⑴ 如何在小學數學教學中培養學生的思維能力01
數學課堂就是教學加活動,任何課堂上學生都是學習的主體,教學是學習的中心環節。在小學數學教學中,如何發揮學生的主體意識、合作意識、實踐意識,把課堂變為學生學習活動的場所,恰如其分地組織數學活動,讓學生自主地參與生動、活潑的數學教學活動、靈活運用數學知識積極創新,使其個性、潛能得以充分開發,數學能力、數學思維得到充分的發展,是課堂上組織數學活動,發展學生思維能力的主要目標。我在從事小學數學教學工作的實踐中,從以下幾方面嘗試對學生思維能力進行培養。
一、讓「生活」走進課堂。
學生為什麼要學習數學?這個問題看似淺顯,卻值得我們思考。任何人學習無非是想學以致用,而小孩子學習數學更是為了用,為了能解決實際生活中的具體問題,為了長大後能在社會上生存。因此,我們的數學不能遠離生活,不能脫離現實。這也是當前教改的一大精髓,這就要求我們在備每一節課前都要想到這些知識與哪些實際例子有聯系,生活中哪些地方使用它。盡量做到能在實際情境中融入數學知識的,就不幹巴巴地講;有學生熟知的喜聞樂見的例子,就替代枯燥的例題;能動手操作發現學習的,就不灌輸,不包辦代替;有模仿再現實際應用的練習,就引進課堂,與書本練習題配合使用,總之,要從生活中來,到生活中去。讓學生自己思考,提高思維能力。
二、適當的組織游戲趣味型數學活動,發展學生思維的自主性。 數學課上,如果老師動得多,那麼學生可能就只是一個聽眾,靜的機會多,失去了親身經歷的機會,學生的主體地位很難顯現出來。
教師應通過一系列的活動轉化知識的呈現形式,做到貼近實際、貼近生活,培養學生思維的自主性。例如:排隊是學生天天都在經歷的生活事例,通過排排坐游戲活動,可以使學生自主地了解基數和序數的知識。學習《人民幣的認識》這一課,可以通過創設模擬的商場,讓學生在組內進行買賣活動,在充滿趣味性的自主活動中,學生不僅認識了人民幣,而且也學會了簡單的兌換。這樣,學生在學習中有著更顯的自主性。學生實實在在地體會到生活中的數學,切實感受數學與自己學習生活的密切聯系,使他們學會用數學的眼光去觀察身邊的事物。因此,自主參與活動是幫助學生積極思維,掌握知識的法寶。
三、組織知識拓寬型數學活動,發展學生思維的靈活性。
小學數學新課程標准十分強調學生是數學學習的主體,注意讓學生運用所學的知識,靈活地解決生活中的實際問題。誘發學生思維的源頭就是課堂,在組織數學活動過程中,我們要激活學生的思維,鼓勵學生標新立異,只有這樣,才能真正學活知識,用活知識。 例如:教學「兩位數減一位數的退位減法」時,我創設買玩具的活動情景,讓學生用36元錢買一件價值8元的玩具,看看還剩多少元?學生通過活動、交流得出了幾種不同的計算方法。有的小組認為可以先用10元減8元,再加上沒用的26元得28元;有的小組認為可以先用36減6再減2得28元;還有的小組認為6減8不夠減就用16減8得8,再加20得28元?? 經過討論,學生爭著說在不同的情況下,可以用不同的計算方法。學生通過在生活中去看、去想,在課堂上議一議、算一算,即拓寬了學生知識視野,又把數學課上獲得的知識靈活運用到平時的生活實際中,讓學生覺得學了數學非常有用,這樣的數學活動,就培養了思維的靈活性。
四、組織探究創新型數學活動,發展學生思維的創造性。
在教學過程中,教師要充分發揮創造性,依據學生的年齡特徵和認知水平,設計探究性和開放性的問題,給學生提供自主探索的機會,讓學生在觀察、操作、討論、交流、猜測、歸納、分析、整理過程中,理解數學問題的提出、數學概念的形成和數學結論的獲得,以及數學知識的應用。因此開展有組織的數學實踐活動,能為學生探索知識形
