Ⅰ 如何做好小學數學應用題的教學
如何上好小學數學應用題教學的課
應用題是數學教學的重要組成部分,也是數學教學中的一個難點。為了使學生不怕應用題,掌握分析應用題的方法,我認為可以從以下幾個方面進行訓練:
一、注重培養學生分析等量關系的能力
在應用題教學中能正確分析等量關系是解應用題的關鍵。解答應用題的過程就是分析數量之間的關系,進行推理,由已知求得未知的過程。學生解答應用題時,只有對題目中的數量之間的關系一清二楚,才有可能把題目正確地解答出來。換一個角度來說,如果學生對題目中的某一種數量關系不夠清楚,那麼也不可能把題目正確地解答出來。而要分析等量關系首先要理解並熟記一些常用的等量關系。例如,工作效率×工作時間=工作總量、每份數×份數=總數、單價×數量=總價、速度×時間=路程,以及幾何圖形計算的有關公式等等。下面就如何分析等量關系舉幾個例子加以分析:
(一)培養學生解一般應用題時分析等量關系的能力
例如,某公司要生產手機54萬部,前10天每天生產1.5萬部,餘下的要在20天完成,平均每天要生產多少萬部?當學生弄清題意後老師就提問要想求平均每天要生產多少萬部?必須知道哪兩個條件?(餘下要生產多少和需要的時間)用哪個等量關系?(餘下要生產的量÷餘下的時間=平均每天要生產的),餘下要生產的量題里沒告訴我們又要怎麼求?用哪個等量關系?(一共要生產的前10天共生產的=餘下要生產的量),前10天共生產的又沒告訴我們要怎麼求?用哪個等量關系?(每天生產1.5萬部×10天=前10天共生產的)一個題目分析下來要用到好幾個等量關系,只有這樣一步一步分析等量關系學生才能找到解應用題的途徑,才能列式解答。
(二)培養學生解分數應用題時分析等量關系的能力
分數應用題的等量關系的分析要找到題中的關鍵句,也就是分率句。在分析分數應用題時,我要求學生先從分率句中找出單位「1」的量,然後再寫出三個字的等量關系即「1」×=量。例如我國領土遼闊廣大,南北相距5500千米,東西相距的千米數是南北的52/55。東西相距多少千米?從分率句東西相距的千米數是南北的52/55中先找到單位的「1」的量「南北相距的千米數」用南北相距的千米數乘52/55等於東西相距的千米數即南北相距的千米數×52/55=東西相距的千米數。不管是分數乘法或分數除法應用題都可能用相同的等量關系,只要找到了等量關系再根據單位「1」的量已知用乘法計算,單位「1」的量未知用除法計算。
(三)培養學生列方程解應用題時分析等量關系的能力
列方程解應用題找等量關系更是必不可少的。列方程解應用題的等量關系可以順著題意找,找到等量關系後設未知量為x與已知量共同參與列式。例如,商店原來有一些餃子粉,每袋5千克,賣出7袋以後,還剩40千克。這個商店原來有多少千克餃子粉?它的等量關系順著題意,用原有的重量減去賣出的重量就等於剩下的重量即原有的重量-賣出的重量=剩下的重量,根據等量關系就可列出方程(x-5×7=40)。
二、注重培養學生列表或畫線段圖的能力
畫圖分析應用題是一種能力,這種能力需要在整個應用題教學過程中逐步培養。應用題是比較抽象的,用列表或畫線段圖分析能幫助學生弄清題里各數量間的關系。
(一)一般應用題中有關實際數與計劃數的問題可以藉助列表進行分析
例如,食堂買來280千克大米,計劃吃7天。實際每天比計劃少吃5千克,這批大米實際吃了多少天?可列下表加以分析
每天吃的千克數 天數 總千克數
計劃 2 8 0 ÷7 7 天 2 8 0 千克
實際 比計劃少吃5 千克 ? 天 2 8 0 千克
從表中很容易看出,要想求實際吃了多少天,就要先求計劃每天吃的,用計劃每天吃的減去實際比計劃每天少吃的5千克就可以求出實際每天吃的,從而求出實際每天吃的列式為:280÷(280÷7-5)。用這種方法分析這類應用題即使程度再差的學生都能解答,特別是中下生效果很好。
