導航:首頁 > 小學學科 > 小學數學綜合試題

小學數學綜合試題

發布時間:2021-02-02 09:32:30

小學數學綜合試題及答案

1.明明和小華到新華書店去買《小學數學百問》這本書。一看書的價錢,發現明明帶的錢缺1分錢,小華帶的錢缺2.35元。兩人把錢合起來,還是不夠買一本的。那麼買一本《小學數學百問》到底要花多少元?
2.將奇數按如下順次排列
1 5 7 19 21
3 9 17 23 ……
11 15 25 ……
13 27 ……
29 33 ……
31 ……
在這樣的排列中,17這個數排在第2行第3列,33這個數排在第5行和2列,那麼1995這個數排在第幾行第幾列?
3.有一列數,第一個數和第二個數都是1994,以後每個數都是前面兩個數的和,這列數的第1994個數除以3的余數是幾?
4.11+22+33+44+55+66+77+88+99+1010除以3的余數是幾?
5.某班有學生51人,准備推選1名同學在教師節那天給老師獻花。選舉的方法是讓51名同學按編號1、2、3、„„、51排成一個圓圈,從1號位開始,隔過1號,去掉2號、3號,隔過4號,去掉5號、6號„„如此循環下去,總是每隔過1個人,就去掉2個人,最後剩下的那名同學當選。那麼當選的同學開始時是排在幾號位置上的?
6.設 1、3、9、27、81、243、729、2187是給定的 8個數,在這8個數中每次取1個或取幾個不同的數求和,可以得到一個新數,這樣共得到255個新數。從小到大把這些新數排列起來,那麼第250個數是幾?
7.有一列數1/1、1/2、2/2、1/2、1/3、2/3、3/3、2/3、1/3、1/4、2/4、3/4、„„那麼第398個數是多少?
8.下圖中已填好了2個數6和7,再從1、2、3、4、5中選出4個數填在圖中空格中,要使填好的格里的數右邊比左邊大,下邊比上邊大,那麼一共有多少種不同的填法?

9.下面方格中每橫行、每豎行、每條對角線上的三個數之和都相等,那麼方格中的A、B、C、D、E各是多少?

10.有四包糖,每次選出其中的3包,算出這三包的平均重量,再加上另一包的重量,用這種方法算了4次,分別得到下面4種重量8.8千克,9.6千克,10.4千克,11.2千克那麼這四包糖平均每包重多少千克?

小明擺了兩次,第一次擺成正方陣後,餘下12枚棋子;第二次擺成每邊各加 1枚棋子的正方陣時,還缺少9枚棋子。那麼這些棋子共有多少個?
12.有兩列數,它們各自按一定的規律排列。第一列數是:3、5、7、9、„„,第二列數是:4、9、14、19、24、„„,第一列數中的第1個數與第二列數中的第1個數相加是3+4;第一列數中的第2個數與第二列數中的第2個數相加是5+9;„„那麼兩列數第80個數相加,是幾+幾?
13.有7000多棵小樹苗,按著六種規格捆成若干小捆。如果每10根捆成1捆,結果剩下9棵;如果每9棵捆成1捆,結果剩下8棵;第三、四、五、六種規格是:分別以8棵、7棵、6棵、5棵捆成1捆,那麼最後分別剩下7棵、6棵、5棵、4棵。問一共有多少棵小樹苗?
14.有幾個長方形,它們的長和寬的長度都是小於10的自然數,並且各個長方形的寬與長的比值都比3/10大,比1/2小。那麼這幾個長方形的面積總和是多少?
15.有一個數比30小,它與2的差能被3整除。它與3的和能被4整除。它與1的和能被5除整除。這個數除以60的余數是幾?
16.如果兩個數的和是80,這兩個數的積可以整除4875,那麼這兩個數的差是多少?
17.一個六位數,把它的末三位一起搬到前三位的前面,成為一個新的六位數,而原來那個六位數的7倍正好等於新的六位數的6倍。原來的六位數是多少?
18.某校六年級學生按一層男生、一層女生地排成一個正方陣。又知道男生比女多25人,這個學校的六年級共有多少學生?
19.在小於5000的自然數中,能被11整除,並且數字和為13的數,共有多少個?
20.有若干學生參加數學競賽,每個學生的得分都是整數。已知參賽學生所得的總分是4729分,並且前三名的分數分別是88分、85分、80分,最低分是30分,又知道沒有與前三名得分相同的學生,其它任何一個分數,得到這個分數的都不超過3人。那麼在這次競賽中得分不低於60分的學生至少有多少名?
21.某班一次考試有52人參加,共考 5個題,每道題做錯的人數如下:

