⑴ 小學數學題
mx-3<0
說明mx<3.因為有負數解,說明x是一個負數,要滿足不等於小於3,那回么m大於0,得出來的答mx都會小於3.
當m小於0的時候,mx的積是個正數,就要小心不能大於3.
解x又要是整數,假設x=-1時,m要大於-3才可以讓mx<3.
所以m>-3且不等於0
⑵ 小學數學題型哪裡能找全
我有:
小學數學應用題綜合訓練(01)
1. 甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
2. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
3. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
4. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
5. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
6. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
7. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
8. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
9. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
10. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
11. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
12. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的80%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
13. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
14. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
15. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
16. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
17. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
18. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
19. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
20. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
小學數學應用題綜合訓練(03)
21. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
22. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
23. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
24. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
25. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
26. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
27. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
28. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
29. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
30. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
31. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
32. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
33. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
34. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
35. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
36. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
37. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
38. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
39. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
40. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
41. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
42. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
43. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
44. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
45. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
46. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
47. 甲、乙二人在400米的圓形跑道上進行10000米比賽.兩人從起點同時同向出發,開始時甲的速度為8米/秒,乙的速度為6米/秒,當甲每次追上乙以後,甲的速度每秒減少2米,乙的速度每秒減少0.5米.這樣下去,直到甲發現乙第一次從後面追上自己開始,兩人都把自己的速度每秒增加0.5米,直到終點.那麼領先者到達終點時,另一人距離終點多少米?
48. 小明從家去學校,如果他每小時比原來多走1.5千米,他走這段路只需原來時間的4/5;如果他每小時比原來少走1.5千米,那麼他走這段路的時間就比原來時間多幾分幾之幾?
49. 甲、乙、丙、丁現在的年齡和是64歲.甲21歲時,乙17歲;甲18歲時,丙的年齡是丁的3倍.丁現在的年齡是幾歲?
50. 加工一批零件,原計劃每天加工30個.當加工完1/3時,由於改進了技術,工作效率提高了10%,結果提前了4天完成任務.問這批零件共有幾個?
小學數學應用題綜合訓練(06)
51. 自動扶梯以均勻的速度向上行駛,一男孩與一女孩同時從自動扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27級到達扶梯的頂部,而女孩走了18級到達頂部.問扶梯露在外面的部分有多少級?
52. 兩堆蘋果一樣重,第一堆賣出2/3,第二堆賣出50千克,如果第一堆剩下的蘋果比第二堆剩下的蘋果少,那麼兩堆剩下的蘋果至少有多少千克?
53. 甲、乙兩車同時從A地出發,不停的往返行駛於A、B兩地之間.已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都雜途中C地,甲車的速度是乙車的幾倍?
54. 一隻小船從甲地到乙地往返一次共用2小時,回來時順水,比去時的速度每小時多行8千米,因此第二小時比第一小時多行6千米.求甲、乙兩地的距離.
55. 甲、乙兩車分別從A、B兩地出發,並在A,B兩地間不斷往返行駛.已知甲車的速度是15千米/小時,甲、乙兩車第三次相遇地點與第四次相遇地點相差100千米.求A、B兩地的距離.
56. 某人沿著向上移動的自動扶梯從頂部朝底下用了7分30秒,而他沿著自動扶梯從底朝上走到頂部只用了1分30秒.如果此人不走,那麼乘著扶梯從底到頂要多少時間?如果停電,那麼此人沿扶梯從底走到頂要多少時間?
57. 甲、乙兩個圓柱體容器,底面積比為5:3,甲容器水深20厘米,乙容器水深10厘米.再往兩個容器中注入同樣多的水,使得兩個容器中的水深相等.這時水深多少厘米?
58. A、B兩地相距207千米,甲、乙兩車8:00同時從A地出發到B地,速度分別為60千米/小時,
54千米/小時,丙車8:30從B地出發到A地,速度為48千米/小時.丙車與甲、乙兩車距離相等時是幾點幾分?
59. 一個長方形的周長是130厘米,如果它的寬增加1/5,長減少1/8,就得到一個相同周長的新長方形.求原長方形的面積.
60. 有一長方形,它的長與寬的比是5:2,對角線長29厘米,求這個長方形的面積.