(二)分數、百分數應用題可以畫線段圖幫助分析
分數、百分數應用題藉助線段圖能夠幫助學生弄清有關數量和標准量的關系,找到解題的途徑。教學時,經常指導學生作線段圖訓練,使學生掌握作圖的基本方法:必須先畫表示單位「1」的線段,注意線段的規范性以及作圖的靈活性,運用補、截、移、疊等作圖技巧,講究作圖的科學性。同時引導學生認真看圖,分析思考,理解數量關系,使學生的思維與作圖同步進行。這樣就能充分發揮線段圖的直觀啟示性。
三、注重培養學生對比辨析的能力
對於易混、易錯的題目,有意識地設計一些似是
Ⅱ 小學數學應用題的解題步驟和方法
常用應用題解題方法
掌握解題步驟是解答應用題的第一步,要想掌握解答應用題的技能技巧,還需要掌握解答應用題的基本方法。一般可以分為綜合法、分析法、圖解法、演示法、消元法、假定法、逆推法、列舉法等。在這里介紹這些方法,主要是幫助同學掌握在遇到應用題時,如何去思考,怎樣打開自己的智慧之門。這些方法都不是孤立的,在實際解題中,往往是兩種或三種方法同時用到,而且有許多問題,可以用這種方法分析,也可以用那種方法分析。問題在於掌握了各種方法後,可以隨著題目中的數量關系靈活運用,切不可死記硬背,機械地套用解題方法。 1.綜合法
從已知條件出發,根據數量關系先選擇兩個已知數量,提出可以解答的問題,然後把所求出的數量作為新的已知條件, 與其它的已知條件搭配,再提出可以解答的問題,這樣逐步推導,直到求出所要求的結果為止。這就是綜合法。在運用綜合法的過程中,把應用題的已知條件分解成可以依次解答的幾個簡單應用題。小學數學網
例1.一個養雞場一月份運出肉雞13600隻,二月份運出的肉雞是一月份的2倍,三月份運出的比前兩個月的總數少800隻,三月份運出多少只?
綜合法的思路是:
算式:(13600+13600×2)-800
= (13600+27200)-800
=40800-800
=40000(只)
答:三月份運出40000隻。
另解:13600×(2+1)-800
=13600×3-800
=40800-800
=40000(只)
例2.工廠有一堆煤,原計劃每天燒3噸,可以燒96天。由於改進燒煤方法,每天可節煤0.6噸,這樣可以比原計劃多燒幾天?
解答這道題,綜合法的思路是:
算式:3×96÷(3-0.6)-96
=288÷2.4-96
=120-96
=24(天)
答:可比原計劃多燒24天
用心解救行了,不要考慮太多
小學的題都不難..
Ⅲ 如何做好小學數學應用題教學
如何做好小學數學應用題教學
應用題是數學教學的重要組成部分,也是數學教學中的一個難點。為了使學生不怕應用題,掌握分析應用題的方法,我認為可以從以下幾個方面進行訓練:
一、注重培養學生分析等量關系的能力
在應用題教學中能正確分析等量關系是解應用題的關鍵。解答應用題的過程就是分析數量之間的關系,進行推理,由已知求得未知的過程。學生解答應用題時,只有對題目中的數量之間的關系一清二楚,才有可能把題目正確地解答出來。換一個角度來說,如果學生對題目中的某一種數量關系不夠清楚,那麼也不可能把題目正確地解答出來。而要分析等量關系首先要理解並熟記一些常用的等量關系。例如,工作效率×工作時間=工作總量、每份數×份數=總數、單價×數量=總價、速度×時間=路程,以及幾何圖形計算的有關公式等等。下面就如何分析等量關系舉幾個例子加以分析:
(一)培養學生解一般應用題時分析等量關系的能力
