㈠ 小學數學最核心的思維方法是什麼
小學數學的思維方式很多
比如有聯想思維,發散思維,但是最重要的應該是那種實際性的具象一點的思維方式
㈡ 數學思維和方法有哪些內容
1、數學思維方法有哪些
一、轉化方法:
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、更清晰。
二、邏輯方法:
邏輯是一切思考的基礎。羅輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。羅輯思維,在解決邏輯推理問題時使用廣泛。
三、逆向方法:
逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於「反其道而思之」,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
四、對應方法:
對應思維是在數量關系之間(包括量差、量倍、量率)建立一種直接聯系的思維方法。比較常見的是一般對應(如兩個量或多個量的和差倍之間的對應關系)和量率對應。
五、創新方法:
創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,提得出與眾不同的解決方案。可分為差異性、探索式、優化式及否定性四種。
六、系統方法:
系統思維也叫整體思維,系統思維法是指在解題時對具體題目所涉及到的知識點有一個系統的認識,即拿到題目先分析、判斷屬於什麼知識點,然後回憶這類問題分為哪幾種類型,以及對應的解決方法。
七、類比方法:
類比思維是指根據事物之間某些相似性質,將陌生的、不熟悉的問題與熟悉問題或其他事物進行比較,發現知識的共性,找到其本質,從而解決問題的思維方法。
八、形象方法:
形象思維,主要是指人們在認識世界的過程中,對事物表象進行取捨時形成的,是指用直觀形象的表象,解決問題的思維方法。想像是形象思維的高級形式也是其一種基本方法。
如何鍛煉自己的數學思維?
一、做出來不如講出來,聽得懂不如說得通。
做10道題,不如講一道題。孩子做完家庭作業後,家長不妨鼓勵孩子開口講解一下數學作業中的難題,我也在群里會經常發一些比較好的訓練題,您也可以鼓勵去想一想說一說,如果講得好,家長還可進行小獎勵,讓孩子更有成就感。
二、舉一反三,學會變通。
舉一反三出自孔子的《論語·述而》:「舉一隅,不以三隅反,則不復也。」意思是說:我舉出一個牆角,你們應該要能靈活的推想到另外三個牆角,如果不能的話,我也不會再教你們了。後來,大家就把孔子說的這段話變成了「舉一反三」這句成語,意思是說,學一件東西,可以靈活的思考,運用到其他相類似的東西上!
在數學的訓練中,一定要給孩子舉一反三訓練。一道題看似理解了,但他的思維可能比較直線,不多做幾道舉一反三或在此基礎上變式的題,他還是轉不過玩了。
舉一反三其實就是「師傅領進門,學藝在自身」這句話的執行行為。
三、建立錯題本,培養正確的思維習慣
每上第一次課,我所講的課程內容都和學生的錯題有關。我通常把試卷中的錯題摘抄出幾個典型題,作為課堂的例題再講一遍。而學生的反應,或是像沒有見過,或是對題目非常熟悉,但沒有思路。這些現象的發生,都是學生沒有及時總結的原因。所以第一次課後我都建議我的學生做一個錯題本,像寫日記一樣,記錄下自己的錯題和錯因分析。
一般來說,錯題分為三種類型:第一種是特別愚蠢的錯誤、特別簡單的錯誤;第二種就是拿到題目時一點思路都沒有,不知道解題該從何下手,但是一看到答案卻恍然大悟;第三種就是題目難度中等,按道理有能力做對,但是卻做錯了。
尤其第二種、第三種,必須放到錯題本上。建立錯題本的好處就是掌握了自己所犯錯的類型,為防範一類錯誤成為習慣性的思維。
四、圖形推理是培養邏輯思維能力最好的工具
假是真時真亦假,真是假時假亦真;邏輯思維是在規則的確定下而進行的思維,如果聯系生活就屬於非常規思維。一切看似與生活毫無聯系卻自在法則約束規范的范圍內。邏輯推理的「瞞天過海」可謂五花八門,好似一個萬花筒,百變無窮,樂趣無窮。
幾何圖形是助其鍛煉邏輯思維的好工具,經典的圖形推理題總有其構思、思路、巧妙的思維;經典在於其看似變態,而實際解法卻簡而又簡單。
因此,多訓練一些圖形推理題,對其邏輯思維很有幫助。
㈢ 小學數學思維方法有哪些
一、逆向思維方法
二、對應思維方法
三、假設思維方法
四、轉化思維方法
五、消元思維方法
六、發散思維方法
七、聯想思維方法
八、量不變思維方法
㈣ 小學數學里有哪些基本的數學思想方法
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
㈤ 小學數學思想方法有哪些
1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。聯系的一種思想方法如直線上的點(數軸)與表示具體的數是一一對應。如直線上的點(數軸)與表示具體的數是一一對應。2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。具體,從而豐富解題思路。 3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較,題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。知和未知數量變化前後的情況 4、符號化思想方法、用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。公式、 5、類比思想方法 類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。理解,而且使公式的記憶變得順水推舟的自然和簡潔。 6、轉化思想方法 轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。公式的變形等,在計算中也常用到甲乙甲乙 7、分類思想方法 分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若體現對數學對象的分類及其分類的標准整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。按能否被 2 整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。的分類有助於學生對知識的梳理和建構。 8、集合思想方法 集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。 9、數形結合思想方法數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。助分析數量關系。 10、統計思想方法:統計思想方法:小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。 11、極限思想方法:極限思想方法:事物是從量變到質變的,事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長時,化圓為方」「化在講圓的面積和周長」時「化圓為方化圓的面積和周長化圓為方曲為直」的極限分割思路在觀察有限分割的基礎上想像它們的極限狀態,曲為直的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛的極限分割思盾轉化中萌發了無限逼近的極限思想。盾轉化中萌發了無限逼近的極限思想。 12、代換思想方法:代換思想方法:他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。把椅子,他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了 4 張桌子和 9 把椅子,共用去 504 把椅子的價錢正好相等,桌子和椅子的單價各是多少?元,一張桌子和 3 把椅子的價錢正好相等,桌子和椅子的單價各是多少?13、可逆思想方法:可逆思想方法:它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,千米,千米,逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的 1/7,第二小時比第一小時多行了 16 千米,還有 94 千米,求,第二小時比第一小時多行了甲乙之距。甲乙之距。 14、化歸思維方法: 化歸思維方法:把有可能解決的或未解決的問題,通過轉化過程,化歸」。把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,歸結為一類以便解決可較易解決的問題,以求得解決,以求得解決,這就是「化歸。這就是化歸而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。新知能力的提高無疑是有很大幫助。15、變中抓不變的思想方法:變中抓不變的思想方法:在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共 630 本,其中科技書 20%,後來又買來一些科技書,這時科技書占 30%,又買來科技書多少本?,後來又買來一些科技書,這時科技書占,又買來科技書多少本? 16、數學模型思想方法:數學模型思想方法:所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。 17、整體思想方法:整體思想方法:對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法
㈥ 一,小學數學中常見的數學思想方法有哪些
小學數學中常見的數學思想方法有哪些?