小學數學應用題綜合訓練(07)
61. 有一個果園,去年結果的果樹比不結果的果樹的2倍還多60棵,今年又有160棵果樹結了果,這時結果的果樹正好是不結果的果樹的5倍.果園里共有多少棵果樹?
62. 小明步行從甲地出發到乙地,李剛騎摩托車同時從乙地出發到甲地.48分鍾後兩人相遇,李剛到達甲地後馬上返回乙地,在第一次相遇後16分鍾追上小明.如果李剛不停地往返於甲、乙兩地,那麼當小明到達乙地時,李剛共追上小明幾次?
63. 同樣走100米,小明要走180步,父親要走120步.父子同時同方向從同一地點出發,如果每走一步所用的時間相同,那麼父親走出450米後往回走,還要走多少步才能遇到小明?
64. 一艘輪船在兩個港口間航行,水速為6千米/小時,順水航行需要4小時,逆水航行需要7小時,求兩個港口之間的距離.
65. 有甲、乙、丙三輛汽車,各以一定的速度從A地開往B地,乙比丙晚出發10分鍾,出發後40分鍾追上丙;甲比乙又晚出發10分鍾,出發後60分鍾追上丙,問甲出發後幾分鍾追上乙?
請採納謝謝!!
⑶ 小學數學試題大全
姓名 班級 分數
一、判斷題.對的在括弧里打「√」,錯的打「×」。(5分)
1.85乘23與77的和,積是多少?正確列式是:85×23+77 ( )
2.24×5×76×5=(24+76)×5 ( )
3.25×4÷25×4=100÷100=l ( )
4.56×17+43×17十17的簡便演算法是(56+43+l)×17 ( )
5.35×99=35×100+35=3535。 ( )
二、選擇題,選擇正確答案的序號填在括弧里。(8分)
1.在學校團體操表演中,男女生分開站,男生有400人,女生有340人,每行站20人,女生比男生少站多少行?正確列式是( )。
①340÷20-400÷20 ②20×(400-340) ③(400-340)÷20
2.學校食堂買了8套不銹鋼碗,每套里裝9隻,共花去216元錢,( )式子可用於計算每隻碗多少元錢?( )
①216÷9×8 ②216÷8×9 ③216÷(9×8) ④2l6×9×8
3.小軍在計算60÷(4+2)時,把算式抄成60÷4+2,這樣兩題的計算結果相差( )。
① 8 ② 7 ③ 5
4.用簡便方法計算76×96是根據( )。
①乘法交換律 ②乘法結合律 ③乘法分配律 ④乘法交換律和結合律
三、直接寫出得數。(12分)
650÷50= 98+17= 103×40=
380+320= 546—299= 90×70=
27×ll= 37十68×0= 25×14-25×10=
56×78×0= 1000÷125= 523+497=
四、下列算式漏了括弧,請你補上。(6分)
160÷20+15×2 160÷20—15×2
=(8+15)×2 =160÷5×2
=23×2 =32×2
=46 =64
五、先想好運算順序,再計算。(18分)
25 + 75 – 25
⑷ 小學數學簡便運算題型,種類越多越好。
1、31+46+32+47+33+48+34+49=
2、125×7×64÷8=
3、1+2-3+4+5-6+7+8-9+10+11-12+……+58+59-60=
4、90÷(9÷8)÷(8÷7)÷(7÷6)÷(6÷5)=
1、123+234+345+456+567+678=
2、4999+499+49=
3、25×(877+872+871+876)=
4、888×(99+25+1)=
5、65×128+174×65-65×202=
(1)199.9×19.98-199.8×19.97;
(2)1÷32÷0.05÷0.25÷0.5;
(3)4.83×0.59+0.41×1.59-0.324×5.9
1. =_________ 。
2. =_________ 。
3. =_________ 。
4. =_________ 。
5.(123456+234561+345612+456123+561234+612345)÷7 =_________ 。
6. =_________ 。
7.=______ 。
8. =_________ 。
9.[26×(6-2.5)÷0.5-25]×0.2 =_________ 。
10. =_________ 。
11. =_________ 。
12. =_________ 。
13. =_________ 。
14. =_________ 。
15. =_________ 。
16. □ ,□=_________ 。
17. =_________ 。
18. =_________。
19. =_________ 。
20. =_________ 。
21. =_________ 。
22. =_________ 。
23. =_________ 。
24.設N= ,則N的各位數字之和為_________ 。
25.{ ×□} =59,□=_________ 1.202-192+182-172+…+22-12 =_________ 。
2.(112233-112.233)÷(224466-224.466) =_________ 。
3. =_________ 。
4. =_________ 。
5. =_________ 。
6. =_________ 。
7.乘積 的各位數字之和是 =______ 。
8. =_________ 。
9. =_________ 。
10.(1234567891)2-1234567890×1234567892 =_________ 。
