『壹』 小學數學解決問題的一般策略有哪些
1.歸納法。就是用聯系、運動、發展變化的觀點看待問題,把有待解決的問題,通過某種轉化過程,歸結為一類已經解決或容易解決的問題。其實質就是對問題進行變形,促使矛盾轉化。例如:完全歸納法(數學歸納法)與不完全歸納法。
2.假設法。就是先對題目中的已知條件或問題作出某種假設,然後,按照題中的已知條件進行推算,根據數量上出現矛盾,加在適當調整,最後找到正確答案的一種解題思想方法。如「雞兔同籠」問題。
3.逆推法。採用與事情發生過程相反的順序思考的解題方法做做逆推法。
4.列舉篩選法。解某些數學題時,有時要根據題目的一部分條件,把可能的答案一一列舉出來,然後根據另一部分條件檢驗,篩選出題目的答案。
5.圖解法。解數學題時,可以設法把條件、問題以及它們的數量關系用線段圖、韋恩圖等圖形反映上來,使我們能藉助圖形進行分析、推理,尋找解題途徑,這種方法叫圖解法。
6.類比法。
「類比」是根據兩個或兩類事物有些屬性相同,推測它們另一些屬性也可能相同的推理。在解題中,根據題中所求問題與已知條件相類似的關系,利用類比推理,找類比模型,從而尋找解題途徑的方法叫類比法。
7.小學數學中常用邏輯推理法。
(1)分析與綜合法
分析法是從需證的結論出發,以一系列已知定義、定理為依據逐步逆溯,從而達到已知條件的推理方法。特別是應用題,幾何證明題等。
綜合法是從題設條件出發,以一系列已知定義、定理為依據,逐步推演出所需證明的結論的推理方法。
(2)歸納與演繹法
歸納與演繹是相互聯系著的,歸納得出的結論,可以用演繹法去驗證,演繹的前提是通過歸納得出的。
由特殊性前提引出一般性結論的推理叫做歸納推理。以歸納推理為主要內容的科學研究方法叫做歸納法。一般地,在小學數學課中,運算定律,基本性質,法則等都是運用不完全歸納讓學生從頭從一般原理到特殊事例的推理叫做演繹推理。以演繹推理的主要內容的科學研究方法叫演繹法。一般地,在小學數學教材中,當以歸納推理的形式得出運算定律,基本性質、法則、公式後,都再以演繹推理的形式進行計算。如三段論(由大前提、小前提、結論構成)
(3) 觀察與實驗法
(4)聯想法
(5)猜想法
(6)對應法
『貳』 小學數學問題解決過程中有哪些策略請舉例說明
1,思路清晰抄:比如人家說一斤棉花和一斤鐵那個重,當然是一樣重了,有的同學就容易誤認為比的是密度,其實比的是重量,
2,透過問題看本質,知道他考的是什麼。如和差問題,和倍問題,差倍問題,過橋問題,年齡問題,流水問題
『叄』 小學數學解決問題有哪些
1、
每份數×份數=總數
總數÷每份數=份數 總數÷份數=每份數
2、
1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數
幾倍數÷倍數=
1倍數
3、
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4、
單價×數量=總價
總價÷單價=數量 總價÷數量=單價
5、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6、
加數+加數=和
和-一個加數=另一個加數
7、
被減數-減數=差
被減數-差=減數
差+減數=被減數
8、
因數×因數=積 積÷一個因數=另一個因數
9、
被除數÷除數=商 被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1、正方形:C周長
S面積
a邊長
周長=邊長×4C=4a
面積=邊長×邊長S=a×a
2、正方體:V:體積
a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體
積=棱長×棱長×棱長 V=a×a×a
3、長方形:
C周長
S面積
a邊長 周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4、長方體
V:體積
s:面積
a:長
b:
寬
h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5、三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6、平行四邊形:s面積
a底
h高
面積=底×高
s=ah
