Ⅰ 小學數學老師第一堂課如何自我介紹
同學們大家好! 我是你們的新老師 我的名字叫。。 以後我將會教大家。。 大家有什麼不懂的問題可以隨時來問我 。。。 反正只要很隨意的介紹就可以了,做老師不要總是一種高高在上的感覺 要給同學有親切感同學們才會喜歡你! 具體的你就自己發揮嘍
Ⅱ 應聘小學數學教師自我介紹怎麼寫
尊敬的領導: 您好!
我是今年剛於XX師范學院數學系畢業的學生。剛剛拿到我夢寐以求的初級教師資格證就急切的盼望蹋上教師的崗位.
XX師范學院我國具有悠久的歷史和優良的傳統的高質量學府,並且素以治學嚴謹、育人有方而著稱。在這樣的學習環境下,無論是在知識能力,還是在個人素質修養方面,我都受益非淺。
三年來,在師友的嚴格教益及個人的努力下,我具備了扎實的專業基礎知識,系統地掌握了有關理論;熟悉涉外工作常用禮儀;能熟練操作計算機辦公軟體。同時,我利用課余時間廣泛地涉獵了大量書籍,不但充實了自己,也培養了自己多方面的技能。更重要的是,嚴謹的學風和端正的學習態度塑造了我朴實、穩重、創新的性格特點。
此外,我還積極地參加各種社會活動,抓住每一個機會,鍛煉自己。大學三年的學習中,使我在競爭中獲益;向實際困難挑戰,讓我在挫折中成長。祖輩們教我勤奮、盡責、善良、正直;中國人民大學培養了我實事求是、開拓進取的作風。 我熱愛貴單位所從事的事業,殷切地期望能夠在您的領導下,為這一光榮的事業添磚加瓦;並且在實踐中不斷學習、進步。 收筆之際,請允許我鄭重地提一個小小的要求: 無論您是否選擇我,尊敬的領導,希望您能夠接受我誠懇的謝意!謝謝! 祝願貴單位事業蒸蒸日上!
尊敬的各位考官、各位評委老師大家好: 通過考試,今天,我以本崗位筆試第一的成績進入了面試。對我來說,這次機會顯得尤為珍貴。
我叫***,今年27歲。1997年7月我從**師范學校藝師美術專業畢業。由於從97年起國家不再對自費生包分配,使我與「太陽底下最光輝的職業」失之交臂。
今天,我想通過此次考試重新走上講壇的願望是那樣迫切!我家共有三姊妹,兩個姐姐在外打工,為了照顧已上了年紀的父母,我一直留在他們身邊。我曾開過鋪子,先是經營工藝品,後又經營服裝。但不論生意做得如何得心應手,當一名光榮的人民教師始終是我心嚮往之並願傾盡畢生心血去追求的事業。我曾多次參加考試,但都由於各種原因而未能實現夢想,但我暗下決心,只要有機會,我就一直考下去,直到理想實現為止。
河西馬廠完小師資不足,經人介紹,我在該完小擔任了一年的臨時代課教師。回想起那段時光真是既甜蜜又美好,雖然代課工資很低,但聽著同學們圍在身旁「老師」、「老師」的叫個不停,看著那一雙雙充滿信任的眼睛,那一張張稚氣的小臉,生活中的所有不快都頓時煙消雲散了。我原想,即使不能轉正,只要學校需要,就是當一輩子代課教師我也心甘情願。不料,1998年起國家開始清退臨時工和代課教師,接到了學校的口頭通知後,我懷著戀戀不舍的心情,悄悄地離開了學校。
如今的我,歷經生活的考驗,比起我的競爭對手在年齡上我已不再有優勢,但是我比他們更多了一份對孩子的愛心、耐心和責任心,更多了一份成熟和自信。教師這個職業是神聖而偉大的,他要求教師不僅要有豐富的知識,還要有高尚的情操。因此,在讀師范時,我就十分注重自身的全面發展,廣泛地培養自己的興趣愛好,並學有專長,做到除擅長繪畫和書法外,還能會唱、會說、會講。「學高僅能為師,身正方能為范」,在注重知識學習的同時我還注意培養自己高尚的道德情操,自覺遵紀守法,遵守社會公德,沒有不良嗜好和行為。我想這些都是一名教育工作者應該具備的最起碼的素養。
如果,我通過了面試。我將加倍努力工作來貢獻自己的力量,為教育事業添磚加瓦,決不辜負「人類靈魂的工程師」這個光榮的稱號。
上面一篇是你當過老師的介紹格式! 不過這個還是你自己寫自己的心得比較好!望採納
Ⅲ 小學數學基本概念大全
統計概率與小學數學教學
北京師范大學教育學院 劉京莉
《全日制義務教育數學課程標准》(實驗稿)中較大幅度地增加了「統計與概率」的內容。因為在信息社會,收集、整理、描述、展示和解釋數據,根據情報作出決定和預測,已成為公民日益重要的技能。因此小學數學加入這部分內容是完全必要的,本文將探討的問題是小學教師應明確哪些基本概念,使教學既具有科學性同時又符合學生的認知特點;如何使學生在形成和解決現實世界問題的過程中,發展統計意識、發展用統計的方法解釋數據、表達及交流信息的能力,以及用多種方式來收集、整理和展示他們的思考的能力;統計與概率與小學其它部分的內容是如何聯系的。