成過程,掌握思維方法提供廣闊的思維空間,同時也讓學生通過觀察、操作、分析、比較、歸納,清楚地發現其本質的內在聯系,從而獲得知識,並在此基礎上有所發展。 例如,教學《角的分類》一課時,我為學生提供了十個角為學具,以小組合作的形式,讓學生先量出各個角的度數,然後各小組進行討論,把十個角進行分類。匯報時,學生各抒己見,發現劃分的標准不一樣,得到的種類也不同。在這一操作過程中,培養了學生多角度的創造性思維。當學生按照三角形角的特點分為三類時,我要求學生根據三類角的特點,大膽地為它們取名。學生爭著回答,課堂氣氛達到了高潮。對於取對名的學生我及時加以表揚,大大樹立了學生的自信心。把學生置於主體地位,把學習數學知識轉化為數學活動,使學生學得輕松、學得靈活,從而最大限度地挖掘了學生的潛能,激發了學生的創新意識。
學生思維能力的培養,是一個長期復雜的教育過程,又是必須急待解決的一個關鍵問題。在教學過程中要把活動的時間交給學生,把活動的主動權交給學生,讓每個學生的聰明才智充分地得到發揮;把活動的空間留給學生,為每個學生的個性發展創造條件,有效的組織豐富多彩的數學活動,發展學生的思維能力。
⑵ 在小學數學教學中如何培養學生的思維能力
(一)運用多媒體教學手段滲透數學思想:在小學階段,數學思維能力的培養,要堅持寓教於樂的原則。通過多媒體和網路平台收集並呈現有趣的數學解決實際問題的內容。例如,將動畫片中的有關數學的內容剪輯下來,在課前或者課間播放,既能夠讓學生的精神得到放鬆,又能夠讓學生在觀看動畫的時候感受數學的實用性。
(二)套構的方式強化數學模型:套構的方式與類比的方法類同,是根據兩類或兩個對象的相似或相同點,推斷他們其他方面也相似或相同的思想方法是自特殊至特殊的方法在解決數學問題時。利用類比思想可發現新問題,所得結論雖具有一定的偶然性但卻可為該問題的深入研究提供線索為思維指明方向這對於問題的最終解決極為有利放而類比是數學發現中最基本、最重要方法在小學數學教學中教師應在結構特徵上、數量關繫上、算理思路與思想內容上進行類比思想的滲透教學。例如,在加法交換律的學習中,可以充分利用類比的方式。算式1+2+3+4+5+6+7+8+9+10=?這個題的解法有很多種,可以將各個加數依次相加,最終得出結構。也可以用加法交換率將算式進行加數上的調整。原式=1+2+3+4+5+6+7+8+9+10=(1+9)+(2+8)+(3+7)+(4+6)+5+10=10+10+10+5+10=55。套構加法交換率在連加算式中的應用,能夠使得計算更加簡便。套構既定數學定律或者定律,不但有利於學生鞏固所學的知識,而且能夠讓學生養成用數學模型來解決實際問題的意識。這樣有利於學生後續數學建模思想的學習和研究。
(三)逆向思維的方法:逆向思維是發散式思維的一種其基本特徵是從已有思路的反方向去思索問題這種思維形式反映了思維過程的間斷性、突變性、反聯結性是對思維慣性的克服其優點在於首先有利於克服慣常思維的保守性,開拓新的數學領域其次有利於糾正慣常思維所造成的錯誤認識,開辟數學新方向最後有利於排除慣常思維過程中。逆向思維的方法多用於應用題的解答。例如,張蘭在暑假閱讀文學名著《三國演義》,在第一周,他閱讀了一本書的一半少40頁,在第二周,他閱讀了剩下的一半多10頁,第三周他閱讀了30頁,至此全部看完。問題是《三國演義》這本書一共多少頁?利用逆向思維來解答,第二周閱讀了剩下的一半多10頁,第三周閱讀了30頁看完,即30頁加10頁正好是剩下的一半,也就是40頁;剩下的書頁數是80頁;第一周閱讀了書的一半少40頁,即比80頁少40頁,也就是第一周閱讀了40頁。所以這本書總共是80頁加上40頁,等於120頁。逆向思維這種數學思維的好處在於可以根據問題和題中已知的部分條件來還原出潛在的條件,運用還原出的條件可以繼續向前堆。如此這般環環相扣,最終就能解決問題。