又知道每人至少做對一道題,做對一道題的有7人,5道題全做對的有6人,做對2道題的人數和3道題的人數一樣多,那麼做對4道題的有多少人?
22.某車間原有工人不少於63名。在1月底以前的某一天調進了若干工人,以後每天都增調1人進車間工作。現在知道,這個車間在1月份每人每天生產1件產品,共生產了1994件。試問1月幾號開始調進工人?共調進了多少工人?
23.打一份稿件,甲單獨打,要6小時完成。如果按甲、乙、丙輪流每人打1小時的順序去打,正好用整小時數完成;如果按乙、丙、甲輪流每人打1小時的順序去打,就要比按甲、乙、丙輪流的順序去打多用0.5小時完成;如果按丙、甲、乙輪流每人打1小時的順序去打,就要比按甲、乙、丙輪流的順序去打多用0.25小時完成。現在由甲、乙、丙合打這份稿件,需要幾小時完成?
答案僅供參考:
1.明明買這本書還缺1分錢,小華要是能補上1分錢,就能買這本書了。可是小華、明明的錢合起來,仍然買不了這本書,這說明小華連1分錢也沒帶。
題中說,小華買這本書缺2.35元,那麼2.35元正好是這本書的價錢了。
所以買一本《小學數學百問》要花2.35元。

個數是990×2—1=1979
排在第1行第45列的數是1981,1983是第2行第44列上的數,余類推,得出1995排在第8行第38列。

㈡ 小學數學綜合計算題

1、口算
1.87+5.3= ( 28+ 72)×56= 10÷ 10×10= 4/9×3= 5÷1/3 = 1/2÷1/3 = 2/7×3/9 ÷2/7 = 21/25÷42= 4/5×3/4 = 8.7×0.2=

2、 (1)2.9-2.4x=1.7
(2)12-2x=1.5x+5
(3)2(6+x)-7.8=4.2
(4)2.8比x的25%多0.4,求x。
(5)4.6減去1.4的差去除 3.2,這個數是多少?
(6)一個版數比55的 3/5還多權10,這個數是多少?
(7)12x+7×30%=14.7
(8)5.25/X=12.75+3
(9)X:3/4=19/2*6
(10)109:0.25=26:X

3、(1).3708-3708÷36
(2).0.25×(4+0.4)÷0.1
(3)404-6045÷15
(4)3.75+4.5÷0.18×0 .25
(5)658+ 32×25+( 78-65 ) 這個數是多少?

