還是抽象的。他們形成數學概念,一般都要求有相應的感性經驗為基礎,而且要經歷一番把感性材料在腦子里來回往復,從模糊到逐漸分明,從許多有一定聯系的材料中,通過自己操作、思維活動逐步建立起事物一般的表象,分出事物的主要的本質特徵或屬性,這是形成概念的基礎。因此,在教學中,必須加強直觀,以解決數學概念的抽象性與學生思維形象性之間的矛盾。
(1)通過演示、操作進行具體與抽象的轉化
教學中,對於一些相對抽象的內容,盡可能地利用恰當的演示或操作使其轉化為具體內容,然後在此基礎上抽象出概念的本質屬性。
幾何初步知識,無論是線、面、體的概念還是圖形特徵、性質的概念都非常抽象,因此,教學中更要加強演示、操作,通過讓學生量一量、摸一摸、擺一擺、拼一拼來讓學生體會這些概念,從而抽象出這些概念。
例如「圓周率」這一概念非常抽象,有的教師在課前,布置每個學生用硬紙製做一個圓,半徑自定。上課時,就讓每個學生在課堂作業本上寫出三個內容:(1)寫出自己做的圓的直徑;(2)滾動自己的圓,量出圓滾動一周的長度,寫在練習本上;(3)計算圓的周長是直徑的幾倍。全班同學做完後,要求每個同學匯報自己計算的結果,並把結果整理成下表。
圓直徑(厘米)圓的周長(厘米)周長是直徑的幾倍
A26.23.1
B39.63.2
C412.63.15
D515.73.14
然後引導學生分析發現:不管圓的大小,它的周長總是直徑的3倍多一點。這時再揭示:這個倍數是個固定的數,數學上叫做圓周率。再讓學生任意畫一個圓,量出直徑和周長加以驗證。這樣,引導學生把大量的感性材料,加以分析、綜合、抽象、概括,拋棄事物的非本質屬性(如圓的大小、測量時用的單位等),抓住事物的本質特徵(圓的周長總是直徑的3倍多一點),形成了概念。
這樣教師藉助於直觀教學,運用學生原有的一些基礎知識,逐步抽象,環環緊扣,層次清楚。通過實物演示,使學生建立表象,從而解決了數學知識的抽象性與兒童思維的形象性的矛盾。
(2)結合學生的生活實際進行具體與抽象的轉化
教學中有許多數量關系都是從具體生活內容中抽象出來的,因此,在教學中應該充分利用學生的生活實際,運用恰當的方式進行具體與抽象的轉化,即把抽象的內容轉化為學生的具體生活知識,在此基礎上又將其生活知識抽象為教學內容。
例如乘法交換律的教學,往往讓學生先解答這樣的習題:一種鋼筆,每盒10支,每支3元,買2盒鋼筆要多少元?學生在實際解答中發現,這道題可以有兩種解答思路,一種是先求出「每盒多少元」,再求出「2盒要多少元」,算式是(3×10)×2=60元;另一種是先求出「一共有多少支鋼筆」,再求出「2盒多少元」,算式是3×(2×10)=60元。乘法分配律的教學也是讓學生解答類似的問題,如:一件上衣50元,一條褲子30元,買這樣的5套衣服需要多少元?這樣藉助於學生熟悉的生活情景,使抽象的問題變得具體化。
同樣常見數量關系中的單價、總價與數量之間的關系;路程、速度與時間的關系,工作量、工作效率與工作時間之間的關系等,都應結合學生的生活經驗,通過具體的題目將其抽象出來,然後又利用這些關系來分析解決問題。這樣的訓練有利於使學生的思維逐漸向抽象思維過渡,逐步緩解知識的抽象性與學生思維的具體形象性的矛盾。
但是,運用直觀並不是目的,它只是引起學生積極思維的一種手段。因此概念教學不能只停留在感性認識上,在學生獲得豐富的感性認識後,要對所觀察的事物進行抽象概括,揭示概念的本質屬性,使認識產生飛躍,從感性上升到理性,形成概念。
3、遵循小學生學習概念的特點,組織合理有序的教學過程
盡管小學生獲取概念有概念形成和概念同化這兩種基本形式,各類概念的形成又有各自的特點,但不管以何種方式獲得概念,一般都會遵循從「引入一理解一鞏固一深化」這樣的概念形成路徑。下面就概念教學中每個環節的教學策略及應注意的問題作一闡述。
(1)概念的引入要注重提供豐富而典型的感性材料
在概念引入的過程中,要注意使學生建立起清晰的表象。因為建立能突出事物共性的、清晰的典型表象是形成概念的重要基礎,因此,在小學數學的概念教學中,無論以什麼方式引入概念,都應考慮如何使小學生在頭腦中建立起清晰的表象。概念教學一開始,應根據教學內容運用直觀手段向學生提供豐富而典型的感性材料,如採用實物、模型、掛圖,或進行演示,引導學生觀察,並結合實驗,讓學生自己動手操作,以便讓學生接觸有關的對象,豐富自己的感性認識。
