Ⅰ 小學生學數學有什麼好處啊
數學包涵了發散思維、收斂思維、換元思維、反向思維、逆向思維、邏輯思維、空間思維、立體思維等等二十幾種思維方式,眾所周知,思維能力是一個孩子的智力的核心,如果一個孩子在小學期間,思維能力得到了充分的鍛煉。
數學能夠快速有效、全面提高孩子智商的工具。數學學習對開拓思路有著重要作用。數學學習好的學生整個理科都會比較優秀,因為數學是理科的基礎,物理化學都需要數學這個基礎。正因為這個原因,重點中學喜歡招數學比較好的學生。
數學題基本上是比書上知識有所提高的內容,當孩子在做題當中遇到困難,想辦法戰勝它時,那種來自內心深處的喜悅比吃了十斤蜜棗還甜。一句話:數學讓孩子學會了面對挫折、戰勝困難,學會了永不言敗的精神,建立起良好的自信。可以說既提高孩子的智商又能發展孩子的情商。
(1)小學的數學擴展閱讀
數學是自然科學的基礎,幾乎所有的重大發現都與數學的發展與進步相關。正如華羅庚所說,宇宙之大、粒子之微、火箭之速、化工之小、地球之變、生物之謎、日用之繁,無處不用數學。」在余老師看來,加強數學科學研究,抓好中小學數學基礎教育至關重要。
奧數是對有興趣的、有天賦的少部分人進行創造性的思維培訓,但不應是普及的,現在過早過度培訓奧數,不但沒有讓學生的創造性思維得到發展,反而挫傷了部分學生的學習積極性,「真正要學好數學,應該是一步一個腳印、有目的、有興趣地去學習。」
Ⅱ 小學數學中的大約等於多少是怎麼定義的
大約等於多少一般是指接近某個整十,整百數。
近似數的混合運算,可按運算順序和近似數的計演算法則分步計算,但中間運算的結果要比最後結果多取一位數字。
例: 計算3.054×2.5-57.85÷9.21。
3.054×2.5-57.85÷9.21
≈3.05×2.5-57.85÷9.21
≈7.63-6.28≈1.4
根據已知數據,最後運算的結果要取兩位數字,因此,中間運算的結果要取三位數字。
(2)小學的數學擴展閱讀
一、有效數字注意:
①近似數的精確度有兩種形式:精確到哪一位;保留幾個有效數字;
②對於絕對值較大的數取近似值時,結果一般用科學計數法來表示,如:8 90 000(保留三個有效數字)的近似值,得8 903 000≈8.90×106。
③對帶有計數單位的近似數,如2.3萬,他有兩個有效數字:2、3,而不是五個有效數字。
二、有效數字的舍入規則:
1、當保留n位有效數字,若後面的數字小於第n位單位數字的0.5就舍掉。
2、當保留n位有效數字,若後面的數字大於第n位單位數字的0.5 ,則第位數字進1。
3、當保留n位有效數字,若後面的數字恰為第n位單位數字的0.5 ,則第n位數字若為偶數時就舍掉後面的數字,若第n位數字為奇數加1。
如將下組數據保留三位
45.77=45.8 43.03=43.0
38.25=38.2 47.15=47.2
Ⅲ 小學數學概念大全
你好!你是教師可到新華書店去買這方面的書,你是學生或家長,就把小學數學書拿出來,一本一本的從頭把有關概念抄一遍,抄在採集本上。到開校還來得及,也算是復習一遍。祝:好好學習,天天向上。
Ⅳ 小學數學知識有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
Ⅳ 小學數學的基礎知識有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
Ⅵ 小學的數學知識點總結歸納
1、數與代數:數的認識、數的運算、式與方程、比和比例。
2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。
3、統計與可能性:量的計量、統計、可能性。
4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。
(6)小學的數學擴展閱讀:
整數
1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。
2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。
3、計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4、數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。
如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
解比例的依據是比例的基本性質。
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化法。
16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數:公因數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。
32、一天的時間:一天有24小時,一小時60分,1分60秒
Ⅶ 小學數學知識點有哪些
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
Ⅷ 小學數學該怎樣學
小學階段,數學沒什麼難度,孩子數學不好,一般也不是智力因素,有很多是沒適應學習,有的是沒掌握正踴的方法,那你知道小學數學要怎麼學成績才會高嗎?今天小編為大家推薦小學數學最佳學習方法。
主動預習,不僅能提前了解上課內容,在聽課的時候有的放矢,還能鍛煉孩子的自學能力。
具體做法:認真閱讀敦材,在老師的引導下學會看書,帶著老師精心設計的思考題去預習。
如自學例題時,要弄清例題講的什麼內容,告訴了哪些條件,求什麼,書上怎麼解答的,為什麼要這樣解答,還有沒有新的解法,解題步敷是怎樣的。
抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。遠大小狀元APP可以有效提高孩子的預習能力
"把一個長方體的高去掉2厘米後成為一個正方體,他的表面積減少了48平方厘米,這個正方體的體積是多少?"