㈢ 小學數學試題

1 歸一問題
【含義】 在解題時,先求出一份是多少(即單一量),然後以單一量為標准,求出所要求的數量。這類應用題叫做歸一問題。

【數量關系】 總量÷份數=1份數量 1份數量×所佔份數=所求幾份的數量
另一總量÷(總量÷份數)=所求份數

【解題思路和方法】 先求出單一量,以單一量為標准,求出所要求的數量。

例1 買5支鉛筆要0.6元錢,買同樣的鉛筆16支,需要多少錢?
解(1)買1支鉛筆多少錢? 0.6÷5=0.12(元)
(2)買16支鉛筆需要多少錢?0.12×16=1.92(元)
列成綜合算式 0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例2 3台拖拉機3天耕地90公頃,照這樣計算,5台拖拉機6 天耕地多少公頃?
解(1)1台拖拉機1天耕地多少公頃? 90÷3÷3=10(公頃)
(2)5台拖拉機6天耕地多少公頃? 10×5×6=300(公頃)
列成綜合算式 90÷3÷3×5×6=10×30=300(公頃)
答:5台拖拉機6 天耕地300公頃。
例3 5輛汽車4次可以運送100噸鋼材,如果用同樣的7輛汽車運送105噸鋼材,需要運幾次?
解 (1)1輛汽車1次能運多少噸鋼材? 100÷5÷4=5(噸)
(2)7輛汽車1次能運多少噸鋼材? 5×7=35(噸)
(3)105噸鋼材7輛汽車需要運幾次? 105÷35=3(次)
列成綜合算式 105÷(100÷5÷4×7)=3(次)
答:需要運3次。
2 歸總問題
【含義】 解題時,常常先找出「總數量」,然後再根據其它條件算出所求的問題,叫歸總問題。所謂「總數量」是指貨物的總價、幾小時(幾天)的總工作量、幾公畝地上的總產量、幾小時行的總路程等。

【數量關系】 1份數量×份數=總量 總量÷1份數量=份數
總量÷另一份數=另一每份數量

【解題思路和方法】 先求出總數量,再根據題意得出所求的數量。
例1 服裝廠原來做一套衣服用布3.2米,改進裁剪方法後,每套衣服用布2.8米。原來做791套衣服的布,現在可以做多少套?
解 (1)這批布總共有多少米? 3.2×791=2531.2(米)
(2)現在可以做多少套? 2531.2÷2.8=904(套)
列成綜合算式 3.2×791÷2.8=904(套)
答:現在可以做904套。
例2 小華每天讀24頁書,12天讀完了《紅岩》一書。小明每天讀36頁書,幾天可以讀完《紅岩》?
解 (1)《紅岩》這本書總共多少頁? 24×12=288(頁)
(2)小明幾天可以讀完《紅岩》? 288÷36=8(天)
列成綜合算式 24×12÷36=8(天)
答:小明8天可以讀完《紅岩》。
例3 食堂運來一批蔬菜,原計劃每天吃50千克,30天慢慢消費完這批蔬菜。後來根據大家的意見,每天比原計劃多吃10千克,這批蔬菜可以吃多少天?
解 (1)這批蔬菜共有多少千克? 50×30=1500(千克)
(2)這批蔬菜可以吃多少天? 1500÷(50+10)=25(天)
列成綜合算式 50×30÷(50+10)=1500÷60=25(天)
答:這批蔬菜可以吃25天。
3 和差問題
【含義】 已知兩個數量的和與差,求這兩個數量各是多少,這類應用題叫和差問題。

【數量關系】 大數=(和+差)÷ 2 小數=(和-差)÷ 2

【解題思路和方法】 簡單的題目可以直接套用公式;復雜的題目變通後再用公式。

例1 甲乙兩班共有學生98人,甲班比乙班多6人,求兩班各有多少人?
解 甲班人數=(98+6)÷2=52(人)
乙班人數=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2 長方形的長和寬之和為18厘米,長比寬多2厘米,求長方形的面積。
解 長=(18+2)÷2=10(厘米) 寬=(18-2)÷2=8(厘米)
長方形的面積 =10×8=80(平方厘米)
答:長方形的面積為80平方厘米。
例3 有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
解 甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數,丙是小數。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4 甲乙兩車原來共裝蘋果97筐,從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐,兩車原來各裝蘋果多少筐?
解 「從甲車取下14筐放到乙車上,結果甲車比乙車還多3筐」,這說明甲車是大數,乙車是小數,甲與乙的差是(14×2+3),甲與乙的和是97,因此 甲車筐數=(97+14×2+3)÷2=64(筐)
乙車筐數=97-64=33(筐)
答:甲車原來裝蘋果64筐,乙車原來裝蘋果33筐。
4 和倍問題
【含義】 已知兩個數的和及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做和倍問題。