(四)聯系生活創設情境:人們在學習比較難的知識時,其最大的動力是能夠解決自己的實際問題。為了培養學生的數學思維,可以通過將數學內容與學生日常生活相聯系的方法。這樣學生在情境中可以意識到如果解決這個問題會給其生活帶來益處,所以要努力學生,最終養成用數學思維解決問題的好習慣。相反,在數學課堂上,聯系生活情景,能夠讓孩子們利用生活常識和生活經驗更好地去理解數學解題方法。例如,關於三角形具有穩定性的教學內容中,教師可以讓學生用三個磁扣將掛圖固定在黑板上,為了配合教學活動,可以增加掛圖的重量,這樣可以使得三個磁扣平行放置無法穩定住掛圖。學生通過實驗發現,只有三個磁扣組成三角形時才能夠穩定掛圖。教學內容講授結束後,還要引導學生聯系生活實際。比如,用三個釘子來固定一個鏡框,釘子的位置怎麼安排最合理。
⑶ 如何在小學數學教學中培養學生的思維能力
正當前,小學數學來教學中十分注源重學生的思維訓練,現代數學理論告訴我們:數學教學的過程,就是教師引導學生進行數學思維活動的過程。小學數學教學的主要任務是積極發展學生的數學思維,培養思維能力。對小學生來說,他們的思維發展有一個從形象思維向抽象思維的過渡階段。兒童在學習概念、計算運算時常常要依賴具體的事物,藉助形象進行思考。因此,小學數學要從形象和演示操作入手,讓學生逐漸從形象思維過渡到邏輯思維,讓學生感到數學是可以捉摸
⑷ 如何在小學數學課堂教學中培養學生的思維能力
「數學是鍛煉思維的體操」。學生思維水平是要通過數學教學活動去培養和發展;培養專學生的思維能力屬,是小學數學教學的重要任務。教師要充分利用課堂教學這一主渠道,多給學生創設有利於思維能力培養的學習環境,採取靈活多樣的課堂教學模式,讓學生自主學習,引導他們主動探究解決問題的方法。我根據自己多年小學數學教學實踐體會,談一談在小學數學教學中對學生思維能力培養的建議和措施。一、創設適合小學生年齡特點的學習環境,啟發學生主動思維美國教育家布郎認為:「學習的環境應該放在真實的社會背景中,使它對學生有意義。」只有當學習內容跟其形成、運用的社會和自然情境結合時,有意義學習才可能發生,所學的知識才易於遷移到其他情境中再應用。只有在真實情境中獲得的知識和技能,學生才能真正理解和掌握,才可能應用到真實生活或環境中解決實際問題。許多老師在課堂教學中都有過這樣的經歷:對於需要識記的知識點,盡管老師強調許多遍,多數學生總是記不住,提問時也回答不上來。殊不知這是由於老師在講解知識點時沒有能夠創設一個符合小學生生理年齡和心理年齡的學習環境,沒有能夠提供給小學生一個利於識記的生活背景。我在實踐教學中每講到需要識記的較為抽象的知
⑸ 談談在小學數學教學中如何培養學生的思維能力
如何在小學數學課堂中培養學生的數學思維
在小學數學能力中,思維能力是最重要的一種能力,包括邏輯思維能力、直覺思維能力、形象思維能力和創造性思維能力。知識是思維活動的結果,又是思維的工具。學習知識和訓練思維既有區別,也有著密不可分的內在聯系,它們是在小學數學教學過程中同步進行的。數學教學的過程,應是培養學生思維能力的過程。
數學教學與思維的關系十分密切,數學教學就是指數學思維活動的教學,數學教學實質上就是學生在教師指導下,通過數學思維活動,學習數學家思維活動的成果,並發展數學思維,使學生的數學思維結構向數學家的思維結構轉化的過程。