如在一節教學分數的意義的課上,一位教師為了突破單位「l」這一教學難點,事先向學生提供了各種操作材料:一根繩子,4隻蘋果圖,6隻熊貓圖,一張長方形紙,l米長的線段等,通過比較、歸納出:一個物體、一個計量單位、一個整體都可以用單位「1」表示,從而突破理解單位「1」這一難點,為理解分數的意義奠定了基礎。
但概念引入時所提供的材料要注意三點:一是所選材料要確切。例如角的認識,小學里講的角是平面角,可以讓學生觀察黑板、書面等平面上的角。有的教師讓學生觀察教室相鄰兩堵牆所夾的角,那是兩面角,對於小學教學要求來說,就不確切了。二是所選材料要突出所授知識的本質特徵。例如直角三角形的本質特徵是「有一個角是直角的三角形」,至於這個直角是三角形中的哪一個角,直角三角形的大小、形狀,則是非本質的。因此教學時應出示不同的圖形,使學生在不同的圖形中辨認其不變的本質屬性。
(2)概念的理解要注重正反例證的辨析,突出概念的本質屬性
概念的理解是概念教學的中心環節,教師要採取一切手段幫助學生逐步理解概念的內涵和外延,以便讓學生在理解的基礎上掌握概念。促進對概念理解的途徑有:
1)剖析概念中關鍵詞語的真實含義
例如,分數定義中的單位「1」、「平均分」、「表示這樣的一份或幾份的數」,學生只有對這些關鍵詞語的真實含義弄清楚了,才會對分數的概念有了深刻的理解。再如教學「整除」概念之後應幫助學生從以下三方面進行判斷,一是判斷是否具有「整除」關系的兩個數都必須是自然數;二是這兩個數相除所得的商是整數;三是沒有餘數。對定義的分析是幫助學生認識概念的又一次提高。三角形的高的定義:「從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條邊叫做三角形的底。」這里的「一個頂點」、「垂線」、「垂足」都是一些關鍵詞語。為了讓學生理解三角形的高,除了讓學生理解字面意思外,往往還需要學生通過實際操作,體會畫「高」的全過程。指出畫「高」的關鍵是畫垂線,並注意限制條件:「過三角形的一個頂點(可以是任何一個頂點),作到它對邊的垂線,頂點和垂足之間的線段」。這樣把實際操作的過程和所畫的三角形高的圖形與定義所敘述的內容對照,使學生准確地理解三角形的高的定義。這實際上是在數學概念建立後,幫助學生對本質屬性進行剖析,既將本質屬性再次從定義中分離出來,加以明確。
2)辨析概念的肯定例證和否定例證
學生能背誦概念並不等於真正理解概念,還要通過實例突出概念的主要特徵,幫助他們加深對概念的理解。教師不僅要充分運用肯定例證來幫助學生理解概念的內涵,同時要及時運用否定例證來促進學生對概念的辨析。在概念揭示後往往要針對教學要求組織學生進行一些練習,如教完三角形按角分類後,可以出示:一個三角形不是直角三角形,並且有兩個角是銳角,這個三角形一定是銳角三角形。讓學生進行判斷,引起學生討論來鞏固三角形的分類,以深化對三角形這一概念的外延的進一步認識。再如,小數的性質揭示後,可以讓學生判斷0.40、0.030、20.020、2.800、10.404、5.0000各數,哪些「0」可以去掉,哪些「0」不能去掉?從而加深學生對小數性質的理解。
3)變換本質屬性的敘述或表達方式
小學生理解和掌握概念的特點之一往往是:對某一概念的內涵不很清楚,也不全面,把非本質的特徵作為本質的特徵。例如,有的學生誤認為,只有水平放置的長方形才叫長方形,如果斜著放就辨認不出來。為此,往往需要變換概念的敘述或表達方式,讓學生從各個側面來理解概念。旨在從變式中把握概念的本質屬性,排除非本質屬性的干擾。因為事物的本質屬性可以運用不同的語言來表達,如果學生對各種不同的敘述和表達都能理解和掌握,就說明學生對概念的理解是透徹的,是靈活的,不是死記硬背的。
4)對近似的概念及時加以對比辨析
在小學數學中,有些概念其含義接近,但本質屬性又有區別。如數與數字,數位與位數,奇數與質數,偶數與合數,化簡比與求比值,時間與時刻,質數、質因數與互質數,周長與面積,等等。對這類概念,學生常常容易混淆,必須及時把它們加以比較,以避免互相干擾。
如學習了「整除」,為了和以前學的「除盡」加以比較,可以設計這樣的練習題:下列等式中,哪些是整除,哪些是除盡?