1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法 用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法 類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法 轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法 分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法 集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法 數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法: 小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法: 事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
12、代換思想方法: 他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法: 它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法: 把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
15、變中抓不變的思想方法: 在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
16、數學模型思想方法: 所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
17、整體思想方法: 對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
㈦ 小學數學思想與方法有哪些
1、對應思想方法 對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想.對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想.聯系的一種思想方法如直線上的點(數軸)與表示具體的數是一一對應.如直線上的點(數軸)與表示具體的數是一一對應.2、假設思想方法 假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法.假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、當調整,最後找到正確答案的一種思想方法.假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路.具體,從而豐富解題思路. 3、比較思想方法 比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段.在教學分數應用題中,比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段.在教學分數應用題中,教師善於引導學生比較,題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑.知和未知數量變化前後的情況 4、符號化思想方法、用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想.用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想.如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息.如定律、量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息.如定律、公式、等.公式、 5、類比思想方法 類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想.類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想.如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式.加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式.類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔.理解,而且使公式的記憶變得順水推舟的自然和簡潔. 6、轉化思想方法 轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的.如幾何的等積變換、轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的.如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙.公式的變形等,在計算中也常用到甲乙甲乙 7、分類思想方法 分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准.如自然數的分類,分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准.如自然數的分類,若體現對數學對象的分類及其分類的標准整除分奇數和偶數;按約數的個數分質數和合數.又如三角形可以按邊分,也可以按角分.按能否被 2 整除分奇數和偶數;按約數的個數分質數和合數.又如三角形可以按邊分,也可以按角分.不同的分類標准就會有不同的分類結果,從而產生新的概念.對數學對象的正確、合理分類取決於分類標準的正確、合理性,就會有不同的分類結果,從而產生新的概念.對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構.的分類有助於學生對知識的梳理和建構. 8、集合思想方法 集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法.集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法.小學採用直觀手段,利用圖形和實物滲透集合思想.在講述公約數和公倍數時採用了交集的思想方法.利用圖形和實物滲透集合思想.在講述公約數和公倍數時採用了交集的思想方法. 9、數形結合思想方法數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化.另一方面復雜的形體可以用簡單的數量關系表示.在解應用題中常常藉助線段圖的直觀幫助分析數量關系.助分析數量關系. 10、統計思想方法:統計思想方法:小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法.小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法. 11、極限思想方法:極限思想方法:事物是從量變到質變的,事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變.極限方法的實質正是通過量變的無限過程達到質變.在講「圓的面積和周長時,化圓為方」「化在講圓的面積和周長」時「化圓為方化圓的面積和周長化圓為方曲為直」的極限分割思路在觀察有限分割的基礎上想像它們的極限狀態,曲為直的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛的極限分割思盾轉化中萌發了無限逼近的極限思想.盾轉化中萌發了無限逼近的極限思想. 12、代換思想方法:代換思想方法:他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換.把椅子,他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換.如學校買了 4 張桌子和 9 把椅子,共用去 504 把椅子的價錢正好相等,桌子和椅子的單價各是多少?元,一張桌子和 3 把椅子的價錢正好相等,桌子和椅子的單價各是多少?13、可逆思想方法:可逆思想方法:它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推.如一輛汽車從甲地開往乙地,千米,千米,逆推.如一輛汽車從甲地開往乙地,第一小時行了全程的 1/7,第二小時比第一小時多行了 16 千米,還有 94 千米,求,第二小時比第一小時多行了甲乙之距.甲乙之距. 14、化歸思維方法: 化歸思維方法:把有可能解決的或未解決的問題,通過轉化過程,化歸」.把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,歸結為一類以便解決可較易解決的問題,以求得解決,以求得解決,這就是「化歸.這就是化歸而數學知識聯系緊密,新知識往往是舊知識的引申和擴展.讓學生面對新知會用化歸思想方法去思考問題,而數學知識聯系緊密,新知識往往是舊知識的引申和擴展.讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助.新知能力的提高無疑是有很大幫助.15、變中抓不變的思想方法:變中抓不變的思想方法:在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解.在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解.如:科技書和文藝書共 630 本,其中科技書 20%,後來又買來一些科技書,這時科技書占 30%,又買來科技書多少本?,後來又買來一些科技書,這時科技書占,又買來科技書多少本? 16、數學模型思想方法:數學模型思想方法:所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法.分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法.培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標.數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標. 17、整體思想方法:整體思想方法:對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法