2 數學思維能力概述
2.1 數學思維的含義
數學思維是針對數學教學活動而言的,它是通過對數學問題的提出、分析、解決、應用和推廣等一系列工作,以獲得對數學對象的本質和規律性的認識過程。
2.2 數學思維能力的含義
數學思維能力是人們在從事數學活動時所必需的各種思維能力的綜合,數學思維能力主要包括四個方面的內容:①會觀察、實驗、比較、猜想、分析、綜合、抽象和概括;②會用歸納、演繹和類比進行推理;③會合乎邏輯地、准確地闡述自己的思想和觀點;④能運用數學概念、思想和方法,辨明數學關系,形成良好的思維品質。
2.3 數學思維能力的界定
新頒布的數學教學大綱對常規的數學思維能力的界定:①數形感覺與判斷能力;②數據收集與分析能力;③幾何直觀和空間想像能力;④數學的表示與數學建模能力;⑤數學運算和數學變換能力;⑥歸納猜想與合情推理能力。
3 在小學數學教學中如何培養學生的數學思維能力
3.1 化抽象為直觀,促進學生思維
在數學基礎知識教學中,應加強形成概念、法則、定律等過程的教學,這也是對學生進行初步的邏輯思維能力培養的重要手段。然而,這方面的教學比較抽象,加之學生年齡小,生活經驗缺乏,抽象思維能力較差,學習時比較吃力。學生學習抽象的知識,是在多次感性認識的基礎上產生飛躍,感知認識是學生理解知識的基礎,直觀是數學抽象思維的途徑和信息來源。在教學時,應注意由直觀到抽象,逐步培養學生的抽象思維的能力。如在教學「角」這部分知識時,為了使學生獲得關於角的正確概念,首先引導學生觀察實物和模型:如三角板、五角星和張開的剪刀、扇子形成的角等,從這些實物中抽象出角。接著再通過實物演示,將兩根細木條的一端釘在一起,旋轉其中的一根,直觀地說明由一條射線繞著它的端點旋轉可以得到大小不同的角,並讓學生用准備好的學具親自動手演示,用運動的觀點來闡明角的概念,並為引出平角、周角等概念做了准備。
3.2 聯系新舊知識,發展學生思維
聯系舊知,進行聯想和類比。舊知是思維的基礎,思維是通向新知的橋梁。由舊知進行聯想和類比,也是尋求正確思維方向的有效途徑。聯想和類比,就是把兩種相近或相似的知識或問題進行比較,找到彼此的聯系和區別,進而對所探索的問題找到正確的答案。數學知識具有嚴密的邏輯系統。就學生的學習過程來說,某些舊知識是新知識的基礎,新知識又是舊知識的引伸和發展,學生的認識活動也總是以已有的舊知識和經驗為前提。每教一新知識都盡可能復習有關的舊知識,充分利用已有的知識來搭橋鋪路,引導學生運用知識遷移規律,在獲取新知識的過程中發展思維。如在教「加減法各部分的關系」時,先復習了加法中各部分的名稱,然後引導學生從35+25=60中得出:60-25=35;60-35=25。通過比較,可以看出後兩算式的得數實際上分別是前一個算式中的加數,通過觀察、比較,讓學生自己總結出求加數的公式:一個加數=和減去另一個加數。這樣引導學生通過溫故知新,將新知識納入原來的知識系統中,豐富了知識,開闊了視野,思維也得到了發展。
3.3 精心設計問題,引導學生思維
小學生的獨立性較差,他們不善於組織自己的思維活動,往往是看到什麼就想到什麼。培養學生邏輯思維能力,主要是在教學過程中通過教師示範、引導、指導,潛移默化地使學生獲得一些思維的方法。教師在教學過程中精心設計問題,提出一些富有啟發性的問題,激發思維,最大限度地調動學生的積極性和主動性。
例如: 小玲做了7個五角星,小雲做了8個五角星,她們送給幼兒園的小朋友們10個五角星,還剩幾個?
