1. 小學趣味數學:
這個是調和平均數的意義
2/(1/15+1/20)=120/7(千米)
小剛上、下山的平均速度每時120/7千米
2. 小學趣味數學:
十位4x
個位3x
3x-2=
個位上的數減少2,就和內個位上的數相等??????????
有問題容~
假設應該是個位上的數減少2,就和十位上的數相等
3x-2=4x,得x=-2(假設失敗)
假設應該是十位上的數減少2,就和個位上的數相等
4x-2=3x,得x=2,得這個2位數為86(假設可以成立)
3. 小學趣味數學題
1.四個連續自然數的積是5038,這四個連續自然數分別是( ),( ),( )。
2.一個口袋有紅,黃,藍,三種顏色的小球各10個,要一次摸出相同顏色的小球,一次至少要摸出( )個球。
3.有下面兩組數:
甲組:1、3、5、7、9、11、13、15、17、19
乙組:2、4、6、8、10、12、14、16、18、20
每次分別從甲、乙兩組中各去一個數相加求和,不同的結果有( )個。
4.一個服裝的工人每人每天可以生產4件上衣或7條褲子,一件上衣和一條褲子為一套服裝。現有66名工人生產,每天最多能生產多少套服裝?
問題補充:5、小王有三本集郵冊,全部郵票的五分之一在第一本上,N除以8(N為非零自然數)在第二本上,剩餘的39張在第三本上。小王有多少張郵票?
6.小明看著自己的成績表預測:如果下次數學考試100分,那麼總平均分是91分,如果下次考80分,那麼數學總平均成績是86分,小明數學統計表是已經有幾次考試?
7.一個數乘以三分之四,粗心的小明把三分之四看成了四分之三。正確答案應該是多少?
小李和小王到書店買各同一本書,可是他們帶的錢都不夠,小李差4.5元,小王差0.6元,兩人就決定和買一本,錢剛好夠,這本書多少錢?
1 由於一個10,三個9相乘得7290超過5038,可知,此四個數最大不超過10.
假設這四個數,最大為10,則其餘三個為7,8,9.
此四個數相乘得 7×8×9×10=5040
若這四個數中最大數為9,則其餘三個為6,7,8.
此四個數相乘得 6×7×8×9=3024
由此可知.這四個數應該為7,8,9,10. 相乘結果應為5040
2 一次至少拿4個球,就可以保證有兩個球的顏色相同.
3 甲組的數為 2n-1 ,n為1,2,3,4,5,6,7,8,9,10
乙組的數為 2t, t為1,2,3,4,5,6,7,8,9,10
則甲、乙兩組各取一數相加結果為 2n-1+2t
結果只取決於n+t. 因此只要知道 n+t 有多少個不同結果,就可以知道原題意有多少個不同結果。
(1)當n=1時,t取任意數,則有10個結果;
(2)當n=2時,只有當t=10時,才得到與(1)不同的結果;
(2)當n=3時,只有當t=10時,才得到與(1)、(2)不同的結果;
...........................
(10)當n=10時,只有當t=10時,才得到與(1),(2)......,(10)不同的結果
因此共有 10+1×9=19 個不同結果
4 設x名工人生產上衣,得
4x=7×(66-x)
則x=42
所以一天可以生產 4×42=168 套服裝
6 設有x次考試的成績,現在的平均分為a.則有
(xa+100)/(x+1)=91
(xa+80)/(x+1)=86
兩式相減得20/(x+1)=5
則x=3 a=88
即 現有3次考試的成績
5 設其有x張郵票.得
x/5+N/8+39=x
化簡得 4x/5-N/8=39
由題意知,N為8的陪數,又4x/5為偶數,39為奇數.則N為8的奇數陪數.設N=(2t+1)×8 得4x/5-(2t+1)=39
x=(100+5t)/2
則5t為偶數,再設t=2w,得x=(100+5×2w)/2=50+5w
由此可知,共有50+5w 張郵票, w為0,1,2,3,4,......
此時N=32w+8
7 設被乘數為a,則結果應為4a/3
4. 小學數學趣味題
第一題;總數加1即為2,3,5的倍數也就是30的倍數。那麼我們取1,2,3,4倍試查找7的倍數,得出30的4倍-1為119為7的倍數那麼就是119階。
第二題。不會
5. 小學五年級趣味數學題及答案(30道)
1、有兩根不均勻分布的香,香燒完的時間是一個小時,你能用什麼方法來確定一段15分鍾的時間?