7、梯形:s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2 s=(a+b)×h÷2
8
圓形:S面
C周長
∏ d=直徑
r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9、圓柱體:v體積
h:高 s:底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10、圓錐體:v體積
h高
s底面積
r底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
植樹問題
1、非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2、封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米
1米=10分米
1分米=10厘米
1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000
千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年
1年=12月
大月(31天)有:
1\3\5\7\8\10\12月
小月(30天)的有:
4\6\9\11月
平年
2月28天,
閏年
2月29天
平年全年365天,
閏年全年366天
1日=24小時 1小時=60分
1分=60秒 1小時=3600秒
小學數學幾何形體周長
面積
體積計算公式
1、長方形的周長=(長+寬)×2
C=(a+b)×2
2、正方形的周長=邊長×4
C=4a
3、長方形的面積=長×寬
S=ab
4、正方形的面積=邊長×邊長
S=a.a=
a
5、三角形的面積=底×高÷2
S=ah÷2
6、平行四邊形的面積=底×高
S=ah
7、梯形的面積=(上底+下底)×高÷2
S=(a+b)h÷2
8、直徑=半徑×2 d=2r
半徑=直徑÷2 r=
d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2
c=πd
=2πr
10、圓的面積=圓周率×半徑×半徑
『肆』 小學數學解決問題策略有哪些
1.歸納來法。
用聯系、運動、發展自變化的觀點看待問題,把有待解決的問題,通過某種轉化過程,歸結為一類已經解決或容易解決的問題。
其實質對問題進行變形,促使矛盾轉化。
例如:完全歸納法(數學歸納法)與不完全歸納法。
2.假設法。
『伍』 小學數學解決問題有效教學策略有哪些
《新課程標准》指出:數學教學,要緊密聯系學生的生活實際,從學生的生活經驗和已有的知識出發,創設生動有趣的情境,引導學生開展觀察、操作、猜想、推理、交流等活動,使學生通過數學活動,掌握基本的數學知識和技能,初步學會從數學的角度去觀察事物,思考問題,激發對數學的興趣,以及學好數學的願望。解決問題的教學,就是要讓學生通過經歷觀察、分析、操作等解決問題的過程,積累解決問題的經驗,獲得解決問題的一般方法和策略。怎樣進行解決問題教學呢?下面談幾點自己的想法。
一、創設情境,提供有現實意義的問題
教師開始上課時,可以藉助主題圖或教學課件來創設生動有趣的教學情境,把抽象的數學知識與生活實際聯系起來。主題圖或教學課件上的信息在一定意義上是為學生思維提供線索的。當學生匯報後,教師引導學生將收集的信息進行整理,找出要解決的問題。通過觀察匯報也能為解決問題提供認知的基礎,激發了學生的求知慾望,煥發學生的主體意識,為學生自主探索、解決問題營造氛圍。具體如下:
1、教師先讓學生觀察主題圖。
師問:「圖上畫得是什麼,寫得是什麼,你發現了什麼?你獲得了哪些數學信息?」
2、讓學生認真獨立地觀看,分組討論和交流,並匯報和交流獲取的信息。
例如:二年級下冊第4頁「解決問題」。可將課本上的主題圖利用多媒體課件以動態的形式展示給學生,讓學生仔細觀察,說說發現了什麼。學生有了前面解決一步計算問題的經驗,已經具備了一定的搜集信息能力,他們分小組討論和交流,很快會說出自己發現的信息:原來有22人在看戲,走了6人,又來了13人。學生在看圖時,教師要注意培養學生有序的觀察,這樣有利於理清思路,並為將來找中間問題打下基礎。
二、 引導學生挖掘教材,形成解題策略