解:具體可設計這樣一些問題:
「這道題告訴了我們哪些條件?」
「知道小玲做7個,小雲做了8個,可以求出什麼?」
「又知道送給幼兒園小朋友10個,可以求出什麼?」
「那麼這道題先算什麼,後算什麼?」
學生的思維能力只有在思維的活躍狀態中,才能得到有效的發展。在教學過程中,教師應根據教材重點和學生的實際提出深淺適度,具有思考性的問題,這樣就將每位學生的思維活動都激活起來,通過正確的思維方法,掌握新學習的知識。
3.4 進行說理訓練,推動學生思維
語言是思維的工具,是思維的外殼,加強數學課堂的語
⑹ 淺談在小學數學教學中如何培養學生的思維能力
澄邁縣金江鎮山口中心學校善井小學 王詒發 思維是數學的靈魂。教育要培養出社會主義現代化建設所需要的人才,獨立思考和勇於創新的能力是人才的必備素質之一。在小學數學教學過程中,我們不僅要教會學生如何學習,而且要培養他們的思維能力。培養學生初步的邏輯思維能力,是一項意義重大,但又十分艱巨的教學工作。思維能力的培養需要研究的內容很多,如思維的方法和形式,教材中思維能力培養的因素,教學中培養思維能力的方法及小學生思維發展的年齡特點等等。事實上,對於學生思維能力的培養,應該貫穿於教學的全過程。下面結合我多年的數學教學實踐,談談在小學生數學思維能力培養上的一些探索及體會。一、 創設教學情境,激發學生的求知慾興趣是學生在學習活動中力求獲得科學文化知識,探索新信息,探求真理的情緒體現。數學教學是學生的學和教師的教共同活動的過程,一切教學措施最終都必須通過學生的學習活動來體現,知識的傳授、能力的培養要靠學生的積極思維活動去實現。在教學過程中,通過產生積極的情感,把知和情結合起來,就能激發學生的求知慾和學習興趣。知識的情緒色彩,不僅使學生的思維過程變得生動活潑,加深對問題的理解,對新信息的需求,而且使人長久難忘。小學生具有強烈的好奇心,學生對於自己感興趣的事物總是力求主動去認識它、研究它,那麼怎樣激發學生的求知慾,誘發學生進行思維呢?在進行新課之前,經常採用生動有趣的教學方法,使學生的原有知識發生矛盾,以激發學生的強烈的求知慾。如在教江蘇版小學數學六年級上冊的《認識比》時,我問學生:「你們知道人身上哪些器官存在著有趣的比嗎?如你買雙襪子,只要將襪底在拳頭翻一周,它的長與腳的長的比大約是1:1的緣故。這時學生的好奇心被調動起來,急想著知道人身上還有哪些比。趁著學生興趣盎然,接著我又講兩臂平伸與身高的比大約也是1:1,腳長與身高的比大約是1:7,手腕周長與頸周長的比約是1:2,頸周長與腰的比也約是1:2。」學生越聽越驚奇,急想驗證是否正確。當學生驗證之後,我又說:「知道這些有什麼用呢?如警察發現了犯罪嫌疑人的腳印,就可以利用比的知識推算出犯罪嫌疑人的身高等等。」精心設置問題,引起懸念,使學生產生疑問。這樣就能激起內部已知和不知的矛盾,激起認識興趣促使學生用已有的知識來解決未知的問題,引發了學生探索知識的強烈求知慾,從而獲取了新知識,促進了思維發展。二、 動手操作,促進思維獲取知識 激發學生的學習興趣,不只是提出問題,還要貫穿於解決問題獲取新知識的過程中,以動手操作,促進思維。俗話說:「百聞不如一見。」見一遍不如親手做一遍,這就說明了動手實際操作的重要性。