答:把兩根香同時點起來,第一支香兩頭點著,另一支香只燒一頭,等第一支香燒完的同時(這是燒完總長度的3/4),把第二支香另一頭點燃,另一頭從燃起到熄滅的時間就是15分!
2、一個經理有三個女兒,三個女兒的年齡加起來等於13,三個女兒的年齡乘起來等於經理自己的年齡,有一個下屬已知道經理的年齡,但仍不能確定經理三個女兒的年齡,這時經理說只有一個女兒的頭發是黑的,然後這個下屬就知道了經理三個女兒的年齡.請問三個女兒的年齡分別是多少?為什麼?
答:三女的年齡應該是2、2、9.因為只有一個孩子黑頭發,即只有她長大了,其他兩個還是幼年時期即小於3歲,頭發為淡色.再結合經理的年齡應該至少大於25.
3、有三個人去住旅館,住三間房,每一間房$10元,於是他們一共付給老闆$30,第二天,老闆覺得三間房只需要$25元就夠了於是叫小弟退回$5給三位客人,誰知小弟貪心,只退回每人$1,自己偷偷拿了$2,這樣一來便等於那三位客人每人各花了九元,於是三個人一共花了$27,再加上小弟獨吞了不$2,總共是$29.可是當初他們三個人一共付出$30那麼還有$1呢?
答:一共付出的30元包括27元(25元給老闆+小弟貪污2元)和每人退回1元(共3元),拿27和2元相加純屬混淆視聽.
4、有兩位盲人,他們都各自買了兩對黑襪和兩對白襪,八對襪了的布質、大小完全相同,而每對襪了都有一張商標紙連著.兩位盲人不小心將八對襪了混在一起.他們每人怎樣才能取回黑襪和白襪各兩對呢?
答:每對襪子都拆開,每人各拿一支,襪子無左右,最後取回黑襪和白襪各兩對.
5、有一輛火車以每小時15公里的速度離開洛杉磯直奔紐約,另一輛火車以每小時20公里的速度從紐約開往洛杉磯.如果有一隻鳥,以30公里每小時的速度和兩輛火車同時啟動,從洛杉磯出發,碰到另一輛車後返回,依次在兩輛火車來回飛行,直到兩輛火車相遇,請問,這只小鳥飛行了多長距離?
答:把鳥的飛行距離換算成時間計算.設洛杉磯和和紐約之間的距離為a,兩輛火車相遇的時間為a/(15+20)=a/25,鳥的飛行速度為30,則鳥的飛行距離為a/25*30=6/5a.
6、你有兩個罐子,50個紅色彈球,50個藍色彈球,隨機選出一個罐子,隨機選取出一個彈球放入罐子,怎麼給紅色彈球最大的選中機會?在你的計劃中,得到紅球的准確幾率是多少?
答:一個罐子放一個紅球,另一個罐子放49個紅球和50個藍球,概率接近75%.
這是所能達到的最大概率了.
實際上,只要一個罐子放1.對於每個戴黑的人來說,他能看見N-1頂黑帽 ,並由此假定自己為 白.但等待N-1次還沒有人打自己以後,每個戴黑人都能知道自己也是黑的了.所以第N次關燈就有N個人打自己.
12、兩個圓環,半徑分別是1和2,小圓在大圓內部繞大圓圓周一周,問小圓自身轉了幾周?如果在大圓的外部,小圓自身轉幾周呢?
答:無論內外,小圓轉兩圈.小圓、大圓經歷的距離相等.
13、1元錢一瓶汽水,喝完後兩個空瓶換一瓶汽水,問:你有20元錢,最多可以喝到幾瓶汽水?
答:39瓶,從第2瓶開始,相當於1元買2瓶.
6. 小學趣味數學故事
高斯念小學的時候,有一次在老師教完加法後,因為老師想要休息,所以便出了一道題目要同學們算算看,題目是:
1+2+3+ ..... +97+98+99+100 = ?
老師心裡正想,這下子小朋友一定要算到下課了吧!正要借口出去時,卻被 高斯叫住了!! 原來呀,高斯已經算出來了,你可知道他是如何算的嗎?
7. 小學趣味數學。
假設來牛每天吃一份草
27頭自6天吃
162
份草
23頭9天吃
207
份草
9-6=3
天內草多長了
207-162=45份
草的長速為平均每天
45/3
=
15份
9天內草長了15*9
=
135
份
所以原來的草場為
207
-
135
=
72
份草
如果有
21
頭牛,
每天吃21份草,
而草場每天就長15份草,
所以牛每天吃掉多長出來的草15份和原草場的6份草.