一些學生對公式、性質、法則等背的挺熟,但遇到實際問題時,卻又無從下手,不知如何應用所學的知識去解答問題,比如上題。
同學們對求體積的公式雖記得很熟,但由於該題涉及知識面廣,許多同學理不出解題思路,這需要學生在老師的引導下逐漸掌握解題時的思考方法。
這道題從單位上講,涉及到長度單位、面積單位;從圖形上講,涉及到長方形、正方形、 長方體、正方體;從圖形變化關系講:長方形→正方形;
從思維推理上講:長方體→減少一部分底面是正方形的長方體→減少部分四個面面積相等→求一個面的面積→求出長方形的長(即正方形的一個棱長)→正方體的體積。
經老師啟發,學生分析後,學生根據其思路(可畫出圖形)進行解答。
有的學生很快解答出來:設原長方體的底面長為X ,則2Xx4=48得:X=6(即正方體的棱長),這樣得出正方體的體積為:6x6x6=216(立方厘米)。
遠大小狀元包含了人教版和北師大版的題材,適應大多數地區的學生,可以幫助孩子提高刷題量
解答數學問題總的講是有規律可循的。在解題時,要注意總結解題規律,在解決每一道練習題後,要注意回顧以下問題:
(1)本題最重要的特點是什麼?
(2)解本題用了哪些基本知識與基本圖形?
(3)本題你是怎樣觀察、聯想、變換來實現轉化的?
⑷解本題用了哪些數學思想、方法?
(5)解本題最關鍵的一步在那裡?
(6)你做過與本題類似的題目嗎?在解法、思路上有什麼異同?
(7)本題你能發現幾種解法?其中哪一種最優?哪種解法是特殊技巧?
你能總結在什麼情況下採用嗎?把這一連串的問題貫穿於解題各環節中,逐步完善,持之以恆,學生解題的心理穩定性和應變能力就可以不斷提高,思維能力就會得到鍛煉和發展。
遠大小狀元APP,分為家長版和學生版,數據同步,家長可以及時發現孩子學習
在教學中老師會經常給學生設置疑點,提出問題,啟發學生多思多想,這時學生要積極思考,拓競思路,以便思維的廣闊性得到較好的發展。
如:修一條長2400米的水渠,5天修了它的20% ,照這樣計算剩下的還需幾天修完?根據工作總畺、工作效率、工作時間三者的關系,學生可以列出下列算式:
(1)2400÷(2400x20%÷5)-5=20(天)
(2)2400x(1-20%)+(2400x20%÷5)=20(天)。
教師啟發學生,提問:"修完它的20%用5天,還剩下(1-20%要用多少天修完呢?"學生很快想到倍比的方法列出:
(3)5x(1-20%)+20%=20(天)。
如果從"已知—m的幾分之幾是多少,求這個數"的方法去思考,又可得出下列解法:
(4)5+20%-5=20(天)。
再啟發學生,能否用比例知識解答?學生又會想出:
(5)20% : (1-20%)=5 : X(設剩下的用X天修完)。
這樣啟發學生多思,溝通了知識間的縱橫關系,變換解題方法,拓競學生的解題思路,培養學生思維的炅活性。
學啟於思,思源於疑。學生的積極思維往往是從有疑開始的,學會發現和提出問題是學會創新的關鍵。著名教育家顧明遠說:"不會問的學生不是一個好學生。"現代教育的學生觀要求:"學生能獨立思考,有提出問題的力。"培養創新意識、學會學習,應從學會堤出疑問開始。
如學習"角的度量",認識量角器時,認真觀察量角器,問自己:"我發現了什麼?我有什麼問題可提?"通過觀察、思考,你可能會說:"為什麼有兩個半圓的刻度呢?""內外兩個刻度有什麼用處?", 「只 有 一 個 刻 度 會 不 會 比 兩 個 刻 度 更 方 便 量呢 ? 為 什 么 要有中心的一點呢?"等等,不同的學生會提出各種不同的看法。
在度量形狀如"V"時,你可能會想到不必要用其中一條邊與量角器零刻度線重合的辦法。學習中要善於發現問題,敢於提出問題,即增加主體意識,敢於發表自己的看法、見解,激發創造慾望,始終保持高昂的學習情緒。
Ⅸ 如何教好小學數學
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。