Ⅰ 小學數學概念的小學數學概念定義
小學數學中有很多概念,包括:數的概念、運算的概念、量與計量的概念、幾何形體的概回念、比和比例的概答念、方程的概念,以及統計初步知識的有關概念等。這些概念是構成小學數學基礎知識的重要內容,它們是互相聯系著的。如只有明確牢固地掌握數的概念,才能理解運算概念,而運算概念的掌握,又能促進數的整除性概念的形成。在數學科學中,數學概念的含義都要給出精確的規定,因而數學概念比一般概念更准確。
Ⅱ 小學數學概念的小學數學概念教學意義
首先,數學概念是數學基礎知識的重要組成部分。
小學數學的基礎知識包括:概念、定律、性質、法則、公式等,其中數學概念不僅是數學基礎知識的重要組成部分,而且是學習其他數學知識的基礎。學生掌握基礎知識的過程,實際上就是掌握概念並運用概念進行判斷、推理的過程。數學中的法則都是建立在一系列概念的基礎上的。事實證明,如果學生有了正確、清晰、完整的數學概念,就有助於掌握基礎知識,提高運算和解題技能。相反,如果一個學生概念不清,就無法掌握定律、法則和公式。例如,整數百以內的筆算加法法則為:「相同數位對齊,從個位加起,個位滿十,就向十位進一。」要使學生理解掌握這個法則,必須事先使他們弄清「數位」、「個位」、「十位」、「個位滿十」等的意義,如果對這些概念理解不清,就無法學習這一法則。又如,圓的面積公式S=πr2,要以「圓」、「半徑」、「平方」、「圓周率」等概念為基礎。總之小學數學中的一些概念對於今後的學習而言,都是一些基本的、基礎的知識。小學數學是一門概念性很強的學科,也就是說,任何一部分內容的教學,都離不開概念教學。
其次,數學概念是發展思維、培養數學能力的基礎。
概念是思維形式之一,也是判斷和推理的起點,所以概念教學對培養學生的思維能力能起重要作用。沒有正確的概念,就不可能有正確的判斷和推理,更談不上邏輯思維能力的培養。例如,「含有未知數的等式叫做方程」,這是一個判斷。在這個判斷中,學生必須對「未知數」、「等式」這幾個概念十分清楚,才能形成這個判斷,並以此來推斷出下面的6道題目,哪些是方程。
(1)56+23=79(2)23-x=67(3)x÷5=4.5
(4)44×2=88(5)75÷x=4(6)9+x=123
在概念教學過程中,為了使學生順利地獲取有關概念,常常要提供豐富的感性材料讓學生觀察,在觀察的基礎上通過教師的啟發引導,對感性材料進行比較、分析、綜合,最後再抽象概括出概念的本質屬性。通過一系列的判斷、推理使概念得到鞏固和運用。從而使學生的初步邏輯思維能力逐步得到提高。
Ⅲ 小學數學所有概念
小學數學全部概念(代數和幾何 )
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b )*c
Ⅳ 小學數學所有概念!!