新課程不斷擴充著傳統數學的學科價值,它通過情景的展開,讓學生在活動的過程中體驗知識的形成過程,形成基本的解題策略,而這一切都必須立足於課堂教學。翻開教科書,「解決問題」教學部分,在情景圖中經常跳出一個可愛的小精靈,它有時會帶來一條信息;有時會提出一個問題;有時會講解解題思路;有時對不同的解題思路進行評價……小精靈所帶來的一切,只是教材呈現形式的變化嗎?這就需要我們教師認真研讀教材,從字里行間讀懂教材的編排如何與新課程理念有機地結合起來,更需要讀透教材,真正理解教材隱含的數學思想,展開有效教學,讓學生學會解決問題。教師既要主動聯系生活實際,讓學生在實際背景中學習數學,在開放的課堂中經歷合作、探究實踐等,又要注意防止以「生活味」完全取代數學教學所應具有的「數學味」,要正確處理好各種關系,讓學生在比較、反思、梳理中學會數學思考,形成解題策略。
三、培養學生合作交流,關注學生評價反思
合作交流是學生學習數學的重要方式。在解決問題的過程中,教師要讓學生產生合作交流的意識。教師應根據學生解決問題的實際情況,當部分學生解決問題的思路不很清晰時或者當學生提出了不同的解題方法,特別是有創新意識的方法時,可組織學生進行合作交流。而學生合作交流時,教師要關注學習有困難的學生,一方面鼓勵他們主動與同伴交流,表達自己的想法;另一方面,要讓其他學生主動關心他們,為他們探索解決問題的方法提供幫助。從而加深對問題本身的認識和解題方法的理解,有助於解題策略的形成。
在教學過程中,除了教師恰當地評價學生的想法,注意激勵學生外,還要組織小組之間、學生之間、師生之間開展積極有效的評價。讓學生通過評價他人解決問題的過程,形成自己對問題的明確見解。同時,教師還要引導學生對解決問題的過程進行回顧和反思。一方面,在解決問題的過程中,對自己所經歷的解題活動有正確的分析。在遇到困難時,能正視困難,不輕易放棄;在順利的情況下,能保持謹慎的態度,善於發現被自己忽略的問題。另一方面,在解決問題的過程結束之後,還應完整地回顧分析和思考問題的過程,反思自己的結果是否合理,還有沒有其他解決問題的方法。從而不斷積累解決問題的經驗,逐漸內化為成熟的解題策略
四、注重聯系生活,培養應用意識
教師除努力為學生應用所學知識創造條件和機會之外,還應積極鼓勵學生投身現實生活,讓學生在與生活親密接觸中,學會閱讀生活,學會數學應用。而投身現實生活,教師可以隨時結合教材進行。
1、抓住生活契機學會數學關注。
在整個學習過程中,教師應作個生活的有心人。經常藉助學生豐富多彩的生活,抓住生活契機引導學生學會數學關注。「解決問題」教學不能僅限於教材、限於課堂,應跳出教材、走出課堂,敞開生活空間,引領學生投身現實世界,自覺用數學的眼光去觀察、去發現、去解決,讓學生對現實世界的關注貫穿整個學習過程。
2、開展實踐活動培養應用意識。
隨著數學實踐活動的開展,一下拉近了數學和生活的距離,學生如魚得水。但活動的開展要根據學生的年齡特點和認知水平,依託孩子身邊的生活資源,依託合作的力量(同學、父母)。如結合加減法問題引導學生開展一次(和父母一起的)購物活動。學生經歷了購物、付款、找零等活動,有了一定的活動體驗,再在父母的協助下,整理有關信息,此時讓學生提出數學問題,自覺應用求和求差的綜合解題策略,解決實際問題就水到渠成了。而這種實踐活動應隨著學生年齡的增大不斷拓展空間, 讓學生在應用中感受生活中處處有數學,感受數學創造的樂趣。
「解決問題」教學是一個很大的課題,在新一輪課程改革中,它不僅僅是科研人員的話題,更需要我們一線教師主動參與,積極探索,讓我們攜起手來,以新的觀念,積極的心態,去繼承傳統應用題教學的寶貴經驗,創造性地開展教學,讓「解決問題」教學成為新課程改革中一個亮點。
『陸』 小學數學解決問題的策略有哪些
個人認為小學的來題目計算題自考的最多的是簡算,要用到加減乘除的各種規律比如乘法分配律,應用題用的最多的是畫線段圖的方法,很多問題一目瞭然。一些特別難的比如雞兔同籠會用到假設法。圖形題比較難的會用到輔助線。我當數學老師的時候給學生講的最多的就是畫線段圖的方法。概念性的題和計算類的題其實沒有難度,難點在應用題和圖形題。
『柒』 小學數學中常用的解決問題的策略有那些
順向思維:設未知數求解
逆向思維:列梯等式求解
最主要的就是理解題意
『捌』 小學數學中問題解決的策略,一般分哪幾類
這個題目有點問題
至少多少次
運氣好
一起就稱出來
這個題最好的方法是
第一次
一邊5個
有一邊是輕的
第二次
在5個中取出其中4個
一邊2個
一樣重
就是剩下那個
一邊輕
再拿那兩個
第三次
一邊一個
輕的那個就是