A. 小學數學經典題目
五年級的。
五個數的平均數是8,把其中一個數改為6後,這五個數的平均數是16,這個改動的數原來是多少?
要答案么?
B. 小學經典數學題:
轉化成幾何問題就是:一筆畫問題
判斷一幅圖能否一筆畫的最好方法是找內奇、偶點,就是看容這幅圖的點是由多少條線段組成,根據線段的數的奇或偶來決定奇點或偶點,而能夠一筆畫的圖形只有0個或2個奇點,要是0個奇點就從任意點出發再結束都可以,而是2個奇點的就要從一個奇點出發,再從另一個奇點結束。
本題奇數點超2個(全部是奇數點)故不能不重復、不遺漏的一次走完七座橋,最後回到起點。
C. 小學數學典型應用題
存款2980元,甲取出380元,乙存入700元,存款3300元,
丙若不取出自己存款的1/3,這時回三人存款的比是答5:3:3
則三人現在的存款分別是
2980-380+700=3300
甲:3300×5/(5+3+3)=1500
乙:3300×3/(5+3+3)=900
丙:3300×3/(5+3+3)×(1/1/3)
=900×2/3
=600
D. 小學數學經典智力題
1、有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?
2、一個經理有三個女兒,三個女兒的年齡加起來等於13,三個女兒的年齡乘起來等於經理自己的年齡,有一個下屬已知道經理的年齡,但仍不能確定經理三個女兒的年齡,這時經理說只有一個女兒的頭發是黑的,然後這個下屬就知道了經理三個女兒的年齡。請問三個女兒的年齡分別是多少?為什麼?
3、有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30,第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人,誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元,於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29。可是當初他們三個人一共付出$30那麼還有$1呢?
4、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同, 而每對襪了都有一張商標紙連著。兩位盲人不小心將八對襪了混在一起。他們每人怎樣才能取回黑襪和白襪各兩對呢?
5、有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯。如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?
6、你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?
7、你有四個裝葯丸的罐子,每個葯丸都有一定的重量,被污染的葯丸是沒被污染的重量+1.只稱量一次,如何判斷哪個罐子的葯被污染了?
8、你有一桶果凍,其中有黃色,綠色,紅色三種,閉上眼睛,抓取兩個同種顏色的果凍。抓取多少個就可以確定你肯定有兩個同一顏色的果凍?
9、對一批編號為1~100,全部開關朝上(開)的燈進行以下*作:凡是1的倍數反方向撥一次開關;2的倍數反方向又撥一次開關;3的倍數反方向又撥一次開關……問:最後為關熄狀態的燈的編號。
10、想像你在鏡子前,請問,為什麼鏡子中的影像可以顛倒左右,卻不能顛倒上下?
11、一群人開舞會,每人頭上都戴著一頂帽子。帽子只有黑白兩種,黑的至少有一頂。每個人都能看到其它人帽子的顏色,卻看不到自己的。主持人先讓大家看看別人頭上戴的是什幺帽子,然後關燈,如果有人認為自己戴的是黑帽子,就打自己一個耳光。第一次關燈,沒有聲音。於是再開燈,大家再看一遍,關燈時仍然鴉雀無聲。一直到第三次關燈,才有劈劈啪啪打耳光的聲音響起。問有多少人戴著黑帽子?
12、兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?
13、1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
14。 假設有一輛車,它的油箱恰好和一個油桶一樣大,而且車上恰好可以
運載一個桶。假設一桶油可以讓車開一百公里。現在在起點,車裝滿
了油,另外起點還有100桶油。問,這車最遠能離開起點多遠?
