⑴ 小學數學概念有哪些
小學數學知識概念公式匯總
小學一年級 九九乘法口訣表。學會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5 工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6 加數+加數=和和-一個加數=另一個加數
7 被減數-減數=差被減數-差=減數 差+減數=被減數
8 因數×因數=積積÷一個因數=另一個因數
9 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2 正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3 長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4 長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5 三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6 平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7 梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形 S面積 C周長 ∏ d=直徑 r=半徑
周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
面積=半徑×半徑×∏
9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
奉上,望採納!
⑵ 小學數學所有概念和定義
定義定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先
,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
定義定理公式(二)
一、算術方面
1.
:兩數相加交換加數的位置,和不變。
2.
:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.
:兩數相乘,交換因數的位置,積不變。
4.
:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.
:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,
和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.
式:含有一個未知數,並且未知數的次 數是一次的等式叫做
式。
學會
式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的
則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先
,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先
然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.
:分子比分母小的分數叫做
。
17.
:分子比分母大或者分子和分母相等的分數叫做
。
大於或等於1。
18.
:把假分數寫成整數和
的形式,叫做
。
19.
:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數
⑶ 小學數學的所有概念
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)小學奧數公式
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題的公式
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題的公式
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題的公式
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題的公式
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題的公式
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題的公式
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題的公式
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題的公式
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
⑷ 1至6年級數學定義,概念,公式。(冀教版)
常用的數量關系式
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
常用的數量關系式
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
BAIDU_CLB_fillSlot( '920314' );
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
BAIDU_CLB_fillSlot( '920966' );
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
BAIDU_CLB_fillSlot( '920314' );
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
BAIDU_CLB_fillSlot( '920966' );
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
⑸ 小學數學概念的小學數學概念定義
小學數學中有很多概念,包括:數的概念、運算的概念、量與計量的概念、幾何形體的概回念、比和比例的概答念、方程的概念,以及統計初步知識的有關概念等。這些概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的。如只有明確牢固地掌握數的概念,才能理解運算概念,而運算概念的掌握,又能促進數的整除性概念的形成。在數學科學中,數學概念的含義都要給出精確的規定,因而數學概念比一般概念更准確。
⑹ 小學數學所有概念!!
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
)*c
⑺ 小學數學概念大全
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
)*c
⑻ 小學數學所有的概念。
對數學的概念一定要理解清楚,一定要明白他是什麼意思之後才能做出這個題目來的。