例如,某公司要生產手機54萬部,前10天每天生產1.5萬部,餘下的要在20天完成,平均每天要生產多少萬部?當學生弄清題意後老師就提問要想求平均每天要生產多少萬部?必須知道哪兩個條件?(餘下要生產多少和需要的時間)用哪個等量關系?(餘下要生產的量÷餘下的時間=平均每天要生產的),餘下要生產的量題里沒告訴我們又要怎麼求?用哪個等量關系?(一共要生產的前10天共生產的=餘下要生產的量),前10天共生產的又沒告訴我們要怎麼求?用哪個等量關系?(每天生產1.5萬部×10天=前10天共生產的)一個題目分析下來要用到好幾個等量關系,只有這樣一步一步分析等量關系學生才能找到解應用題的途徑,才能列式解答。
(二)培養學生解分數應用題時分析等量關系的能力
分數應用題的等量關系的分析要找到題中的關鍵句,也就是分率句。在分析分數應用題時,我要求學生先從分率句中找出單位「1」的量,然後再寫出三個字的等量關系即「1」×=量。例如我國領土遼闊廣大,南北相距5500千米,東西相距的千米數是南北的52/55。東西相距多少千米?從分率句東西相距的千米數是南北的52/55中先找到單位的「1」的量「南北相距的千米數」用南北相距的千米數乘52/55等於東西相距的千米數即南北相距的千米數×52/55=東西相距的千米數。不管是分數乘法或分數除法應用題都可能用相同的等量關系,只要找到了等量關系再根據單位「1」的量已知用乘法計算,單位「1」的量未知用除法計算。
(三)培養學生列方程解應用題時分析等量關系的能力
列方程解應用題找等量關系更是必不可少的。列方程解應用題的等量關系可以順著題意找,找到等量關系後設未知量為x與已知量共同參與列式。例如,商店原來有一些餃子粉,每袋5千克,賣出7袋以後,還剩40千克。這個商店原來有多少千克餃子粉?它的等量關系順著題意,用原有的重量減去賣出的重量就等於剩下的重量即原有的重量-賣出的重量=剩下的重量,根據等量關系就可列出方程(x-5×7=40)。
二、注重培養學生列表或畫線段圖的能力
畫圖分析應用題是一種能力,這種能力需要在整個應用題教學過程中逐步培養。應用題是比較抽象的,用列表或畫線段圖分析能幫助學生弄清題里各數量間的關系。
(一)一般應用題中有關實際數與計劃數的問題可以藉助列表進行分析
例如,食堂買來280千克大米,計劃吃7天。實際每天比計劃少吃5千克,這批大米實際吃了多少天?可列下表加以分析
每天吃的千克數 天數 總千克數
計劃 2 8 0 ÷7 7 天 2 8 0 千克
實際 比計劃少吃5 千克 ? 天 2 8 0 千克
從表中很容易看出,要想求實際吃了多少天,就要先求計劃每天吃的,用計劃每天吃的減去實際比計劃每天少吃的5千克就可以求出實際每天吃的,從而求出實際每天吃的列式為:280÷(280÷7-5)。用這種方法分析這類應用題即使程度再差的學生都能解答,特別是中下生效果很好。
(二)分數、百分數應用題可以畫線段圖幫助分析
分數、百分數應用題藉助線段圖能夠幫助學生弄清有關數量和標准量的關系,找到解題的途徑。教學時,經常指導學生作線段圖訓練,使學生掌握作圖的基本方法:必須先畫表示單位「1」的線段,注意線段的規范性以及作圖的靈活性,運用補、截、移、疊等作圖技巧,講究作圖的科學性。同時引導學生認真看圖,分析思考,理解數量關系,使學生的思維與作圖同步進行。這樣就能充分發揮線段圖的直觀啟示性。
三、注重培養學生對比辨析的能力
對於易混、易錯的題目,有意識地設計一些似是而非的變式題組讓學生練習、比較,從而掌握解題規律。例如(1)少年宮舞蹈隊有23人。合唱隊的人數比舞蹈隊的3倍多15人。合唱隊有多少人?(2)少年宮合唱隊有84人,合唱隊的人數比舞蹈隊的3倍多15人。舞蹈隊有多少人?通過對比使學生理解和掌握(1)的一倍數已知用算術解(2)的一倍數未知用方程解。又如分數應用題中學生非常容易混淆的兩道題:(1)一根繩子8米剪去1/4,還剩多少米?(2)一根繩子8米剪去1/4米,還剩多少米?通過對比使學生明白(1)中的1/4是表示分率,而(2)中的1/4米是表示數量不能混淆。
四、注重培養學生發散思維的能力