11. =_________ 。
12. =_________ 。
13. =_________ 。
14. =_________ 。
15. =_________ 。
16.A=1999×1+1999×2+1999×3+…+1999×1999,A被9除余數是_________ 。
17. =_________ 。
18. =_________。
19.1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷(6÷7)÷(7÷8)÷(8÷9) =_________ 。
20. 的整數部分是_________ 。
21.A = ,那麼100A的整數部分是_________ 。
22. =_________ 。
23. =_________ 。
24. =_________ 。
25.若 ,那麼四個□中的數的乘積為_________ 1.91.5+88.8+90.2+270.4+89.6+186.7+91.8=_________。
2.123+234+345-456+567+678+789-890=_________。
3.1993-1+2-3+4-5+...+1948-1949=_________。
4.93+87+88+79+100+62+75+95+85+69+72+98+89+77+54+75+92+85+83+76+
65+60+79+86+100+49+97+97+80+78= _________。
5.0.0625+0.125+0.1875+0.25+0.3125+0.375+0.4375+0.5+0.5625+0.625
+0.6875+0.75+0.8125+0.875+0.9375=_____。
1.1234+2341+3412+4123=______。
2.101+103+107+109+113+127+131+137+139+149+151=______。
3.569+384+147-328-167-529=______。
4.124.68+324.68+524.68+724.68+924.68=______。
5.207.2+389.7-157.6-109.1=______。
6.1994+1993-1992+1991+1990+1989-1988-1987+……+10+9-8-7+6+5-4-3+2+1=______。
7.=______。
8.=______。
9. 3.1416×2.7183=______。
10.5795.5795÷5.795×579.5=______。
11.2×3×5×7×11×13=______。
12.(11×10×9……×3×2×1)÷(22×24×25×27)=______。
13.2.89×6.37+4.63×2.89=______。
14.327×2.8+17.3×28=______。
15.=______。
16.=______。
17.=______。
18. (111×58-148×16)÷37=______。
19.=______。
20.=______。
21.3.75×4.23×36-125×0.423×2.8=______。
22.66666×10001+66666×6666=______。
23.=____。
24.=______。
25.=______。 1.1234×900914=_______ 。
2.2424.2424÷ 242.4=_______ 。
3.123455+234566+345677+456788+567899=_______ 。
4.376+385+391+380+377+389+383+374+366+378=_______ 。
5.8642-7531+6420-5317+4280-3157+2084-1753=_______ 。
6.6472-(4476-2480)+5319-(3323-1327)+9354-(7358-5326)+6839-(4843-2847)=______ 。
7.567×142+426×811-852050=_______ 。
8.21356÷21356 =_______ 。
9.1996+1994-1992-1990+1998+1986-1984-1982+1980+1978-1976-1974+1972+1970 …+4+2=_______ 。
10.2375×3987+9207×6013+3987×6832=_______ 。
11.12345679×810=_______ 。
12.28×5+2×4×35+21×20+14×40+8×62=_______ 。
13.30×( )=_______ 。
14.6985×7138-1985÷ -2564÷ =_______ 。
15. +0.8361-0.9375+0.973-5.125+5 +0.7246+0.027-2.1875+0.2754- 5 +0.582+7.357- +0.418+0.1639=_______ 。
夠了嗎,不夠再問,我還有
給你一個很好的網頁。
楊老師在線--奧數講座。或者奧數巨人網。裡面有大量的題目,難度較大。
⑸ 小學數學全部題型
http://..com/question/54155614.html?si=4
看一下
6、甲、乙二人同時開始加工一批零件,加單獨做要20小時,乙單獨做30小時。現在兩人合作,工作了15小時後完成任務。已知甲休息了4小時,則乙休息了幾小時?