原草場的72份草需要
72/6=12天吃光
8. 小學趣味數學活動有哪些
小學趣味數學活動有哪些
數學家常說數學十分有趣,可是對於尚未入數學版大門的 人而言權,實在很難體會艱深數學中蘊含的趣味。對初學者來 說,先從與數學有關的游戲中領略一番其中的奧妙,體驗一 下其中的樂趣,倒不失為邁進數學大門的一種手段。
學習數學的最好辦法是做數學,玩數學游戲,重在參與,尤 其重在操作。 在參與和操作的過程中, 才能領會到它的意義。 為了更好地揭示數學游戲中的趣味,除了必要的操作,更要 去思索去創造。希望每一位讀者在做這些游戲的過程中能獨 立思考,舉一反三,創造一些新的數學游戲。以下是小學經 典趣味數學游戲的部分內容,與大家一起分享!
小學經典趣味數學游戲大全
【挑次品】 【小小測繪員】 【最佳對策】 【生活中的估 算】 【拋硬幣】
【數學家的遺囑】 【三人抵擋不過一人】 【高僧下棋】 【長 方形剪紙】
【迷路的人】 【猜年齡】 【分圖書】 【儀仗隊】 【葯房 里的故事】
【幾種砝碼】 【奧妙在哪裡】 【小龍買早點】 【次品在 哪裡】 【小林幾歲】
課外活動時,同學們最喜歡李老師給他們做數學游戲。這些 數學游戲都很有趣, 既可以增長知識, 又可以培養思維能力。
9. 適合小學生 的趣味數學
數學家高斯小時候的故事
從一加到一百
高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他小時後的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。
高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把 1到 100的整數寫下來,然後把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
數學家華羅庚小時候的軼事
華羅庚(1910——1982)出生於江蘇太湖畔的金壇縣,因出生時被父親華老祥放於籮筐以圖吉利,「進籮避邪,同庚百歲「,故取名羅庚。
華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像塗鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。
金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚塗鴉的本子才發現這許多塗改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:」今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?「正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?
陳景潤:小時候,教授送我一顆明珠
20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。
不善言談,他曾是一個「丑小鴨」。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的「丑小鴨」式的人物,常常也會身不由己或者說百般無奈之下窮思冥想,探究事理,格物致知,在天地萬物間重新去尋求一個適合自己的位置,發展自己的潛能潛質。你可以說這是被逼的,但這么一「逼」往往也就「逼」出來不少偉人。比如童年時代的陳景潤。陳景潤1933年出生在一個郵局職員的家庭,剛滿4歲,抗日戰爭開始了。不久,日寇的狼煙燒至他的家鄉福建,全家人倉皇逃入山區,孩子們進了山區學校。父親疲於奔波謀生,無暇顧及子女的教育;母親是一個勞碌終身的舊式家庭婦女,先後育有12個子女,但最後存活下來的只有6個。陳景潤排行老三,上有兄姐、下有弟妹,照中國的老話,「中間小囡軋扁頭「,加上他長得瘦小孱弱,其不受父母歡喜、手足善待可想而知。在學校,沉默寡言、不善辭令的他處境也好不到哪裡去。不受歡迎、遭人欺負,時時無端挨人打罵。可偏偏他又生性倔強,從不曲意討饒,以求改善境遇,不知不覺地便形成了一種自我封閉的內向性格。人總是需要交流的,特別是孩子。稟賦一般的孩子面對這種困境可能就此變成了行為乖張的木訥之人,但陳景潤沒有。對數字、符號那種天生的熱情,使得他忘卻了人生的艱難和生活的煩惱,一門心思地鑽進了知識的寶塔,他要尋求突破,要到那裡面去覓取人生的快樂。所謂因材施教,就是通過一定的教育教學方法和手段,為每一個學生創造一個根據自己的特點充分得到發展的空間。