發散思維是解決問題時沿著各種方向、不同途徑去探索和思考。讓學生進行多角度、多層次的聯想訓練以及一題多解訓練,以培養學生思維的多向性和靈活性。如,飼養小組養的白兔和黑兔共有18隻,其中黑兔的只數是白兔只數的1/5。白兔和黑兔各有多少只?可以用四種不同的方法解答(1)方程解:解:設白兔有x只,則黑免有1/5x只,列方程x+1/5x=18。(2)歸一法:從分率句中可知白兔有5份,黑兔有1份,共6份,用18÷6×1=3(只)求出黑兔,用18÷6×5=15(只)求出黑兔。(3)按比例分配法:從分率句中可知白兔有5份,黑兔有1份,共6份,黑兔佔一共的1/6,白兔佔一共的5/6,用18×1/6=3(只)求出黑兔,用18×5/6=15(只)求出白兔。(4)用分數的方法:從分率句中可知白兔是單位「1」,而黑兔的只數是白兔只數的1/5,18÷(1+1/5)=15(只)是白兔的只數,15×1/5=3(只)是黑兔的只數。平常教學時多進行一題多解的訓練拓展學生的解題思路,並對多種解法加以比較從中找到最佳的解法。從而使學生懂得,在解應用題時,要盡可能地選用最簡捷的方法。
五、注重培養學生驗算的能力
驗算是數學教學的一個重要環節,它是培養學生良好的學習品質和自我評價能力的重要步驟。驗算的方法有估算、代入,另解。下面就估算舉例加以說明。
例如,油菜籽的出油率是42%%。要榨出2100千克的油,需要油菜籽多少千克?在做這道題時往往有學生出現2100×42%%=882(千克)的錯誤解法。教學時,要引導學生想一想:要榨2100千克油,只需882千克油菜籽是否符合客觀實際呢?從而判斷答案是錯誤的。再引導學生重新審題,理解「42%%」的意義,就是表示油是油菜籽的百分之幾的數,得出油菜籽千克數×42%%=油的千克數,找到了正確的解法,2100÷12%%=5000(千克),這樣就能做到及時發現錯誤,糾正錯誤。
Ⅳ 小學生數學應用題點拔怎麼才可以放視頻講解
不知道你是什麼意思呢,你是要做一個PPT呢,還是要把你的講解內容錄成視頻內呢?如果你要做PPT我是不容太懂,如果你要錄制視頻的話,我就知道一點了,不過,這個也需要會一點PPT。
首先要准備做幻燈片的軟體,如office,或wps。
接著你要把你要點撥的應用題的題目及過程進行分解,並分別做成圖片。如果有圖形的話,也是這樣。
然後把這些圖片設置一個特效,比如飛入。注意一定要按照你講解的順序,設置特效。
最後,准備一個錄屏軟體,和一個耳脈,你就可以開始錄制視頻。
要在電腦上操作,手機上我不會。
Ⅳ 如何講解小學數學應用題
......
本人覺得應用題難,不是應用題的解法難。而是大多數學生不能很好的理解題意專,一旦理解了,屬都會覺得很簡單。
作為小學生,一般都剛剛接觸應用題,坑不都不適應。所以老師就該盡量幫助學生讀懂題意,但是老師同時要注意提高學生自主解題能力。要鍛煉學生讀題能力,可以上課前讓學生回答一些應用題有哪些條件,條件和條件有哪些關系。
不過有的學生不是不會做,而是不能靜下來想,所以不能讓他們緊張,要慢慢教,時間長了會有收獲的。
Ⅵ 小學一年級的數學應用題怎樣講解最好
小學一年級應用題,最好培養孩子用畫圖的方法去思考。對於低年級同學,教會孩子是不容易的,那麼就需要我們家長和老師要有足夠的耐心,運用多種手段和方法去講解。
1、小朋友到花園里去澆花,澆好了18棵,還剩10棵沒有澆。問:小朋友一共要澆多少棵花?答案:28
2、王叔叔去參加同學聚會,他和每個人都握了1次手,王叔叔一共握了20次手 問:參加同學聚會的一共有多少人?答案:21
3、小朋和小月每人都有8支鉛筆。小朋給了小月3支後,小月比小朋多多少支?答案:6
4、媽媽買回來一籃子蘋果,吃了6個後,籃子里還剩下4個蘋果,問:籃子原來有多少個蘋果?答案:10