總的工作量為單位1
甲的工作效率=1/20
乙的工作效率=1/30
甲乙工作效率和=1/20+1/30=1/12
甲休息4小時,那麼甲工作15-4=11小時,甲完成1/20×11=11/20
乙完成1-11/20=9/20
完成這些零件乙需要(9/20)/(1/30)=27/2小時
那麼乙休息15-27/2=3/2小時=1.5小時
甲、乙兩輛車同時分別從兩個城市相對開出,經過3小時,兩車距離中點18千米處相遇,這時甲車與乙車所行的路程之比是2:3.求甲乙兩車的速度各是多少?
設甲的速度為2a千米/小時,乙的速度為3a千米/小時
總路程=(2a+3a)×3=15a千米
甲行的路程=15a×2/5=6a
15a/2-6a=18
15a-12a=36
3a=36
a=12
甲的速度=12x2=24千米/小時
乙的速度=12x3=36千米/小時
或者
將全部路程看作單位1
那麼相遇時甲行了2/5
乙行了1-2/5=3/5
全程=(1/2-2/5)=1/10
全程=18/(1/10)=180千米
甲乙的速度和=180/3=60千米/小時
甲的速度=60x2/5=24千米/小時
乙的速度=60-24=36千米/小時
網址是題型,例題在我的文庫,可以參考一下
⑹ 小學數學歸納匯總,具體分為哪幾種題型
我們在小學的學習中,數學常常是讓人頭疼的一門科目了。我們在學習數學的過程中,要學會總結和回顧,這樣會使我們對自己所學習的內容有一個清晰地了解,對總的知識點有個合理的分析。下面總結小學數學的一些題型。
小學數學的知識點對小學生來說還是比較多的,要做好歸納總結,以上就是總結出的一部分題型。
⑺ 較復雜的小學數學題 50道
1.兩列火車從甲.乙兩地同時相對開出,4小時後在距中點48千米處相遇。已知慢車是快車速度的七分之五,快車和慢車的速度各是多少?甲乙兩地相距多少千米?
2.一批零件,甲乙兩人合作12天可以完成。他們合作若干天後,乙因事請假,乙這時只完成了總任務的十分之三。甲繼續做,從開始到完成任務用了14天。請問:甲單獨做了多少天?
3。修一段公路,原計劃120人50天完工。工作一個月(按30天計算)後,有20人被調走,趕修其他路段。這樣剩下的人需比原計劃多干多少天才能完成任務?
4。火車站的大鍾每逢幾點敲幾下,如1點敲一下,2點鍾敲二下,每逢半點敲一下。問這個大鍾一晝夜共敲多少下? 5。甲乙兩人分別從A B兩地同時出發,相向而行,在距離B地6千米的地方相遇後,又繼續按原方向前進,當他們分別到底B地.A後立即返回,又在距A地4千米處相遇,求A.B兩地相距多少千米?
6.一件工作,甲隊單獨做要20天完成,乙隊單獨做要12天完成,這件工作先由甲做了若干天,然後由乙繼續做完,從開始到完工共用了14天。問:甲乙兩人各做了多少天?
7.養殖場雞,鴨,鵝三種家禽,共3200隻,如果賣掉雞1/3,鴨1/4,鵝1/5則剩家禽2400隻,如果賣掉雞1/5,鴨1/4,鵝1/3則剩家禽2320隻,養殖場原有鴨多少只?
8。甲、乙兩人繞城而行,甲繞城一周要3小時,現在兩人同時同地出發,乙自遇甲後再行4小時才能到達原出發點,求乙繞城一周所需時間。 9。已知某一鐵橋長1000米,現有一列火車從橋上通過,測得火車開始上橋到完全通過橋共用一分鍾,整列火車完全在橋上的時間為40秒鍾,求火車的長度和速度。
10。有一位婦女在河邊洗碗,旁人看見以後問她為什麼要用這么多碗?她回答說,家中來了許多客人,他們每兩個人合用一隻菜碗,每3個人合用一隻湯碗,每4個人合用一隻飯碗,共用了65隻碗.她家究竟來了多少客人?