(1)8÷2=4(2)48÷8=6
(3)30÷7=4……2(4)8÷5=1.6
(5)6÷0.2=30(6)1.8÷3=0.6
引導學生通過分析、比較,從而得出:第(3)題是有餘數的除法,當然不能說被除數被除數整除或除盡,其他各題當然能說被除數被除數除盡了。其中只有第(1)、(2)題,被除數、除數和商都是自然數,而且沒有餘數,這兩題既可以說被除數被除數除盡,又能說被除數被除數整除。從上面的分析中,讓學生明白:整除是除盡的一種特殊情況,除盡包括了整除和一切商是有限小數的情況。
學習了比之後,可以用列表法設計比與除法、分數之間的聯系的習題,從中明確「除法是一種運算,分數是一個數,比是一個關系式」的區別。
3)重視概念的運用,發揮概念的作用
正確、靈活地運用概念,就是要求學生能夠正確、靈活地運用概念組成判斷,進行推理、計算、作圖等,能運用概念分析和解決實際問題。理解概念的目的在於運用,運用的途徑有:
1)自舉實例
這是要求學生把已經初步獲得的概念簡單運用於實際,通過實例來說明概念,加深對概念的理解。有經驗的教師,根據小學生對概念的認識通常帶有具體性的特點,在學生通過分析、綜合、抽象、概括出概念後,總是讓他們自舉例證,把概念具體化。從具體到抽象又回到具體,符合小學生的認識規律,使學生更准確把握概念的內涵和外延。
例如在學生初步獲得了真分數、假分數的概念後,就可以讓學生分別舉一些真分數和假分數的實例;知道了圓柱的特徵後,讓學生說說日常生活中有哪些物品的形狀是圓柱形的。
2)運用於計算、作圖等
例如,如學了乘法的運算定律後,就可以讓學生簡便計算下面各題。
104×2548×25101×35×2
14×99+1425×32146+9×146
(80+8)×258×(125+50)34×5×2
在掌握分數的基本性質後,就要求學生能熟練地進行通分、約分,並說明通分、約分的依據。學習了小數的性質後,就可以讓學生把小數按要求進行化簡或改寫;學習了等腰三角形,可設計一組操作題;畫一個等腰三角形;畫一個頂角60度的等腰三角形;畫一個腰長為2厘米的等腰直角三角形。
3)運用於生活實踐
數學概念來源於生活,就必然要回到生活實際中去。教師引導學生運用概念去解決數學問題,是培養學生思維,發展各種數學能力的過程。並且,也只有讓學生把所學習到的數學概念,拿到生活實際中去運用,才會使學到的概念鞏固下來,進而提高學生對數學概念的運用技能。為此,教師在教學中應當根據教材內容和學生實際,在掌握小學數學教材邏輯系統的基礎上,有意識地深化和發展學生的數學概念。
例如在學習圓的面積後,一位教師就設計了這樣的問題:「我們已經學習了圓面積公式,誰能想辦法算一算,學校操場上白楊樹樹乾的橫截面面積?」同學們就討論開了,有的說,算圓面積一定要先知道半徑,只有把樹砍下來才能量出半徑;有的不贊成這樣做,認為樹一砍下來就會死掉。這時教師進一步引導說:「那麼能不能想出不砍樹就能算出橫截面面積的辦法來呢?大家再討論一下。」學生們渴望得到正確的答案,通過積極思考和爭論,終於找到了好辦法,即先量出樹乾的周長,再算出半徑,然後應用面積公式算出大樹橫截面面積。課後許多學生還到操場上實際測量了樹乾的周長,算出了橫截面面積。再如,在教學正比例應用題時,可以啟發學生運用旗桿高度與影長的關系,巧妙地算出了旗桿的高度。這樣通過創設有效的教學情景,教師適時點撥,不但啟迪了學生的思維,而且培養了學生學以致用的興趣和能力,也加深了對所學概念的理解。
(4)注重概念之間的比較分類,深化概念
小學數學知識的特點是系統性強,前後聯系密切,但是由於小學生思維發展水平和接受能力的限制,有些知識的教學往往是分幾節課或幾個學期來完成,這樣難免在不同程度上削弱知識間的聯系。對一些有聯系的概念或法則,在一定階段應進行系統的整理,使學生在頭腦中建立起知識的網路,形成良好的認知結構。尤其是中高年級,可以引導學生將概念進行分類,明確概念間的聯系和區別,以形成概念系統。

Ⅸ 試論小學數學教學中應注意哪些問題