15。有三個囚徒,將要被執行死刑,現在給他們一次赦免的機會。
10分鍾後,他們將被帶往三個互相隔離的房間,由獄警丟硬幣決定給他們戴上紅色或藍色的帽子。囚徒互相之間不能通信息,但可以看到其他囚徒頭上帽子的顏色。
現在囚徒要猜自己頭上帽子的顏色,只能猜一次,每個囚徒都必須在10秒鍾之內說「紅」、「藍」或「過」。
(1)如果任何一個囚徒違反規則,三個囚徒都將被砍頭;
(2)如果三個囚徒都說「過」,也是全體砍頭;
(3)如果任何一個囚徒說錯了自己頭上帽子的顏色,也是全體砍頭;
(4)不然的話,就全體釋放。
現在這三個囚徒有10分鍾的時間可以商量,要採取什麼措施,使得獲釋的機會最大。
提示:如果三個囚徒都胡亂猜測的話,則成功的機會為1/8;如果兩個囚徒都說「過」,而第三個囚徒胡亂猜測的話,成功的機會為1/2。
還有更好的方案嗎?
16。四隻烏龜在邊長為3米的正方形四個角上,以每秒1厘米的速度同時勻速爬行,每隻烏龜爬行的方向都是追擊(注意:是追擊)其右鄰角上的烏龜,問經過多少時間他們才能在正方形的中心碰頭?
17。有2000方格排成一排,兩個玩家輪流在方格里寫S或O,誰先在連續的三個方格里寫出SOS,誰就獲勝;如果都寫不出來就算平局。請證明:後寫的人有勝算。
18。這是簡單明快的一道題,主要證明了三角形兩邊之和=第三邊。你能找出其中的錯誤嗎?
19。盧姆教授說:「有一次我目擊了兩只山羊的一場殊死決斗,結果引出了一個有趣的數學問題。我的一位鄰居有一隻山羊,重54磅,它已有好幾個季度在附近山區稱王稱霸。後來某個好事之徒引進了一隻新的山羊,比它還要重出3磅。 開始時,它們相安無事,彼此和諧相處。可是有一天,較輕的那隻山羊站在陡峭的山路頂上,向它的競爭對手猛撲過去,那對手站在土丘上迎接挑戰,而挑戰者顯然擁有居高臨下的優勢。不幸的是,由於猛烈碰撞,兩只山羊都一命嗚呼了。
現在要講一講本題的奇妙之處。對飼養山羊頗有研究,還寫過書的喬治·阿伯克龍比說道:「通過反復實驗,我發現,動量相當於一個自20英尺高處墜落下來的30磅重物的一次撞擊,正好可以打碎山羊的腦殼,致它死命。」如果他說得不錯,那麼這兩只山羊至少要有多大的逼近速度,才能相互撞破腦殼?你能算出來嗎?
E. 小學數學經典例題,我要多一些,越多越好
幾年級的1、已知△和☆分別表示兩個自然數,並且 五分之△ + 十一分之☆ = 五十五分之三十七,△+☆=_____________
2、箱子里有乒乓球若干個,其中25%是一級品,五分之幾是二級品,其餘91個是三級品,那麼,箱子里有乒乓球__________個。
3、某班同學分成若干個小組去植樹,若每組植樹n課,且n為質數,則剩下樹苗20課;若每組植樹9課,則還缺少2課樹苗。這個班的同學共分成了__________組。
4、不定方程2x+3y+7z=23的自然數解是__________。
5、王老師家的電話號碼是七位數,將前四位數組成的數與後四位數組成的數相加得9063;將前三位組成的數與後四位組成的數相加得2529。王老師家的電話號碼是__________。
6、有三個分子相同的最簡假分數,化成帶分數後為a又三分之二,b又六分之五,c又八分之七。已知a,b,c都小於10,a,b,c依次為__________,__________,__________。
7、全家每個人各喝了一滿碗咖啡加牛奶,並且李明喝了全部牛奶(若干碗)的四分之一和全部咖啡(若干碗)的六分之一。那麼,全家有__________口人。
8、某單位職工到郊外植樹,其中三分之一的職工各帶一個孩子參加,男職工每人種13課樹,女職工每人種10課,每個孩子種6課,他們共種了216棵樹,那麼其中女職工__________人。
9、將一個棱長為整數(單位:分米)的長方體6個面都塗上紅色,然後把它們全部切成棱長為1厘米的小正方體。在這些小正方體中,6個面都沒塗紅色的有12塊,僅有2面塗紅色的有28塊,僅有1面塗紅色的有__________塊。原來長方體的體積是__________立方分米。