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
)*c
Ⅳ 小學數學概念教學
1、直觀形象地建立概念
直觀教學是教師用足夠的直觀感知材料,使學生腦中形成某一概念的表象,然後引導學生從表象中概括出該概念的本質。
2、在概念教學中發展學生的言語
言語是思維的外殼,概念是由詞來表示的,離開了詞就沒有概念的理解和表述。因此,光有大量的感知材料,不通過思維的加工整理,仍然未能形成清晰的概念。有了表象為基礎,學生一般能進行思維,從而抽象概括出概念。由於學生思維的完整性和層次性還不很嚴密,口頭表述概念時往往不夠嚴密,不夠完整,欠條理性,這就需要教師引導。如提疑問、作假設、舉反例等,讓學生發現自己的表述有漏洞,然後讓學生再觀察,再分析,再概括,直到精確為止。
3、比較相似概念的異同及內在聯系。(如質數、質因數、分解質因數)
4、指導運用新學的概念
概念廣泛應用於判斷推理,沒有概念就無從判斷,對概念理解錯誤,判斷就會出錯。正確的判斷源於對有關概念的正確理解。除了訓練學生對單一概念的運用外,還要設計一些綜合運用概念的訓練題,因為解決問題往往不是單靠一個概念可以解決的。
這是我在教學中總結的,希望對你有所啟發。
Ⅵ 小學數學概念總結
1 正方形:
C周長 S面積 a邊長 周長=邊長× C=4a 面積=邊長×邊長 S=a×a
2 正方體
V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高V=abh
5 三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高 面積=底×高 s=ah
7 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 1 每份數×份數=總數 總數÷每份數=份數 總數份數=每份數
11倍數×倍數=幾倍數
被除數÷除數=商 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
12 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
13工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
14 加數+加數=和 和-一個加數=另一個加數
18被減數-減數=差 被減數-差=減數 差+減數=被減數
19因數×因數=積 積÷一個因數=另一個因數
20被除數÷除數=商 被除數÷商=除數 商×除數=被除數 小學數學圖形計算公式
21 正方形
C周長 S面積 a邊長, 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
22 正方體
V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
23 長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
24 長方體
V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh
25 三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
26 平行四邊形
s面積 a底 h高 面積=底×高 s=ah
27 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2
28 圓形
S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏
29 圓柱體
v:體積
h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑
30 圓錐體
v:體積 h:高 s;底面積 r:底面半徑 體積=底面積×高÷3 總數÷總份數=平均數 和差問題的公式 和+差)÷=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題
31 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 32 封閉線路上的植樹問題的數量關系如下 株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度 逆流速度=靜水速度-水流速度 靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度 溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比 折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間 稅後利息=本金×利率×時間×(1-20%)
每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
時間單位換算
1世紀=100年 1年=12月 大月(31天)有:1 8 月 小月(30天)的有:4 9 月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
一、軸對稱圖形
1、只有1條對稱軸的圖形是(等腰三角形、等腰梯形、半圓)
有2條對稱軸的圖形是(長方形)
有3條對稱軸的圖形是(等邊三角形)
有4條對稱軸的圖形是(正方形)
有無數條對稱軸的圖形是(圓、圓環)
2、圓的對稱軸的圖形是(直徑所在的直線)
3、對稱軸是直線
4、圓是(平面圖形、曲線、軸對稱)圖形。
二、在同圓或等圓里(必不可少的前提),直徑是半徑的2倍,半徑是直徑的一半。
d=2r r=d÷2
三、在同圓或等圓里(必不可少的前提),直徑都相等、半徑都相等。