小小陳景潤,自己對自己因材施教著。
一生大幸,小學生邂逅大教授但是,他畢竟還是個孩子。除了埋頭書卷,他還需要面對面、手把手的引導。畢竟,能給孩子帶來最大、最直接和最鮮活的靈感和歡樂的,還是那種人與人之間的、耳提面命式的,能使人心靈上迸射出輝煌火花的交流和接觸。所幸,後來隨著家人回到福州,陳景潤遇到了他自謂是終身獲益匪淺的名師沈元。
沈元是中國著名的空氣動力學家,航空工程教育家,中國航空界的泰斗。他本是倫敦大學帝國理工學院畢業的博士、清華大學航空系主任,1948年回到福州料理家事,正逢戰事,只好留在福州母校英華中學暫時任教,而陳景潤恰恰就是他任教的那個班上的學生。
大學名教授教幼童,自有他與眾不同、出手不凡的一招。針對教學對象的年齡和心理特點,沈元上課,常常結合教學內容,用講故事的方法,深入淺出地介紹名題名解,輕而易舉地就把那些年幼的學童循循誘入了出神入化的科學世界,激起他們嚮往科學、學習科學的巨大熱情。比如這一天,沈元教授就興致勃勃地為學生們講述了一個關於哥德巴赫猜想的故事。
師手遺「珠「,照亮少年奮斗的前程
「我們都知道,在正整數中,2、4、6、8、10......,這些凡是能被2整除的數叫偶數;1、3、5、7、9,等等,則被叫做奇數。還有一種數,它們只能被1和它們自身整除,而不能被其他整數整除,這種數叫素數。「
像往常一樣,整個教室里,寂靜地連一根綉花針掉在地上的聲音都能聽見,只有沈教授沉穩渾厚的嗓音在回響。
「二百多年前,一位名叫哥德巴赫的德國中學教師發現,每個不小於6的偶數都是兩個素數之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反復復的,哥德巴赫對許許多多的偶數做了成功的測試,由此猜想每一個大偶數都可以寫成兩個素數之和。」沈教授說到這里,教室里一陣騷動,有趣的數學故事已經引起孩子們極大的興趣。
「但是,猜想畢竟是猜想,不經過嚴密的科學論證,就永遠只能是猜想。」這下子輪到小陳景潤一陣騷動了。不過是在心裡。
該怎樣科學論證呢?我長大了行不行呢?他想。後來,哥德巴赫寫了一封信給當時著名的數學家歐勒。歐勒接到信十分來勁兒,幾乎是立刻投入到這個有趣的論證過程中去。但是,很可惜,盡管歐勒為此幾近嘔心瀝血,鞠躬盡瘁,卻一直到死也沒能為這個猜想作出證明。從此,哥德巴赫猜想成了一道世界著名的數學難題,二百多年來,曾令許許多多的學界才俊、數壇英傑為之前赴後繼,競相折腰。教室里已是一片沸騰,孩子們的好奇心、想像力一下全給調動起來。
「數學是自然科學的皇後,而這位皇後頭上的皇冠,則是數論,我剛才講到的哥德巴赫猜想,就是皇後皇冠上的一顆璀璨奪目的明珠啊!」
沈元一氣呵成地講完了關於哥德巴赫猜想的故事。同學們議論紛紛,很是熱鬧,內向的陳景潤卻一聲不出,整個人都「痴」了。這個沉靜、少言、好冥思苦想的孩子完全被沈元的講述帶進了一個色彩斑斕的神奇世界。在別的同學嘖嘖贊嘆、但贊嘆完了也就完了的時候,他卻在一遍一遍暗自跟自己講:
「你行嗎?你能摘下這顆數學皇冠上的明珠嗎?」
一個是大學教授,一個是黃口小兒。雖然這堂課他們之間並沒有嚴格意義上的交流、甚至連交談都沒有,但又的確算得上一次心神之交,因為它奠就了小陳景潤一個美麗的理想,一個奮斗的目標,並讓他願意為之奮斗一輩子!多年以後,陳景潤從廈門大學畢業,幾年後,被著名數學家華羅庚慧眼識中,伯樂相馬,調入中國科學院數學研究所。自此,在華羅庚的帶領下,陳景潤日以繼夜地投入到對哥德巴赫猜想的漫長而卓絕的論證過程之中。
1966年,中國數學界升起一顆耀眼的新星,陳景潤在中國《科學通報》上告知世人,他證明了(1+2)!
1973年2月,從「文革「浩劫中奮身站起的陳景潤再度完成了對(1+2)證明的修改。其所證明的一條定理震動了國際數學界,被命名為「陳氏定理」。不知道後來沈元教授還能否記得自己當年對這幫孩子們都說了些什麼,但陳景潤卻一直記得,一輩子都那樣清晰。
名人成長路
陳景潤(1933-1996),當代著名數學家。1950年,僅以高二學歷考入廈門大學,1953年畢業留校任教。1957年調入中國科學院數學研究所,後任研究員。1973年發表論文《大偶數表為一個素數及一個不超過二個素數的乘積之積》。1979年,論文《算術級數中的最小素數》問世。1980年當選為中國科學院學部委員(中國科學院院士)。