11。小明有一包餅干,4個一數,5個一數,6個一數都多一個,小明的這包餅干至少有多少個?
12。小明看一本書,原計劃每天看35頁,32天看完。實際每天比計劃多看5頁,實際用多少天看完?
13。修一條路,原計劃每天修0.4千米,70天可以修完。實際每天修的米數是計劃的1.25倍。實際用多少天完成?
14。綠化隊植樹,計劃8天完成任務。實際每天植樹240棵,7天就完成了全部的植樹任務。實際比計劃每天多植樹多少棵?
15。某街道居委會慰問軍烈屬,給他們送去紅糖和白糖。每到一戶送去2袋紅糖和5袋白糖,送到最後一戶時,紅糖正好送完,還剩下10袋白糖。已知帶去的白糖的袋數是紅糖袋數的3倍,那麼帶去的紅糖、白糖各多少袋?
16。服裝廠要加工一批服裝。第一車間和第二車間同時加工60天正好完成。已知第一車間加工的服裝占服裝總數的45%,第二車間每天加工132件。第一車間每天加工多少件?
17。洗衣機廠計劃生產一批洗衣機。結果9天恰好完成了計劃的37.5%。照這樣計算,完成計劃還要多少天?
18。有一堆煤可以燒120天。由於改進燒煤技術,每天節約用煤0.25噸,結果這堆煤燒了150天。這堆煤共有多少噸?
19。牽走7頭黃牛放在水牛群之中,那麼這三群牛的頭數正好相等。問奶牛有多少頭?
20甲乙兩個車間加工一批同樣的零件。如果甲車間先加工35個,然後乙先加工1天,然後乙車間再開始加工,經過5天後兩車間加工的零件數相等。那麼乙車間一天加工多少個零件?
21。有100千克青草,含水量為66%,晾曬後含水量降到15%。這些青草晾曬後重多少千克?
22。將一個正方形的一邊減少1/5,另一邊增加 4米,得到一個長方形。這個長方形與原來正方形面積相等。那麼正方形面積有多少平方米?
23。某車間加工甲、乙兩種零件。已加工好的零件中甲種零件佔30%,後來又加工好了24個乙種零件,這時甲種零件佔25%。那麼現在已加工好兩種零件共多少個?
24。甲、乙、丙三人共生產零件1760個。如果甲少生產2/9,乙多生產80個,那麼甲、乙、丙三人生產零件的個數相等。甲、乙、丙三人各生產了多少個?
25。小明今年的年齡是他爸爸年齡的1/6,15年後他的年齡是他爸爸年齡的4/9。小明和他爸爸今年各多少歲?
26。某校有學生314人,其中男生人數的2/3比女生人數的4/5少40人。這個學校男生、女生各多少人?
27。甲、乙兩班人數相等,各有一些同學參加了數學小組。甲班參加數學小組的人數恰好是乙班沒參加數學小組人數的1/3;乙班參加數學小組的人數恰好是甲班沒參加數學小組人數的1/4。那麼甲班沒參加數學小組的人數是乙班沒參加數學小組人數的幾分之幾?
28。容器里放著某種濃度的酒精溶液若干升,加 1升水後純酒精含量為25%;再加1升純酒精,容器里純酒精含量為40%。那麼原來容器里的酒精溶液共幾升?濃度為百分之幾?
29/。甲、乙、丙三人合抄一份稿件,1小時可以完成。如果甲、乙二人合抄,要80分鍾完成;如果乙、丙二人合抄,要100分鍾完成。如果這份稿件由乙一人獨抄,要幾小時完成?
30。一件工程,甲獨做,20天可以完成;乙獨做,30天可以完成。現在兩人合做,中間甲休息了3天,乙休息了若干天,結果經過16天才完成。問乙休息了幾天?
31。.注滿一池水,只打開甲管,要8小時;只打開乙管,要12小時;只打開丙管,要15小時。今開始只打開甲、乙兩管,中途關掉甲、乙兩管,然後打開丙管,前後共用了10小時才注滿一池水。那麼打開丙管注水幾小時?