【數量關系】 總和 ÷(幾倍+1)=較小的數 總和 - 較小的數 = 較大的數
較小的數 ×幾倍 = 較大的數

【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 果園里有杏樹和桃樹共248棵,桃樹的棵數是杏樹的3倍,求杏樹、桃樹各多少棵?
解 (1)杏樹有多少棵? 248÷(3+1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:杏樹有62棵,桃樹有186棵。
例2 東西兩個倉庫共存糧480噸,東庫存糧數是西庫存糧數的1.4倍,求兩庫各存糧多少噸?
解 (1)西庫存糧數=480÷(1.4+1)=200(噸)
(2)東庫存糧數=480-200=280(噸)
答:東庫存糧280噸,西庫存糧200噸。
例3 甲站原有車52輛,乙站原有車32輛,若每天從甲站開往乙站28輛,從乙站開往甲站24輛,幾天後乙站車輛數是甲站的2倍?
解 每天從甲站開往乙站28輛,從乙站開往甲站24輛,相當於每天從甲站開往乙站(28-24)輛。把幾天以後甲站的車輛數當作1倍量,這時乙站的車輛數就是2倍量,兩站的車輛總數(52+32)就相當於(2+1)倍,那麼,幾天以後甲站的車輛數減少為 (52+32)÷(2+1)=28(輛)
所求天數為 (52-28)÷(28-24)=6(天)
答:6天以後乙站車輛數是甲站的2倍。
例4 甲乙丙三數之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數各是多少?
解 乙丙兩數都與甲數有直接關系,因此把甲數作為1倍量。
因為乙比甲的2倍少4,所以給乙加上4,乙數就變成甲數的2倍;
又因為丙比甲的3倍多6,所以丙數減去6就變為甲數的3倍;
這時(170+4-6)就相當於(1+2+3)倍。那麼,
甲數=(170+4-6)÷(1+2+3)=28
乙數=28×2-4=52
丙數=28×3+6=90
答:甲數是28,乙數是52,丙數是90。
5 差倍問題
【含義】 已知兩個數的差及大數是小數的幾倍(或小數是大數的幾分之幾),要求這兩個數各是多少,這類應用題叫做差倍問題。

【數量關系】 兩個數的差÷(幾倍-1)=較小的數
較小的數×幾倍=較大的數

【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 果園里桃樹的棵數是杏樹的3倍,而且桃樹比杏樹多124棵。求杏樹、桃樹各多少棵?
解 (1)杏樹有多少棵? 124÷(3-1)=62(棵)
(2)桃樹有多少棵? 62×3=186(棵)
答:果園里杏樹是62棵,桃樹是186棵。
例2 爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?
解 (1)兒子年齡=27÷(4-1)=9(歲)
(2)爸爸年齡=9×4=36(歲)
答:父子二人今年的年齡分別是36歲和9歲。
例3 商場改革經營管理辦法後,本月盈利比上月盈利的2倍還多12萬元,又知本月盈利比上月盈利多30萬元,求這兩個月盈利各是多少萬元?
解 如果把上月盈利作為1倍量,則(30-12)萬元就相當於上月盈利的(2-1)倍,因此 上月盈利=(30-12)÷(2-1)=18(萬元)
本月盈利=18+30=48(萬元)
答:上月盈利是18萬元,本月盈利是48萬元。
例4 糧庫有94噸小麥和138噸玉米,如果每天運出小麥和玉米各是9噸,問幾天後剩下的玉米是小麥的3倍?
解 由於每天運出的小麥和玉米的數量相等,所以剩下的數量差等於原來的數量差(138-94)。把幾天後剩下的小麥看作1倍量,則幾天後剩下的玉米就是3倍量,那麼,(138-94)就相當於(3-1)倍,因此
剩下的小麥數量=(138-94)÷(3-1)=22(噸)
運出的小麥數量=94-22=72(噸)
運糧的天數=72÷9=8(天)
答:8天以後剩下的玉米是小麥的3倍。
6 倍比問題
【含義】 有兩個已知的同類量,其中一個量是另一個量的若干倍,解題時先求出這個倍數,再用倍比的方法算出要求的數,這類應用題叫做倍比問題。