小學數學是義務教育的一門重要學科,如何教好這門學科呢?筆者認為,應該首先注意以下幾個問題:
一、培養學生認真思考的習慣
托爾曼S—O—R理論告訴我們,在知識的輸入(S)到知識的輸出及能力的轉化(R)的鏈條上,大腦(O)是關鍵的「中介」變數。沒有思考,就不能輸出新知識,也就不可能使知識轉化為能力。因此,在數學教學中,要通過操作、觀察、引導學生進行比較、分析、綜合,在感性材料的基礎上加以抽象、概括,進行簡單的判斷、推理。對於與舊知識聯系緊密的新知識,可以啟發學生在已有的知識基礎上推導出來。提出自己的獨立見解,逐步培養學生認真思考的習慣。
二、教給學生的學習方法
古語曰:「授以魚,不如授人以漁」,德國教育學家第斯多惠說:「教育就是引導」,「它不是奉送真理,而是教人去發現真理」。布魯姆掌握學習策略也指出:「學會如何學習比學會什麼更重要」。數學教學中教師時刻不忘教給學生的學習方法,重視對學生的學法指導。比如:教給學生如何記憶、如何預習、如何分析應用題的數量關系等方法。
三、貫徹「啟發式」教學原則
教與學是師生的雙邊活動,教師在教學中能否充分調動學生思維的積極是教學能否成功的關鍵。孔子強調啟發應從學生的學習心態出發,主張「不憤不啟,不悱不發,舉一隅而不能三隅反,則不復也」。朱熹認為「憤者心求通而未得之意」;「悱者,口欲言而未能之貌」,在關鍵時刻「開其意」,使學生開竅,在學生考慮總是到了成熟的地步又苦於無法表達的關頭,誘其達「其辭」,給以恰當點撥,學生就會茅塞頓開,豁然貫通,可見,只有在學生處於憤悱心理狀態時,啟發誘發最有利於調動學生思維活動的積極性。
在數學教學中教師啟發誘導的核心是啟發誘導學生的思維,培養其分析問題、解決問題的能力。
四、精心創設問題情境
心理學研究表明:有疑易引起學生定向的探究反射,其思維活動也應運而生。因此,數學教師應精心設計有趣的問題情境,促進學積極動腦思維。例如,一們教師在上加法結合律時說:「教學家高斯小時候,教師在黑板上出了這樣一道題:許多同學算了很久,都沒能算出來,而高斯一下子就算出來了,你們知道高斯是怎樣算了嗎?今天學了加法結合律後,大家就知道了」這節課學生都沉浸在教師創設的問題情境之中,思維活動十分活躍。
五、重視學生動手能力的培養
實踐活動是思維的基礎。根據小學生好動的特點,一是要充分利用和創造條件,引導學生通過對物體、模型的觀察、測量、拼擺、畫圖、製作、實驗等活動,掌握基本的數學知識;二是要精心設計數學活動課,寓教於樂;三是要開展好數學課外活動,課外活動要形式多樣、生動活潑,這樣學生的思維和創新能力才能得到很好地發展。
六、注重學生非智力因素的培養
學生在掌握知識的過程中,其智力因素與非智力因素是協調作用的,二者之間密切配合,互相促進,在數學教學中要把培養學生的智力因素與非智力因素有機地統一於教學過程中,非智力因素包括的內容很多,但重要的是以下兩點:
(一)興趣要作為非智力因素培養的重要。「興趣是我們力求認識某種事物或愛好某種活動的傾向,這種傾向是和一定的情感聯系著的」。一個人如果對某事發生了濃厚興趣,他一定會不畏艱難、鍥而不舍地去追求,去達到目標。因此,有人說:「興趣是最好的老師」。在教學中,教師要運用恰當的教法和手段激發和培養學生學習數學的興趣。
(二)情感因素對達成教學目標,教養學生良好的心理素質所產生的積極效果應予以高度重視。教學中,教師要充分調動教學內容和教學過程中的各種情感因素,傾注師愛,<蓮 山~課件 >與學生共同創設情感交融的教學的氛圍,這樣不但可以減輕學生對學習的心理壓力,而且會使學生的思維積極活躍,智力活動的水平大大提高,從而提高課堂教學效益。
教好小學數學並非易事,但只要教師在教學中遵循教學規律,認真研究以上幾個問題,逐步形成自己獨特的教學風格,教好小學數學也是辦得到的。

閱讀全文

與小學數學概念教學中應注意的問題相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99