① 小學數學中哪些是基本的數學思想
小學數學中常見的數學思想方法有:
轉化思想、集合思想、數形結合思想、函數思想、符號化思想、對應思想、分類思想、歸納思想、模型思想、統計思想等。
② 小學數學教學中的思想有哪些
集合思想,函數思想,符號化思想,極限思想,化歸思想,組合思想,假設思想,變換思想
③ 小學數學里有哪些基本的數學思想方法
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
④ 小學數學思想方法有哪些
具體有:小學階段最常用的化歸的思想方法。利用化歸法轉化而得到的新問題與原問題相比較,為已解決的或較容易解決的。所以,化歸的方向應該是化隱為顯,化繁為簡、化難為易和化未知為已知。應當指出,化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。這種化歸思想不同於一般所講的「轉化」、「轉換」。應該就這些吧。
⑤ 小學數學課程標准中所說的基本思想指的是哪些
《數學課程標准》中所說的「數學的基本思想」主要指:
數學(抽象)的思想、數學(推理)的思想、數學建模的思想。
學生在積極參與教學活動的過程中,通過獨立思考、合作交流,逐步感悟數學思想。
總體目標
通過義務教育階段的數學學習,學生能:
1. 獲得適應社會生活和進一步發展所必需的數學的基礎知識、基本技能、基本思想、基本活動經驗。
2. 體會數學知識之間、數學與其他學科之間、數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現和提出問題的能力、分析和解決問題的能力。
3. 了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
小學數學新課程標準的特點:
數與代數現行大綱這部分內容主要側重有關數、代數式、方程、函數的運算,《標准》對此作了較大地改革:
1.重視數與符號意義以及對數的感受,體會數字用來表示和交流的作用。通過探索豐富的問題情景發展運算的含義,在保持基本筆算訓練的前提下,強調能夠根據題目條件尋求合理、簡捷的運算途徑和運算方法,加強估算,引進計算器,鼓勵演算法多樣化。
2.對於應用問題:選材強調現實性、趣味性和可探索性;題材呈現形式多樣化(表格、圖形、漫畫、對話、文字等);強調對信息材料的選擇與判斷(信息多餘、信息不足);解決的策略多樣化;問題答案可以不唯一;淡化人為編制的應用題類型及其解題分析。
3.使學生初步體會數學可以發現、描述、分析客觀世界中多種多樣的模式,把握事物的變化和事物間的關系;初步發展學生的符號意識,學會用符號表達現實問題中的一些基本關系,會初步進行符號運算。
4.體會方程和函數是刻劃現實世界,有效地表示、處理、交流和傳遞信息的強有力工具,是探究事物好發展規律,預測事物發展的重要手段,重視對簡單現實頭問題的建模過程,學會選擇有效的符號運算程序和方法解決問題,重視近似解法特別是圖象解法。
⑥ 小學數學思想有哪些
「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的,通過歸納來預測結果,然後通過演繹來驗證結果。在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。每一個具體的方法可能是重要的,但它們是個案,不具有一般性。作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。這里所說的思想,是大的思想,是希望學生領會之後能夠終生受益的那種思想方法。
⑦ 小學數學思想方法的意義
個人覺得:「數學是思維的體操」,數學思想對思維品質的提升舉足輕重,我們說數學是一種思維工具,實質上就是指它的思想。
從思維科學論的角度看,數學教學過程實際上是數學思維活動的過程,在這一過程中,學生在教師的啟發引導下,圍繞數學問題展開數學思維,學生的思維活動主要體現在數學思想方法的領悟上,進而獲取數學知識、培養數學能力。從學生發展的角度說,數學是促進學生思維發展的重要途經。數學思想方法的學習過程,就是培養數學思維品質、提高自身數學素養的重要過程,數學思想的教學是提高數學思維能力的核心環節,是培養學生數學意識,形成優良思維品質的關鍵。事實表明,數學上的發現、發明主要是方法上的創新,在數學教學中,不能滿足於單純的知識灌輸,而是要再現數學的發現過程,揭示蘊含於知識中的數學思想方法,只有讓學生通過深入體會、思考,才能領悟到其中的奧妙,發展學生的思維能力,促進良好思維素質的形成。
實踐表明:小學數學教育的現代化,主要不是內容的現代化,而是數學思想及教育手段的現代化,加強數學思想的教學是基礎數學教育現代化的關鍵。特別是對能力培養這一問題的探討與摸索,以及社會對數學價值的要求,使我們更進一步地認識到數學思想的重要性,掌握科學的數學思想方法對數學學科的後續學習,對提升學生的思維品質,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。因此,小學教學的教學過程中,數學思想的滲透是至關重要的。
哲學角度的理解。從數學哲學的角度講,數學科學中最有生命力統攝力的是數學觀和數學方法論,即數學思想方法;從數學教育哲學的角度講,決定一生數學修養的高低,最為重要的標志是看他能否用數學的思想方法去解決數學問題以至日常生活問題。
數學課程標准》的期待。《數學課程標准》(新稿)不僅把「數學思考」作為總體目標之一提出,同時,還將「雙基」擴展為「四基」,即基礎知識、基本技能、基本數學思想、基本活動經驗。由此可見,數學思想方法教學變得越來越重要
數學教育專家的觀點。日本數學家米山國藏指出:「無論是對於科學工作者、技術人員,還是數學教育工作者,最重要的就是數學的精神、思想和方法,而數學知識只是第二位」。
希望能幫到你
⑧ 小學數學思想有哪些最好舉例說明!
轉化思想:典型的是平行四邊形的面積等轉化為已學過的長方形的面積,一些平面圖形和立體圖形的面積或體積的轉換。
代數思想:用字母表示數和方程
⑨ 小學數學思想方法有哪些內容
小學數學思想方法有哪些? 1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。 2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。 3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。 4、符號化思想方法 用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。