【數量關系】 總量÷一個數量=倍數 另一個數量×倍數=另一總量

【解題思路和方法】 先求出倍數,再用倍比關系求出要求的數。

例1 100千克油菜籽可以榨油40千克,現在有油菜籽3700千克,可以榨油多少?
解 (1)3700千克是100千克的多少倍? 3700÷100=37(倍)
(2)可以榨油多少千克? 40×37=1480(千克)
列成綜合算式 40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2 今年植樹節這天,某小學300名師生共植樹400棵,照這樣計算,全縣48000名師生共植樹多少棵?
解 (1)48000名是300名的多少倍? 48000÷300=160(倍)
(2)共植樹多少棵? 400×160=64000(棵)
列成綜合算式 400×(48000÷300)=64000(棵)
答:全縣48000名師生共植樹64000棵。
例3 鳳翔縣今年蘋果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計算,全鄉800畝果園共收入多少元?全縣16000畝果園共收入多少元?
解 (1)800畝是4畝的幾倍? 800÷4=200(倍)
(2)800畝收入多少元? 11111×200=2222200(元)
(3)16000畝是800畝的幾倍?16000÷800=20(倍)
(4)16000畝收入多少元? 2222200×20=44444000(元)
答:全鄉800畝果園共收入2222200元,全縣16000畝果園共收入
44444000元。
7 相遇問題
【含義】 兩個運動的物體同時由兩地出發相向而行,在途中相遇。這類應用題叫做相遇問題。

【數量關系】 相遇時間=總路程÷(甲速+乙速)
總路程=(甲速+乙速)×相遇時間

【解題思路和方法】 簡單的題目可直接利用公式,復雜的題目變通後再利用公式。

例1 南京到上海的水路長392千米,同時從兩港各開出一艘輪船相對而行,從南京開出的船每小時行28千米,從上海開出的船每小時行21千米,經過幾小時兩船相遇?
解 392÷(28+21)=8(小時)
答:經過8小時兩船相遇。
例2 小李和小劉在周長為400米的環形跑道上跑步,小李每秒鍾跑5米,小劉每秒鍾跑3米,他們從同一地點同時出發,反向而跑,那麼,二人從出發到第二次相遇需多長時間?
解 「第二次相遇」可以理解為二人跑了兩圈。因此總路程為400×2
相遇時間=(400×2)÷(5+3)=100(秒)
答:二人從出發到第二次相遇需100秒時間。
例3 甲乙二人同時從兩地騎自行車相向而行,甲每小時行15千米,乙每小時行13千米,兩人在距中點3千米處相遇,求兩地的距離。
解 「兩人在距中點3千米處相遇」是正確理解本題題意的關鍵。從題中可知甲騎得快,乙騎得慢,甲過了中點3千米,乙距中點3千米,就是說甲比乙多走的路程是(3×2)千米,因此,
相遇時間=(3×2)÷(15-13)=3(小時)
兩地距離=(15+13)×3=84(千米)
答:兩地距離是84千米。
8 追及問題
【含義】 兩個運動物體在不同地點同時出發(或者在同一地點而不是同時出發,或者在不同地點又不是同時出發)作同向運動,在後面的,行進速度要快些,在前面的,行進速度較慢些,在一定時間之內,後面的追上前面的物體。這類應用題就叫做追及問題。
【數量關系】 追及時間=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及時間
【解題思路和方法】 簡單的題目直接利用公式,復雜的題目變通後利用公式。