四、圓心確定圓的位置、半徑確定圓的大小。圓規兩腳之間的距離是圓的半徑。
五、圓的周長
1、圍成圓曲線的長度叫做圓的周長。
2、圓的周長除以直徑的商,(周長和直徑的比值),叫做圓周率,它是一個固定不變的數,和圓的大小無關。π>3.14。圓的周長大約是直徑的3.14倍。
3、c圓=πd c圓=2πr
4、長方形的周長=(長+寬)×2 =(a+b)×2
正方形的周長=邊長×4=4a
5、長度和周長單位有:km m dm cm mm
6、已知周長求直徑 d=C÷π
已知周長求半徑 r=C÷π÷2
7、3.14×(1――9)
六、半圓的周長
C半圓=d+πd÷2 C半圓=2r+πr
七、圓的面積
1、把圓平均分成若干份,可以拼成一個平行四邊形或長方形。
2、S圓=πr2=π(d÷2)2
3、S長方形=長×寬=ab
S正方形=邊長×邊長=a2
S平行四邊形=底×高=ah
S三角形=底×高÷2=ah÷2
S梯形=(上底+下底 )×高÷2=(a+b)×h÷2
S半圓=πr2÷2
S圓環=S大圓-S小圓=π(R2-r2)
4、面積和表面積單位有:平方千米 公頃 平方米 平方分米 平方厘米
1平方千米=100公頃 1公頃=10000平方米
5、如果長方形的周長=正方形的周長=圓的周長,那麼它們當中圓的面積最大。
6、(11――19)2
八、半徑擴大n倍,直徑擴大n倍,周長擴大n倍,面積擴大n2倍。
第二單元
1. 一、
1、是、等於、相當於,意思相同。
2、幾成=幾折
1. 二、求提高了、降低了、增加了、減少了、節約了、多了、少了百分之幾,都是用:甲÷乙
2. 三、小數、分數和百分數的互化
1. 四、解答分數應用題的一般步驟
1. 找單位「1」
2. 判斷單位「1」是已知的還是未知的
3. 如果單位「1」已知的,用乘法計算:單位「1」×對應分率
4. 如果單位「1」未知的,用除法計算:已知量÷對應分率=單位「1」;另外,也可以用方程。
5、減數=被減數-差 除數=被除數÷商
五、常見的數量關系
1、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
2、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
3、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
4、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
六、方程
1、含有未知數的等式叫做方程。
2、解方程就是「唱反調」
七、利息=本金×利率×時間
第三單元
圖形變換和圖案設計時,會用到:軸對稱、平移和旋轉。
1. 軸對稱
2. 平移:關注是上下平移還是左右平移,尤其是平移了多少格
3. 旋轉:關注是順時針還是逆時針方向旋轉,關注旋轉的角度是多少度
4. 運算定律:
加法交換律和性質
a+b=b+a
加法結合律
a+b+c=a+(b+c) 25+37+63=25+(37+63)
乘法交換律
a×b×c=a×c×b 25×9×4=25×4×9
乘法結合律
a×b×c=(a×c)×b 128×3×8=(125×8) ×3
乘法分配律
兩個數的和與一個數相乘,可以把這兩個加數分別和這個數相乘,再把兩個級相加。
a×(b+c)=a×b+a×c 8×(125+25)=8×125+8×25
2.37×99
=2.37× (100-1 )
=2.37×100-2.37×1
減法的運算性質
a―b―c=a-(b+c) 14.29―3.9―6.1=14.29―(3.9+6.1)
第四單元
1. 兩個數相除又叫做這兩個數的比。其中,比號前面的數是比的前項,比號後面的數是比的後項,前項÷後項=比值
2. 比和除法、分數的關系
a÷b=a :b= (b≠0,除數、分母和後項不能為0)
例如:15÷25=( ):( )==( )%=( )(填小數)=( )折=( )成
再如:甲數和乙數的比是4:3,甲數是乙數的( / ),乙數是甲數的( / ),甲數是乙數的( )%,乙數是甲數的( )%,甲數比乙數多( )%,乙數比甲數少( )%。
(提示:甲數=4 乙數=3)
3. 化簡比
化簡比就是把一個比化成最簡單的整數比。也就是:前項和後項都是整數,並且前項和後項只能有公因數1。
4. 注意:比值是一個數,而化簡比結果是一個比。
例如::0.75化成最簡單的整數比是( ),比值是( )。
5. 比的應用
重點關註:類似已知長方形的周長是28厘米,長和寬的比是4:3,求長方形的長、寬或面積。
6. 三角形三個內角度數的比是1:2:3或1:1:2,這個三角形是(直角)三角形。
7. 質量單位:噸 千克 克
8. 容積單位:升 毫升
9. 體積單位:立方米 立方分米 立方厘米
1升=1立方分米 1毫升=1立方厘米
10、人民幣單位:元 角 分
11、大於0的數叫做正數,小於0的數叫做負數。正數和負數可以用來表示具有相反意義的量。0既不是正數也不是負數。
12、正數和負數可以抵消,比如:+5和-5能完全抵消;-8和+3抵消後得-5。
13、統計圖有:(復式)條形統計圖、(復式)折線統計圖、扇形統計圖。
14、條形統計圖:很容易看出各種數量的多少。
15、折線統計圖:不但可以看出數量的多少,而且能夠表示數量的增減變化。
16、扇形統計圖:能呈現各部分與總數的百分比。
(1) 平面圖形知識;(2)平面圖形的周長和面積;(3)立體圖形的認識;(4)立體圖形的表面積和體積。
(1) 平面圖形知識
①直線、射線、線段的特點、聯系與區別。
②角的特徵、角的分類、角的度量方法。
③垂直與平行。
④三角形的特徵,分類(按邊分、按角分)。
⑤四邊形。每類圖形的特徵,特殊與一般的關系。
⑥圓與扇形。圓的特徵、直徑、半徑的特點,扇形與圓的關系。
⑦軸對稱圖形。(能畫出學過的軸對稱圖形的對稱軸)