32。某工程隊承建一項工程,要用12天完成。如果只讓其中的甲、乙兩個小隊交換一下工作內容,那麼全工程就要推遲3天完成;如果讓其中甲、乙兩個小隊交換一下工作內容的同時,也讓丙、丁兩個小隊交換工作內容,仍然可以按期完成全工程。如果只讓丙、丁兩個小隊交換工作內容,那麼可以使全工程提前幾天完成?
33。甲、乙兩隊合干一項工程,甲隊先獨幹了6天後,乙隊參加和甲隊一起干,又過了4天完成了全工程的1/3。又過了10天正好完成了全工程的3/4。因甲隊另有任務調出,乙隊繼續工作,直到完成全工程。從開始到完工用了多少天?
34。甲、乙二人同時從A、B兩地出發,各自去B、A兩地,二人速度比為7∶6。二人相遇後繼續向前行進,這時乙的速度比原來速度每小時增加來的速度。
35。兩個小隊割青草,每個小隊割3捆,每捆重8千克。一共割了多少千克?
36張家莊小學新修9個教室,每個教室有6扇窗子,每扇窗子安8塊玻璃,一共要安多少塊玻璃?
37。每個書架有5層,每層放30本書,3個書架一共放多少本書?
38。學校舉行廣播操表演。三、四、五年級各有3個班,每班選16人參加。參加表演的一共有多少人?
連除應用題(兩種方法解答)
1.商店賣出7箱保溫杯,每箱12個,一共收入336元,每個保溫杯多少元?
2.三年級有2個班,每個班有43個同學,一共栽樹258棵,平均每個同學栽樹多少棵?
3.百貸商店賣出3箱上衣,每箱20件,一共賣了720元,每件上衣的價錢是多少元?
4.學校給三好學生買獎品,買了2盒鋼筆,每盒10支,一共用去80元。每支鋼筆多少元?
43。30.8÷[14-(9.85+1.07)]
44。[60-(9.5+28.9)]÷0.18
45。2.881÷0.43-0.24×3.5
46。20×[(2.44-1.8)÷0.4+0.15]
47。28-(3.4+1.25×2.4)
48。2.55×7.1+2.45×7.1
49。777×9+1111×3
50。0.8×[15.5-(3.21+5.79)]
51。(31.8+3.2×4)÷5
52。31.5×4÷(6+3)
53。0.64×25×7.8+2.2
54。2÷2.5+2.5÷2
55。194-64.8÷1.8×0.9
56。36.72÷4.25×9.9
57。5180-705×6
58。24÷2.4-2.5×0.8
59。(4121+2389)÷7
60。671×15-974
⑻ 小學數學應用題分類及題
典型應用題
具有獨特的結構特徵的和特定的解題規律的復合應用題,通常叫做典型應用題。
(1)平均數問題:平均數是等分除法的發展。
解題關鍵:在於確定總數量和與之相對應的總份數。
算術平均數:已知幾個不相等的同類量和與之相對應的份數,求平均每份是多少。數量關系式:數量之和÷數量的個數=算術平均數。
加權平均數:已知兩個以上若干份的平均數,求總平均數是多少。
數量關系式 (部分平均數×權數)的總和÷(權數的和)=加權平均數。
差額平均數:是把各個大於或小於標准數的部分之和被總份數均分,求的是標准數與各數相差之和的平均數。
數量關系式:(大數-小數)÷2=小數應得數 最大數與各數之差的和÷總份數=最大數應給數 最大數與個數之差的和÷總份數=最小數應得數。
例:一輛汽車以每小時 100 千米 的速度從甲地開往乙地,又以每小時 60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設為「 1 」,則汽車行駛的總路程為「 2 」,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為 60 千米 ,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
(2) 歸一問題:已知相互關聯的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規律是相同的,這種問題稱之為歸一問題。
根據求「單一量」的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據球痴單一量之後,解題採用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出「單一量」的歸一問題。又稱「單歸一。」
兩次歸一問題,用兩步運算就能求出「單一量」的歸一問題。又稱「雙歸一。」
正歸一問題:用等分除法求出「單一量」之後,再用乘法計算結果的歸一問題。
反歸一問題:用等分除法求出「單一量」之後,再用除法計算結果的歸一問題。
解題關鍵:從已知的一組對應量中用等分除法求出一份的數量(單一量),然後以它為標准,根據題目的要求算出結果。
數量關系式:單一量×份數=總數量(正歸一)
總數量÷單一量=份數(反歸一)
例 一個織布工人,在七月份織布 4774 米 , 照這樣計算,織布 6930 米 ,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題:是已知單位數量和計量單位數量的個數,以及不同的單位數量(或單位數量的個數),通過求總數量求得單位數量的個數(或單位數量)。