例1 好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?
解 (1)劣馬先走12天能走多少千米? 75×12=900(千米)
(2)好馬幾天追上劣馬? 900÷(120-75)=20(天)
列成綜合算式 75×12÷(120-75)=900÷45=20(天)
答:好馬20天能追上劣馬。
例2 小明和小亮在200米環形跑道上跑步,小明跑一圈用40秒,他們從同一地點同時出發,同向而跑。小明第一次追上小亮時跑了500米,求小亮的速度是每秒多少米。
解 小明第一次追上小亮時比小亮多跑一圈,即200米,此時小亮跑了(500-200)米,要知小亮的速度,須知追及時間,即小明跑500米所用的時間。又知小明跑200米用40秒,則跑500米用〔40×(500÷200)〕秒,所以小亮的速度是 (500-200)÷〔40×(500÷200)〕=300÷100=3(米)
答:小亮的速度是每秒3米。
例3 我人民解放軍追擊一股逃竄的敵人,敵人在下午16點開始從甲地以每小時10千米的速度逃跑,解放軍在晚上22點接到命令,以每小時30千米的速度開始從乙地追擊。已知甲乙兩地相距60千米,問解放軍幾個小時可以追上敵人?
解 敵人逃跑時間與解放軍追擊時間的時差是(22-16)小時,這段時間敵人逃跑的路程是〔10×(22-6)〕千米,甲乙兩地相距60千米。由此推知
追及時間=〔10×(22-6)+60〕÷(30-10)=220÷20=11(小時)
答:解放軍在11小時後可以追上敵人。
例4 一輛客車從甲站開往乙站,每小時行48千米;一輛貨車同時從乙站開往甲站,每小時行40千米,兩車在距兩站中點16千米處相遇,求甲乙兩站的距離。
解 這道題可以由相遇問題轉化為追及問題來解決。從題中可知客車落後於貨車(16×2)千米,客車追上貨車的時間就是前面所說的相遇時間,
這個時間為 16×2÷(48-40)=4(小時)
所以兩站間的距離為 (48+40)×4=352(千米)
列成綜合算式 (48+40)×〔16×2÷(48-40)〕=88×4=352(千米)
答:甲乙兩站的距離是352千米。
例5 兄妹二人同時由家上學,哥哥每分鍾走90米,妹妹每分鍾走60米。哥哥到校門口時發現忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問他們家離學校有多遠?
解 要求距離,速度已知,所以關鍵是求出相遇時間。從題中可知,在相同時間(從出發到相遇)內哥哥比妹妹多走(180×2)米,這是因為哥哥比妹妹每分鍾多走(90-60)米,那麼,二人從家出走到相遇所用時間為
180×2÷(90-60)=12(分鍾)
家離學校的距離為 90×12-180=900(米)
答:家離學校有900米遠。
例6 孫亮打算上課前5分鍾到學校,他以每小時4千米的速度從家步行去學校,當他走了1千米時,發現手錶慢了10分鍾,因此立即跑步前進,到學校恰好准時上課。後來算了一下,如果孫亮從家一開始就跑步,可比原來步行早9分鍾到學校。求孫亮跑步的速度。
解 手錶慢了10分鍾,就等於晚出發10分鍾,如果按原速走下去,就要遲到(10-5)分鍾,後段路程跑步恰准時到學校,說明後段路程跑比走少用了(10-5)分鍾。如果從家一開始就跑步,可比步行少9分鍾,由此可知,行1千米,跑步比步行少用〔9-(10-5)〕分鍾。所以
步行1千米所用時間為 1÷〔9-(10-5)〕=0.25(小時)=15(分鍾)
跑步1千米所用時間為 15-〔9-(10-5)〕=11(分鍾)
跑步速度為每小時 1÷11/60=1×60/11=5.5(千米)
答:孫亮跑步速度為每小時5.5千米。
9 植樹問題
【含義】 按相等的距離植樹,在距離、棵距、棵數這三個量之間,已知其中的兩個量,要求第三個量,這類應用題叫做植樹問題。

【數量關系】 線形植樹 棵數=距離÷棵距+1
環形植樹 棵數=距離÷棵距
方形植樹 棵數=距離÷棵距-4
三角形植樹 棵數=距離÷棵距-3
面積植樹 棵數=面積÷(棵距×行距)

【解題思路和方法】 先弄清楚植樹問題的類型,然後可以利用公式。

例1 一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?
解 136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2 一個圓形池塘周長為400米,在岸邊每隔4米栽一棵白楊樹,一共能栽多少棵白楊樹?
解 400÷4=100(棵)
答:一共能栽100棵白楊樹。
例3 一個正方形的運動場,每邊長220米,每隔8米安裝一個照明燈,一共可以安裝多少個照明燈?
解 220×4÷8-4=110-4=106(個)
答:一共可以安裝106個照明燈。
例4 給一個面積為96平方米的住宅鋪設地板磚,所用地板磚的長和寬分別是60厘米和40厘米,問至少需要多少塊地板磚?
解 96÷(0.6×0.4)=96÷0.24=400(塊)
答:至少需要400塊地板磚。
例5 一座大橋長500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個電桿,每個電桿上安裝2盞路燈,一共可以安裝多少盞路燈?
解 (1)橋的一邊有多少個電桿? 500÷50+1=11(個)
(2)橋的兩邊有多少個電桿? 11×2=22(個)
(3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)
答:大橋兩邊一共可以安裝44盞路燈。
10 年齡問題
【含義】 這類問題是根據題目的內容而得名,它的主要特點是兩人的年齡差不變,但是,兩人年齡之間的倍數關系隨著年齡的增長在發生變化。