要求:①掌握特徵、建立聯系,讓學生感受到點到線,線到面、面到體的聯系。
②能根據圖形特徵進行合理的判斷、選擇。
(2) 平面圖形的周長和面積
①理解周長與面積概念。
②掌握每種圖形的周長與面積計算公式及推導過程。
③能應用公式靈活解決問題。
①長方體、正方體、圓柱、圓錐的特徵。
②長、正方體的關系。
(3) 立體圖形的表面積和體積
②會求長方體、正方體、圓柱的表面積和體積;圓錐的體積。
③建立這四種立體圖形體積計算的聯系。
④加強體積與表面積的區別、體積與容積的區別的對比訓練。
建議:幾何初步知識這部分內容,知識容量比較大,復習時要讓學生真正參與到學習中來,提高學習效率,教師就要設計一些具有思考性,挑戰性、綜合性強的問題激發學生積極思考,調動學生的積極性,充分發揮學生的主體作用,讓他們在探究的過程中進一步理解、鞏固所學的知識,體驗成功的快樂,掌握學習的方法。
如:平面圖形面積知識網路圖由學生獨立完成(獨立思考、查閱資料、尋求幫助);長方體、正方體表面積可讓學生自帶磁帶盒,設計包裝方案——
切忌:面面俱到,不停講解,不斷提問,大量練習,只求結果,不重過程。
6、簡單的統計
復習要點及要求:
(1) 平均數:理解平均數的意義;掌握求平均數的方法;能應用平均數解決實際問題。
(2) 統計表、統計圖:了解統計表、圖的種類,特點,製作方法,會分析統計圖表。
有些可能重復了.
Ⅶ 小學數學概念
公因數:
公因數,就是兩個或兩個以上的數都有的因數.
如:10和5的公因數有1,5.
因為10的公因數有1,2,5,10
5的公因數有1,5.所以10和5的公因數有1,5.
----------------------
兩個數A和B,它們的公倍數就是既是A的倍數又是B的倍數的數,即能同時被A、B整除
比如說:12和15,它們的公倍數是60,120,180,等等
在這些公倍數中最小的那一個就叫最小公倍數,就是60
--------------------------
質數的概念
一個數,如果只有1和它本身兩個因數,這樣的數叫做質數,又稱素數。例如(10以內) 2,3,5,7 是質數,而 4,6,8,9 則不是,後者稱為合成數或合數。特別聲明一點,1既不是質數也不是合數。從這個觀點可將整數分為兩種,一種叫質數,一種叫合成數。(1不是質數,也不是合數)著名的高斯「唯一分解定理」說,任何一個整數。可以寫成一串質數相乘的積。質數中除2是偶數外,其他都是奇數。
——————————————
合數的概念
除了1和它本身之外,還有其他的因數 ,一個合數至少有3個因數。
——————————————————
1既不是質數也不是合數,1隻有它本身一個約數,0是有無數個約數(除了它本身以外),因此把自然數分為「質數、合數、0、1」更合理一些。
——————————————————
一個數的因數的特點:
(1)最大因數是其自身,最小因數是1。
(2)因數個數有限。
一個數的倍數的特點:
(1)最小倍數是其自身,沒有最大的倍數。
(2)倍數個數無限。
Ⅷ 小學數學的所有概念
小學數學公式大全
一、小學數學幾何形體周長面積體積計算公式
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬S=ab
正方形的面積=邊長×邊長S=a.a= a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r半徑=直徑÷2 r= d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd=2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2。公式S= a×h÷2
正方形的面積=邊長×邊長公式S= a×a
長方形的面積=長×寬公式S= a×b
平行四邊形的面積=底×高公式S= a×h
梯形的面積=(上底+下底)×高÷2公式S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高公式:V=abh
長方體(或正方體)的體積=底面積×高公式:V=abh
正方體的體積=棱長×棱長×棱長公式:V=aaa
圓的周長=直徑×π公式:L=πd=2πr
圓的面積=半徑×半徑×π公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
二、單位換算
(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米
(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米
(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米
(4)1噸=1000千克1千克= 1000克=1公斤= 2市斤
(5)1公頃=10000平方米1畝=666.666平方米
(6)1升=1立方分米=1000毫升1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月
平年2月28天,閏年2月29天平年全年365天,閏年全年366天1日=24小時1時=60分
1分=60秒1時=3600秒
三、數量關系計算公式方面
1、每份數×份數=總數總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程路程÷速度=時間路程÷時間=速度
4、單價×數量=總價總價÷單價=數量總價÷數量=單價
5、工作效率×工作時間=工作總量工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和和-一個加數=另一個加數
7、被減數-減數=差被減數-差=減數差+減數=被減數
8、因數×因數=積積÷一個因數=另一個因數
9、被除數÷除數=商被除數÷商=除數商×除數=被除數