特點:兩種相關聯的量,其中一種量變化,另一種量也跟著變化,不過變化的規律相反,和反比例演算法彼此相通。
數量關系式:單位數量×單位個數÷另一個單位數量 = 另一個單位數量 單位數量×單位個數÷另一個單位數量= 另一個單位數量。
例 修一條水渠,原計劃每天修 800 米 , 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應用題叫做「歸總問題」。不同之處是「歸一」先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
(4) 和差問題:已知大小兩個數的和,以及他們的差,求這兩個數各是多少的應用題叫做和差問題。
解題關鍵:是把大小兩個數的和轉化成兩個大數的和(或兩個小數的和),然後再求另一個數。
解題規律:(和+差)÷2 = 大數 大數-差=小數
(和-差)÷2=小數 和-小數= 大數
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調 46 人到甲班工作,這時乙班比甲班人數少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調 46 人到甲班,對於總數沒有變化,現在把乙數轉化成 2 個乙班,即 9 4 - 12 ,由此得到現在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調出 46 人之前應該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
(5)和倍問題:已知兩個數的和及它們之間的倍數 關系,求兩個數各是多少的應用題,叫做和倍問題。
解題關鍵:找准標准數(即1倍數)一般說來,題中說是「誰」的幾倍,把誰就確定為標准數。求出倍數和之後,再求出標準的數量是多少。根據另一個數(也可能是幾個數)與標准數的倍數關系,再去求另一個數(或幾個數)的數量。
解題規律:和÷倍數和=標准數 標准數×倍數=另一個數
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數 115 輛內,為了使總數與( 5+1 )倍對應,總車輛數應( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
(6)差倍問題:已知兩個數的差,及兩個數的倍數關系,求兩個數各是多少的應用題。
解題規律:兩個數的差÷(倍數-1 )= 標准數 標准數×倍數=另一個數。
例 甲乙兩根繩子,甲繩長 63 米 ,乙繩長 29 米 ,兩根繩剪去同樣的長度,結果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標准數。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
(7)行程問題:關於走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關系,再根據這類問題的規律解答。
解題關鍵及規律:
同時同地相背而行:路程=速度和×時間。
同時相向而行:相遇時間=速度和×時間
同時同向而行(速度慢的在前,快的在後):追及時間=路程速度差。
同時同地同向而行(速度慢的在後,快的在前):路程=速度差×時間。
例 甲在乙的後面 28 千米 ,兩人同時同向而行,甲每小時行 16 千米 ,乙每小時行 9 千米 ,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的後面 28 千米 (追擊路程), 28 千米 里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
(8)流水問題:一般是研究船在「流水」中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當作和差問題解答。 解題時要以水流為線索。
解題規律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一隻輪船從甲地開往乙地順水而行,每小時行 28 千米 ,到乙地後,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時 4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
(9) 還原問題:已知某未知數,經過一定的四則運算後所得的結果,求這個未知數的應用題,我們叫做還原問題。
解題關鍵:要弄清每一步變化與未知數的關系。
解題規律:從最後結果 出發,採用與原題中相反的運算(逆運算)方法,逐步推導出原數。
根據原題的運算順序列出數量關系,然後採用逆運算的方法計算推導出原數。
解答還原問題時注意觀察運算的順序。若需要先算加減法,後算乘除法時別忘記寫括弧。
例 某小學三年級四個班共有學生 168 人,如果四班調 3 人到三班,三班調 6 人到二班,二班調 6 人到一班,一班調 2 人到四班,則四個班的人數相等,四個班原有學生多少人?