在數學教學中,要重視學生的動手操作,因為操作是和數學學習過程緊密聯系在一起的,學生在操作物面前必須用腦,通過思維指導操作。學生動手操作也是符合其思維發展的特點,由具體到抽象,促使學生具體感知和抽象思維相結合,提高學生的學習興趣。皮亞傑指出:「要知道一個客體必須動之以手。」學生動手自己操作是根據學生認識規律提出來的,學生掌握書本知識需要以感性認識為基礎,通過實際操作可以使知識系統化、形象化,為學生感性理解和記憶知識創造條件。操作處在一個動態之中,這種不斷變化的情景,反饋於大腦,促使學生改變思維方法,以適應操作的變化,達到解決問題的目的。操作就是手和腦並用的活動,使學生的多種感官參與認識活動,從而參與到知識的形成和發展的過程中。例如在教學《圓的認識》(江蘇版五年級下冊第十單元內容)時,當學生掌握了畫圓的方法後,我要求學生任意畫出一圓,把它剪下來,並畫出這個圓的直徑和半徑。然後讓學生動手去測量,思考:直徑和半徑的長度有什麼關系?通過操作觀察推理,讓學生歸納出:在同一圓內,直徑的長度等於半徑的兩倍。三、 多設疑問,促進思維能力的發展 古人雲:「學起於思,思源於疑。」學生學習興趣和求知慾望往往是由疑問引起的。學生從感性材料中獲得一定的感性知識,並不等於就形成明確的概念。在教學過程中,課堂提問是引起學生思考的重要方法,通過提問使學生思維有明確的方向,在思維活動中分析解決問題,培養思維能力。因此教師只有逐步引導學生展開思維加工,才能將認識由具體、簡單現象上升為抽象、復雜、本質,這個過程決不能由教師代替學生思維,這是重視學生思維能力發展的關鍵。因此在教學中要抓住關鍵及時有序地提出思考性問題,教會學生比較、分析、綜合、概括的方法,促進思維能力的發展。 學生從感知教材向理解教材過度,教師要善於根據教材的要求,抓住問題的本質,及時提出適當的思考坡度的問題。學生對問題進一步思考,也就是學生思維能力的發展。要展開學生的思維而不是約束學生的思維,教學中應多問「為什麼,你是怎樣想的?」讓學生的思維充分展開。例如在教學《分數四則混合運算》(江蘇版小學六年級下冊第六單元內容)時,我先出示例題1,讓學生思考後列出算式: ×18 +×18。說明運算順序後,我提問:「還有其他方法嗎?」許多學生很快說出了另一算式:( +)×18,我適時提問:「為什麼,你是怎樣想的?」學生回答:「先算出兩種中國結各做1個要用彩繩多少米,再算出兩種中國結各做18個一共用彩繩多少米?」。學生回答得很好,表揚鼓勵學生後,我再提問:「這兩種解法之間有什麼聯系?哪一種方法比較簡便?」。這也是在啟發學生進一步思考,教師再加以適當的引導,使學生經過合理的思維過程來求得問題的結論。教師可以從中發現問題和最佳思路,及時展開討論,同時加深學生對知識的理解,達到教學相長的目的,同時也教給學生思維方法。 總之,教師要高度重視學生思維能力的培養,要善於設問題、設疑問、要善於引導學生多思考,使學生的智力和能力得到較多的培養與發展。小學數學教學,不僅傳授知識,讓學生學習、理解、掌握數學知識,更要注重教給學生學習的方法,探尋開展思維訓練的方法與途徑,培養學生良好的數學思維品質,使學生養成積極鑽研的學習習慣,切實提高學生的思維能力和數學素質。