5、李老師給王芳布置20道數學題,王芳第一天做了幾道,第二天又做了幾道,她把剩下的數一數還有11道。問:王芳兩天一共做了多少道?答案:9
6、小紅參加游泳比賽,與參賽的選手每人合照一張照片,一共照了8張。問:一共有多少名選手參加游泳比賽? 答案:9
7、小葉參加羽毛球比賽。比賽共有12人參加,小葉與每個選手都握了1次手。 問:小葉共要握多少次手?答案:11
8、哥哥和弟弟每人都有10塊糖,哥哥給了弟弟2塊。問:現在哥哥比弟弟少幾塊? 答案:4
9、芳芳和軍軍都在看同一本書,芳芳看了40頁,軍軍看了41頁,問:誰剩下的多?多幾頁?答案:芳芳,1頁。
Ⅶ 如何上好小學數學應用題教學的課
如何上好小學數學應用題教學的課
應用題是數學教學的重要組成部分,也是數學教學中的一個難點。為了使學生不怕應用題,掌握分析應用題的方法,我認為可以從以下幾個方面進行訓練:
一、注重培養學生分析等量關系的能力
在應用題教學中能正確分析等量關系是解應用題的關鍵。解答應用題的過程就是分析數量之間的關系,進行推理,由已知求得未知的過程。學生解答應用題時,只有對題目中的數量之間的關系一清二楚,才有可能把題目正確地解答出來。換一個角度來說,如果學生對題目中的某一種數量關系不夠清楚,那麼也不可能把題目正確地解答出來。而要分析等量關系首先要理解並熟記一些常用的等量關系。例如,工作效率×工作時間=工作總量、每份數×份數=總數、單價×數量=總價、速度×時間=路程,以及幾何圖形計算的有關公式等等。下面就如何分析等量關系舉幾個例子加以分析:
(一)培養學生解一般應用題時分析等量關系的能力
例如,某公司要生產手機54萬部,前10天每天生產1.5萬部,餘下的要在20天完成,平均每天要生產多少萬部?當學生弄清題意後老師就提問要想求平均每天要生產多少萬部?必須知道哪兩個條件?(餘下要生產多少和需要的時間)用哪個等量關系?(餘下要生產的量÷餘下的時間=平均每天要生產的),餘下要生產的量題里沒告訴我們又要怎麼求?用哪個等量關系?(一共要生產的前10天共生產的=餘下要生產的量),前10天共生產的又沒告訴我們要怎麼求?用哪個等量關系?(每天生產1.5萬部×10天=前10天共生產的)一個題目分析下來要用到好幾個等量關系,只有這樣一步一步分析等量關系學生才能找到解應用題的途徑,才能列式解答。
(二)培養學生解分數應用題時分析等量關系的能力
分數應用題的等量關系的分析要找到題中的關鍵句,也就是分率句。在分析分數應用題時,我要求學生先從分率句中找出單位「1」的量,然後再寫出三個字的等量關系即「1」×=量。例如我國領土遼闊廣大,南北相距5500千米,東西相距的千米數是南北的52/55。東西相距多少千米?從分率句東西相距的千米數是南北的52/55中先找到單位的「1」的量「南北相距的千米數」用南北相距的千米數乘52/55等於東西相距的千米數即南北相距的千米數×52/55=東西相距的千米數。不管是分數乘法或分數除法應用題都可能用相同的等量關系,只要找到了等量關系再根據單位「1」的量已知用乘法計算,單位「1」的量未知用除法計算。
(三)培養學生列方程解應用題時分析等量關系的能力
列方程解應用題找等量關系更是必不可少的。列方程解應用題的等量關系可以順著題意找,找到等量關系後設未知量為x與已知量共同參與列式。例如,商店原來有一些餃子粉,每袋5千克,賣出7袋以後,還剩40千克。這個商店原來有多少千克餃子粉?它的等量關系順著題意,用原有的重量減去賣出的重量就等於剩下的重量即原有的重量-賣出的重量=剩下的重量,根據等量關系就可列出方程(x-5×7=40)。
二、注重培養學生列表或畫線段圖的能力
畫圖分析應用題是一種能力,這種能力需要在整個應用題教學過程中逐步培養。應用題是比較抽象的,用列表或畫線段圖分析能幫助學生弄清題里各數量間的關系。