【數量關系】年齡問題往往與和差、和倍、差倍問題有著密切聯系,尤其與差倍問題的解題思路是一致的,要緊緊抓住「年齡差不變」這個特點。

【解題思路和方法】 可以利用「差倍問題」的解題思路和方法。

例1 爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?
解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)
答:今年爸爸的年齡是亮亮的7倍,明年爸爸的年齡是亮亮的6倍。
例2 母親今年37歲,女兒今年7歲,幾年後母親的年齡是女兒的4倍?
解 (1)母親比女兒的年齡大多少歲? 37-7=30(歲)
(2)幾年後母親的年齡是女兒的4倍?30÷(4-1)-7=3(年)
列成綜合算式 (37-7)÷(4-1)-7=3(年)
答:3年後母親的年齡是女兒的4倍。
例3 3年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?
解 今年父子的年齡和應該比3年前增加(3×2)歲,今年二人的年齡和為 49+3×2=55(歲)
把今年兒子年齡作為1倍量,則今年父子年齡和相當於(4+1)倍,因此,今年兒子年齡為
55÷(4+1)=11(歲)
今年父親年齡為 11×4=44(歲)
答:今年父親年齡是44歲,兒子年齡是11歲。
例4 甲對乙說:「當我的歲數曾經是你現在的歲數時,你才4歲」。乙對甲說:「當我的歲數將來是你現在的歲數時,你將61歲」。求甲乙現在的歲數各是多少?

這里涉及到三個年份:過去某一年、今年、將來某一年。列表分析:
過去某一年 今 年 將來某一年
甲 □歲 △歲 61歲
乙 4歲 □歲 △歲
表中兩個「□」表示同一個數,兩個「△」表示同一個數。
因為兩個人的年齡差總相等:□-4=△-□=61-△,也就是4,□,△,61成等差數列,所以,61應該比4大3個年齡差,因此二人年齡差為 (61-4)÷3=19(歲)
甲今年的歲數為 △=61-19=42(歲)
乙今年的歲數為 □=42-19=23(歲)
答:甲今年的歲數是42歲,乙今年的歲數是23歲。
11 行船問題
【含義】 行船問題也就是與航行有關的問題。解答這類問題要弄清船速與水速,船速是船隻本身航行的速度,也就是船隻在靜水中航行的速度;水速是水流的速度,船隻順水航行的速度是船速與水速之和;船隻逆水航行的速度是船速與水速之差。

【數量關系】 (順水速度+逆水速度)÷2=船速
(順水速度-逆水速度)÷2=水速
順水速=船速×2-逆水速=逆水速+水速×2
逆水速=船速×2-順水速=順水速-水速×2

【解題思路和方法】 大多數情況可以直接利用數量關系的公式。

例1 一隻船順水行320千米需用8小時,水流速度為每小時15千米,這只船逆水行這段路程需用幾小時?
解 由條件知,順水速=船速+水速=320÷8,而水速為每小時15千米,所以,船速為每小時 320÷8-15=25(千米)
船的逆水速為 25-15=10(千米)
船逆水行這段路程的時間為 320÷10=32(小時)
答:這只船逆水行這段路程需用32小時。
例2 甲船逆水行360千米需18小時,返回原地需10小時;乙船逆水行同樣一段距離需15小時,返回原地需多少時間?
解由題意得 甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可見 (36-20)相當於水速的2倍,
所以, 水速為每小時(36-20)÷2=8(千米)
又因為, 乙船速-水速=360÷15,
所以, 乙船速為 360÷15+8=32(千米)
乙船順水速為 32+8=40(千米)
所以, 乙船順水航行360千米需要 360÷40=9(小時)
答:乙船返回原地需要9小時。
例3 一架飛機飛行在兩個城市之間,飛機的速度是每小時576千米,風速為每小時24千米,飛機逆風飛行3小時到達,順風飛回需要幾小時?
解 這道題可以按照流水問題來解答。
(1)兩城相距多少千米? (576-24)×3=1656(千米)
(2)順風飛回需要多少小時? 1656÷(576+24)=2.76(小時)
列成綜合算式〔(576-24)×3〕÷(576+24)=2.76(小時)
答:飛機順風飛回需要2.76小時。
應該夠了吧...