分析:當四個班人數相等時,應為 168 ÷ 4 ,以四班為例,它調給三班 3 人,又從一班調入 2 人,所以四班原有的人數減去 3 再加上 2 等於平均數。四班原有人數列式為 168 ÷ 4-2+3=43 (人)
一班原有人數列式為 168 ÷ 4-6+2=38 (人);二班原有人數列式為 168 ÷ 4-6+6=42 (人) 三班原有人數列式為 168 ÷ 4-3+6=45 (人)。
(10)植樹問題:這類應用題是以「植樹」為內容。凡是研究總路程、株距、段數、棵樹四種數量關系的應用題,叫做植樹問題。
解題關鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然後按基本公式進行計算。
解題規律:沿線段植樹
棵樹=段數+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是 50 米 。後來全部改裝,只埋了201 根。求改裝後每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
(11 )盈虧問題:是在等分除法的基礎上發展起來的。 他的特點是把一定數量的物品,平均分配給一定數量的人,在兩次分配中,一次有餘,一次不足(或兩次都有餘),或兩次都不足),已知所余和不足的數量,求物品適量和參加分配人數的問題,叫做盈虧問題。
解題關鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除後一個差,就得到分配者的數,進而再求得物品數。
解題規律:總差額÷每人差額=人數
總差額的求法可以分為以下四種情況:
第一次多餘,第二次不足,總差額=多餘+ 不足
第一次正好,第二次多餘或不足 ,總差額=多餘或不足
第一次多餘,第二次也多餘,總差額=大多餘-小多餘
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術小組的同學,每個人分的相同的支數的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多餘 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題:將差為一定值的兩個數作為題中的一個條件,這種應用題被稱為「年齡問題」。
解題關鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種「差不變」的問題,解題時,要善於利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由於幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
(13)雞兔問題:已知「雞兔」的總頭數和總腿數。求「雞」和「兔」各多少只的一類應用題。通常稱為「雞兔問題」又稱雞兔同籠問題
解題關鍵:解答雞兔問題一般採用假設法,假設全是一種動物(如全是「雞」或全是「兔」,然後根據出現的腿數差,可推算出某一種的頭數。
解題規律:(總腿數-雞腿數×總頭數)÷一隻雞兔腿數的差=兔子只數
兔子只數=(總腿數-2×總頭數)÷2
如果假設全是兔子,可以有下面的式子:
雞的只數=(4×總頭數-總腿數)÷2
兔的頭數=總頭數-雞的只數
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數 ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數 50-35=15 (只)
⑼ 小學數學應用題題型大全有木有
常用的數學應用題解法:
常用應用題解題方法
掌握解題步驟是解答應用題的第一步,要想掌握解答應用題的技能技巧,還需要掌握解答應用題的基本方法。一般可以分為綜合法、分析法、圖解法、演示法、消元法、假定法、逆推法、列舉法等。在這里介紹這些方法,主要是幫助同學掌握在遇到應用題時,如何去思考,怎樣打開自己的智慧之門。這些方法都不是孤立的,在實際解題中,往往是兩種或三種方法同時用到,而且有許多問題,可以用這種方法分析,也可以用那種方法分析。問題在於掌握了各種方法後,可以隨著題目中的數量關系靈活運用,切不可死記硬背,機械地套用解題方法。 1.綜合法
從已知條件出發,根據數量關系先選擇兩個已知數量,提出可以解答的問題,然後把所求出的數量作為新的已知條件, 與其它的已知條件搭配,再提出可以解答的問題,這樣逐步推導,直到求出所要求的結果為止。這就是綜合法。在運用綜合法的過程中,把應用題的已知條件分解成可以依次解答的幾個簡單應用題。小學數學網
例1.一個養雞場一月份運出肉雞13600隻,二月份運出的肉雞是一月份的2倍,三月份運出的比前兩個月的總數少800隻,三月份運出多少只?
綜合法的思路是:
算式:(13600+13600×2)-800
= (13600+27200)-800
=40800-800
=40000(只)
答:三月份運出40000隻。
另解:13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.工廠有一堆煤,原計劃每天燒3噸,可以燒96天。由於改進燒煤方法,每天可節煤0.6噸,這樣可以比原計劃多燒幾天?
解答這道題,綜合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原計劃多燒24天