(一)一般應用題中有關實際數與計劃數的問題可以藉助列表進行分析
例如,食堂買來280千克大米,計劃吃7天。實際每天比計劃少吃5千克,這批大米實際吃了多少天?可列下表加以分析
每天吃的千克數 天數 總千克數
計劃 2 8 0 ÷7 7 天 2 8 0 千克
實際 比計劃少吃5 千克 ? 天 2 8 0 千克
從表中很容易看出,要想求實際吃了多少天,就要先求計劃每天吃的,用計劃每天吃的減去實際比計劃每天少吃的5千克就可以求出實際每天吃的,從而求出實際每天吃的列式為:280÷(280÷7-5)。用這種方法分析這類應用題即使程度再差的學生都能解答,特別是中下生效果很好。
(二)分數、百分數應用題可以畫線段圖幫助分析
分數、百分數應用題藉助線段圖能夠幫助學生弄清有關數量和標准量的關系,找到解題的途徑。教學時,經常指導學生作線段圖訓練,使學生掌握作圖的基本方法:必須先畫表示單位「1」的線段,注意線段的規范性以及作圖的靈活性,運用補、截、移、疊等作圖技巧,講究作圖的科學性。同時引導學生認真看圖,分析思考,理解數量關系,使學生的思維與作圖同步進行。這樣就能充分發揮線段圖的直觀啟示性。
三、注重培養學生對比辨析的能力
對於易混、易錯的題目,有意識地設計一些似是而非的變式題組讓學生練習、比較,從而掌握解題規律。例如(1)少年宮舞蹈隊有23人。合唱隊的人數比舞蹈隊的3倍多15人。合唱隊有多少人?(2)少年宮合唱隊有84人,合唱隊的人數比舞蹈隊的3倍多15人。舞蹈隊有多少人?通過對比使學生理解和掌握(1)的一倍數已知用算術解(2)的一倍數未知用方程解。又如分數應用題中學生非常容易混淆的兩道題:(1)一根繩子8米剪去1/4,還剩多少米?(2)一根繩子8米剪去1/4米,還剩多少米?通過對比使學生明白(1)中的1/4是表示分率,而(2)中的1/4米是表示數量不能混淆。
四、注重培養學生發散思維的能力
發散思維是解決問題時沿著各種方向、不同途徑去探索和思考。讓學生進行多角度、多層次的聯想訓練以及一題多解訓練,以培養學生思維的多向性和靈活性。如,飼養小組養的白兔和黑兔共有18隻,其中黑兔的只數是白兔只數的1/5。白兔和黑兔各有多少只?可以用四種不同的方法解答(1)方程解:解:設白兔有x只,則黑免有1/5x只,列方程x+1/5x=18。(2)歸一法:從分率句中可知白兔有5份,黑兔有1份,共6份,用18÷6×1=3(只)求出黑兔,用18÷6×5=15(只)求出黑兔。(3)按比例分配法:從分率句中可知白兔有5份,黑兔有1份,共6份,黑兔佔一共的1/6,白兔佔一共的5/6,用18×1/6=3(只)求出黑兔,用18×5/6=15(只)求出白兔。(4)用分數的方法:從分率句中可知白兔是單位「1」,而黑兔的只數是白兔只數的1/5,18÷(1+1/5)=15(只)是白兔的只數,15×1/5=3(只)是黑兔的只數。平常教學時多進行一題多解的訓練拓展學生的解題思路,並對多種解法加以比較從中找到最佳的解法。從而使學生懂得,在解應用題時,要盡可能地選用最簡捷的方法。
五、注重培養學生驗算的能力
驗算是數學教學的一個重要環節,它是培養學生良好的學習品質和自我評價能力的重要步驟。驗算的方法有估算、代入,另解。下面就估算舉例加以說明。
例如,油菜籽的出油率是42%%。要榨出2100千克的油,需要油菜籽多少千克?在做這道題時往往有學生出現2100×42%%=882(千克)的錯誤解法。教學時,要引導學生想一想:要榨2100千克油,只需882千克油菜籽是否符合客觀實際呢?從而判斷答案是錯誤的。再引導學生重新審題,理解「42%%」的意義,就是表示油是油菜籽的百分之幾的數,得出油菜籽千克數×42%%=油的千克數,找到了正確的解法,2100÷12%%=5000(千克),這樣就能做到及時發現錯誤,糾正錯誤。