小學六年級數學綜合測試題(三)

設原計劃用x小時
3(x+(2/3))=6(x-(2/3))
3x+2=6x-4
2+4=6x-3x
6=3x
x=2
所以原計劃用2小時
距離=3×(2+(2/3))=8千米
速度是:8÷2=4千米/小時

㈤ 小學數學畢業綜合測試卷(15)

一、填空題。(20分)
1.一個三位小數用四捨五入法取近似值是8.30,這個數原來最大是( 8.304 ),最小是( 8.301)。
2.一個小數,小數點向左移動一位,再擴大1000倍,得365,則原來的小數是(3.65 )。
3.把邊長是10厘米的兩個正方形拼成一個長方形,這個長方形的周長是( 60 ),面積是( 200平方厘米 )。
4.一個圓錐體的高是24厘米,體積是80立方厘米,比與它等底的圓柱體的體積少40立方厘米,圓柱體的高是( 12 )厘米。
5.一批本子分發給六年級一班學生,平均每人分到l2本。若只發給女生,平均每人可分到20本,若只發給男生,平均每人可分得( 30 )本。
6.一個圓柱體的體積是9.42立方分米,與它等底等高的體積是( )立方分米。
7.2008年,奧運會在北京舉行。這一年上半年與下半年的天數相差( )天。
8.一個數的 是 ,它的25%是( )。
9.把240按3:5分成甲、乙兩個數,甲數是( 90 ),乙數是(150 )。
10.△△□☆★△△□☆★△△□☆★…左起第30個是(★),此時△共有( 12 )個,其他三種圖形一共是18個。
11. ,當( )一定時,( )和( )成( )比例。
12.下圖是一個靶盤,靶盤上標出了射中某區域的得分數,小明射靶的成績恰好是100分,小明至少射中了( )次,射中的分數分別是( )。

二、判斷題(對的在括弧內打「√」,錯的打「×」)。(5分)
1.一個角的兩條邊越長,這個角就越大。 ( )
2.圓不論大小,每個圓的周長都是各自直徑的 倍。 ( )
3.把12分解質因數是l2=1×2×2×3。 ( )
4. 中含有未知數,所以它是方程。 ( )
5.4比5少20%,就是5比4多20%。 ( )
三、選擇題(將正確答案的序號填入括弧內)。(5分)
1.王師傅原來5分鍾加工一批零件,技術更新後2分鍾就完成了任務。他的工作效率提高了( A )。
A.60% B.150% C.250%
2.正方體的棱長與它的體積( C )。
A.成正比例 B.成反比例 C.不成比例
3.一條直徑為2厘米的半圓,它的周長是( A )。
A.6.28厘米 B.3.14厘米 C.5.14厘米
4.下列說法正確的是( )。
A.一條射線長50米
B.一年中有6個大月,6個小月
C. 和4:3能組成比例式
5.如果☆代表一個相同的自然數,那麼下例各式中,得數最大的是( C )。
A.☆÷ B. ÷☆ C. ×☆
四、計算題。(30分)
1.直接寫得數(8分)
7.3-3.7= 3.6 3 ÷ 0.3= 10 0.12 = 40 × (3 )%=100
14 + 15 = 29 2-34 = -32 1- 4 9 + 5 9 = 11 47 ×( 1/47)=1
2.計算下面各題,能簡算的要簡算(16分)
13.25-5.34-7.66+ 4.75 =13.25+4.25-(5.34+7.66)=5.5

閱讀全文

與小學數學綜合試題相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99