四、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
五、特殊問題
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或小數+差=大數)
植樹問題
1非封閉線路上的植樹問題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
(2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
(3)如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題
(1)一般公式:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾
1÷單位時間能完成的幾分之幾=工作時間
Ⅸ 小學數學概念的小學數學概念表現形式
在小學數學教材中的概念,根據小學生的接受能力,表現形式各不相同,其中描述式和定義式是最主要的兩種表示方式。 用一些生動、具體的語言對概念進行描述,叫做描述式。這種方法與定義式不同,描述式概念,一般藉助於學生通過感知所建立的表象,選取有代表性的特例做參照物而建立。如:「我們在數物體的時候,用來表示物體個數的1、2、3、4、5……叫自然數」;「象1.25、0.726、0.005等都是小數」等。這樣的概念將隨著兒童知識的增多和認識的深化而日趨完善,在小學數學教材中一般用於以下兩種情況。
一種是對數學中的點、線、體、集合等原始概念都用描述法加以說明。例如,「直線」這一概念,教材是這樣描述的:拿一條直線,把它拉緊,就成了一條直線。「平面」就用「課桌面」、「黑板面」、「湖面」來說明。
另一種是對於一些較難理解的概念,如果用簡練、概括的定義出現不易被小學生理解,就改用描述式。例如,對直圓柱和直圓錐的認識,由於小學生還缺乏運動的觀點,不能像中學生那樣用旋轉體來定義,因此只能通過實物形象地描述了它們的特徵,並沒有以定義的形式揭示它們的本質屬性。學生在觀察、擺拼中,認識到圓柱體的特徵是上下兩個底面是相等的圓,側面展開的形狀是長方形。
一般來說,在數學教材中,小學低年級的概念採用描述式較多,隨著小學生思維能力的逐步發展,中年級逐步採用定義式,不過有些定義只是初步的,是有待發展的。在整個小學階段,由於數學概念的抽象性與學生思維的形象性的矛盾,大部分概念沒有下嚴格的定義;而是從學生所了解的實際事例或已有的知識經驗出發,盡可能通過直觀的具體形象,幫助學生認識概念的本質屬性。對於不容易理解的概念就暫不給出定義或者採用分階段逐步滲透的辦法來解決。因此,小學數學概念呈現出兩大特點:一是數學概念的直觀性;二是數學概念的階段性。在進行數學概念教學時,我們必須注意充分領會教材的這兩個特點。
Ⅹ 小學數學概念有哪些
小學數學知識概念公式匯總
小學一年級 九九乘法口訣表。學會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
數量關系計算公式方面
1、單價×數量=總價
2、單產量×數量=總產量
3、速度×時間=路程
4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =ab+c
一般運算規則
1 每份數×份數=總數總數÷每份數=份數 總數÷份數=每份數
2 1倍數×倍數=幾倍數幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3 速度×時間=路程路程÷速度=時間 路程÷時間=速度
4 單價×數量=總價總價÷單價=數量 總價÷數量=單價
5 工作效率×工作時間=工作總量工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6 加數+加數=和和-一個加數=另一個加數
7 被減數-減數=差被減數-差=減數 差+減數=被減數
8 因數×因數=積積÷一個因數=另一個因數
9 被除數÷除數=商被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 正方形 C周長 S面積 a邊長
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2 正方體 V:體積 a:棱長
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3 長方形 C周長 S面積 a邊長
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4 長方體 V:體積 s:面積 a:長 b: 寬 h:高
表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
體積=長×寬×高 V=abh
5 三角形 s面積 a底 h高
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底三角形底=面積 ×2÷高
6 平行四邊形 s面積 a底 h高
面積=底×高 s=ah
7 梯形 s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8 圓形 S面積 C周長 ∏ d=直徑 r=半徑
周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
面積=半徑×半徑×∏
9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
側面積=底面周長×高表面積=側面積+底面積×2
體積=底面積×高體積=側面積÷2×半徑
10 圓錐體 v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
奉上,望採納!