① 小學數學 圓的認識 要教什麼 怎樣教
圓的概念
圓的各部分名稱
同圓或等圓內半徑和直徑的關系
圓是軸對稱圖形
圓規畫圓
② 6年級圓的認識數學日記
圓
今天上數學課老師教我們如何畫圓。並告訴我們點O是圓心,用來確定圓的位置;線段OA是半徑,通常用字母r表示;線段BC是直徑,通常用字母d表示(注意:直經一點要經過圓心哦!)
老師還提問說:「有誰知道半徑、直徑之間、半徑與直徑之間有什麼關系?」有位同學回答說:「同一個圓里,直徑長是半徑的兩倍,用字母表示d等於2r」還有同學說:「同一個圓中所有的半徑都相等,所有的直徑都相等」
那我現在就來考考你你知道為什麼井蓋都是圓的嗎?圓有幾條對稱軸?恭喜你答對了,因為井蓋做成圓的,無論哪個方向都可以,圓有無數條對稱軸。
在學習圓的過程中,我們遇到了一個新的字母兀,它就是圓周率。在我國,現存有關圓周率的最早記載是2000多年前的《周髀算經》
公元前30集古希臘數學家阿靜的發型,當正多邊形的邊數增加時,它的形狀就越來越接近於,這一發現提供了計算圓周率的新途徑。在我國,首先是由魏晉時期傑出的數學家劉威得出了較精確的圓周率的值,他採用割圓術,一直算到圓內正街192邊形得到圓周率,近似值是3.14。但大家更熟悉的是祖沖之的貢獻吧!1500多年前,我國南北朝時期著名的數學家祖沖之得到了兀的兩個分數形式的近似值。並且算出pi的近似值在3.1415926和3.1415927之間。隨著數學的不斷發展,兀這小數點後面的精確數越來越多,2000年圓周率已經可以計算到小數點後12411億位。
③ 小學數學圓的認識單元測試卷怎麼做
面積;πr^2
周長;πd=π*2r
用公式帶入就行了
④ 小學六年級上冊數學《圓的認識》數學日記
.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等.
2.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中有一組量相等,那麼它們所對應的其餘各組量都分別相等.
3.把整個圓周等分成360份,每一份弧是1°的弧.圓心角的度數和它所對的弧的度數相等.
4.圓是中心對稱圖形,即圓繞其對稱中心(圓心)旋轉180°後能夠與原來圖形重合,這一性質不難理解.圓和其他中心對稱圖形不同,它還具有旋轉不變性,即圍繞圓心旋轉任意一個角度,都能夠與原來的圖形重合.
5.垂徑定理 垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧
5.(1)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
(2)弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
(3)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
6.圓的兩條平行弦所夾的弧相等
7.(1)一條弧所對的圓周角等於它所對的圓心角的一半.
(2)同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等.
(3)半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑.
(4)如果三角形一邊上的中線等於這邊的一半,那麼這個三角形是直角三角形.
8.(1)圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
(2)垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
(3)平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧.
(4)弦的垂直平分線經過圓心,並且平分弦所對的兩條弦.
(5)平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧.
(6)圓的兩條平行弦所夾的弧度數相等.
9.圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸.
垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧.
10.平分弦(不是直徑)的直徑垂直與弦,並且平分弦所對的兩條弧.
11.在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等,所對的弦的弦心距也相等.
12.在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角相等,所對的弦的弦心距也相等.
13.同一個弧有無數個相對的圓周角.
14.弧的比等於弧所對的圓心角的比.
15.圓的內接四邊形的對角互補或相等.
16.不在同一條直線上的三個點能確定一個圓.
17.直徑是圓中最長的弦.
18.一條弦把一個圓分成一個優弧和一個劣弧.