一、基本概念
1.描述統計。
通過調查、試驗獲得大量數據,用歸組、製表、繪圖等統計方法對其進行歸納、整理,以直觀形象的形式反映其分布特徵的方法,如:小學數學中的製表、條形統計圖、折線統計圖、扇形統計圖等都是描述統計。另外計算集中量所反映的一組數據的集中趨勢,如算術平均數、中位數、總數、加權算術平均數等,也屬於描述統計的范圍。其目的是將大量零散的、雜亂無序的數字資料進行整理、歸納、簡縮、概括,使事物的全貌及其分布特徵清晰、明確地顯現出來。
2.概率的統計定義。
人們在拋擲一枚硬幣時,究竟會出現什麼樣的結果事先是不能確定的,但是當我們在相同的條件下,大量重復地拋擲同一枚均勻硬幣時,就會發現「出現正面」或「出現反面」的次數大約各占總拋擲次數的: 左右。這里的「大量重復」是指多少次呢?歷史上不少統計學家,例如皮爾遜等人作過成千上萬次拋擲硬幣的試驗,其試驗記錄如下:
可以看出,隨著試驗次數的增加,出現正面的頻率波動越來越小,頻率在0.5這個定值附近擺動的性質是出現正面這一現象的內在必然性規律的表現,0.5恰恰就是刻畫出現正面可能性大小的數值,0.5就是拋擲硬幣時出現正面的概率。這就是概率統計定義的思想,這一思想也給出了在實際問題中估算概率的近似值的方法,當試驗次數足夠大時,可將頻率作為概率的近似值。
例如100粒種子平均來說大約有90粒種子發芽,則我們說種子的發芽率為90%;
某類產品平均每1000件產品中大約有10件廢品,則我們說該產品的廢品率為1%。在小學數學中用概率的統計定義,一般求得的是概率的近似值,特別是次數不夠大時,這個概率的近似值存在著一定的誤差。例如:某地區30年來的10月6日的天氣記錄里有25次是秋高氣爽、晴空萬里,問下一年的10月6日是晴天的概率是多少?
因為前30年出現晴天的頻率為0.83,所以概率大約是0.83。
3.概率的古典定義。
對某一類特殊的試驗,還可以從另一個角度求它的概率。拋擲一枚硬幣時,試驗的結果有2種:出現正面、出現反面;由於硬幣是均勻的,通過直觀分析可以看出出現正面和反面的可能性相同,都是。進一步研究:
某試驗具有以下性質
(1)試驗的結果是有限個(n個)
(2)每個結果出現的可能性是相同的 (硬幣、骰子是均勻的,拋擲時出現每一面的可能性都相同)
如果事件A是由上述n個結果中的m個組成,則稱事件A發生的概率為m/n。
例:擲一顆均勻的骰子,求出現2點的概率。
由於這個試驗滿足概率的古典定義的兩個條件,且n=6,m=1,∴出現2點的概率是。
又:求出現偶數點的概率?出現偶數點這一事件包含3個結果,2點、 4點、6點。m=3
出現偶數點的概率是,即。
概率的古典定義不用大量地去試驗,只要試驗的結果為等可能的有限個的情況,通過分析找出m、n,其概率就可以求出了,其優點是便於計算,但概率的古典定義不如概率的統計定義適用面廣,如拋擲一個酒瓶蓋子時,就不滿足出現每一面的可能性都相同的條件,因此出現正面的概率就不能用概率的古典定義去求,而要用統計定義去近似地求它的概率。
在小學數學的教學中,根據小學生的認知水平,應避免學習過多或艱深的術語,從小學低年級開始應該非形式地介紹概率思想,而非嚴格的定義、單純的計算,因此,在小學經常用「可能性」來代替「概率」這個概念。但作為教師應該懂得它的意義,否則就會出笑話。有的教師讓學生在課上做 20次拋擲硬幣的試驗,希望學生能得到出現正面的可能性是,因為拋擲的次數少,所以要得出10次正面,是很難做到的,概率的統計定義一般得出的是概率的近似值。
二、在學習統計與概率的過程中發展學生的能力
統計的內容是用數字描述和解釋我們周圍的世界,應結合學生生活的實際,如:可以設計成一個活動,使學生主動地投入其中;提出關鍵的問題;搜集和整理數據;應用圖表來表示數據;分析數據;作出推測,並用一種別人信服的方式交流信息。同時體會對數據的收集、處理會獲得某些新的信息。
例如:組織一次班會活動,目的是增進同學之間的互相了解和交流。首先讓學生們自己選題,希望了解哪些信息:「同學們每天怎麼來上學?」;「每個月都有多少同學過生日?」;「同學們喜歡讀哪類圖書?」;「同學們的愛好是什麼?」;「我們最喜愛的運動」;「我們最喜愛的動物」…然後學生們分組去調查收集數據,用表格歸納整理,並且製成各種統計圖:如:
從統計圖可以知道,喜歡動物故事的同學最多,根據這個統計結果,班裡可以組織一個動物研究會,辦一個動物圖片展覽,到野生動物園去參觀等。全班同學還可以把各種圖表製成牆報、手抄報把自己的班級介紹給全校其他同學等。
三、統計、概率與小學其它內容的聯系
例1
上面各圖中表示黑色區域的分數分別為;;;,小學生即使沒有學習幾何圖形的概念也可以通過分數的意義知道2號黑色區域最容易投中,因為根據分數的意義它占總面積的比最大,為。
例2
從紅球所佔的比例來看,1號袋為; 2號袋為;3號袋為擊,因此相比之下,1號袋最容易抽出紅球。
例3下面是用扇形統計圖統計的資料
對小學生來講,扇形統計圖的難點在於不同的圓心角所代表的部分的百分數表示及百分數表示的圓心角的度數,而對於—上面圖中有特殊圓心角時,可避開圓心角,用分數、百分數的意義得出喜歡英語課的,科學課的,數學課的;參加球類興趣小組的有50%;參加樂隊的18%。
從上面的例子可以看出,統計與概率可以為發展和運用比、分數、百分數和小數這些概念提供背景。因此我們可以用建構的方式,建立這部分內容與小學其它知識的聯系和建構有意義的認知結構,從而更深入、更靈活地學習。
總之,在小學,統計與概率的教學既要具有科學性又要符合小學生的認知特點,同時,它還是解決問題的有力工具,它也是架起與其它內容之間的橋梁。
和差問題
已知兩個數的和與差,求這兩個數的應用題,叫做和差問題。一般關系式有:
(和-差)÷2=較小數
(和+差)÷2=較大數
例:甲乙兩數的和是24,甲數比乙數少4,求甲乙兩數各是多少?
(24+4)÷2
=28÷2
=14 →乙數
(24-4)÷2
=20÷2
=10 →甲數
答:甲數是10,乙數是14。
差倍問題
已知兩個數的差及兩個數的倍數關系,求這兩個數的應用題,叫做差倍問題。基本關系式是:
兩數差÷倍數差=較小數
例:有兩堆煤,第二堆比第一堆多40噸,如果從第二堆中拿出5噸煤給第一堆,這時第二堆煤的重量正好是第一堆的3倍。原來兩堆煤各有多少噸?
分析:原來第二堆煤比第一堆多40噸,給了第一堆5噸後,第二堆煤比第一堆就只多40-5×2噸,由基本關系式列式是:
(40-5×2)÷(3-1)-5
=(40-10)÷2-5
=30÷2-5
=15-5
=10(噸) →第一堆煤的重量
10+40=50(噸) →第二堆煤的重量
答:第一堆煤有10噸,第二堆煤有50噸。
還原問題
已知一個數經過某些變化後的結果,要求原來的未知數的問題,一般叫做還原問題。
還原問題是逆解應用題。一般根據加、減法,乘、除法的互逆運算的關系。由題目所敘述的的順序,倒過來逆順序的思考,從最後一個已知條件出發,逆推而上,求得結果。
例:倉庫里有一些大米,第一天售出的重量比總數的一半少12噸。第二天售出的重量,比剩下的一半少12噸,結果還剩下19噸,這個倉庫原來有大米多少噸?
分析:如果第二天剛好售出剩下的一半,就應是19+12噸。第一天售出以後,剩下的噸數是(19+12)×2噸。以下類推。
列式:[(19+12)×2-12]×2
=[31×2-12]×2
=[62-12]×2
=50×2
=100(噸)
答:這個倉庫原來有大米100噸。
置換問題
題中有二個未知數,常常把其中一個未知數暫時當作另一個未知數,然後根據已知條件進行假設性的運算。其結果往往與條件不符合,再加以適當的調整,從而求出結果。
例:一個集郵愛好者買了10分和20分的郵票共100張,總值18元8角。這個集郵愛好者買這兩種郵票各多少張?
分析:先假定買來的100張郵票全部是20分一張的,那麼總值應是20×100=2000(分),比原來的總值多2000-1880=120(分)。而這個多的120分,是把10分一張的看作是20分一張的,每張多算20-10=10(分),如此可以求出10分一張的有多少張。
列式:(2000-1880)÷(20-10)
=120÷10
=12(張)→10分一張的張數
100-12=88(張)→20分一張的張數
或是先求出20分一張的張數,再求出10分一張的張數,方法同上,注意總值比原來的總值少。
盈虧問題(盈不足問題)
題目中往往有兩種分配方案,每種分配方案的結果會出現多(盈)或少(虧)的情況,通常把這類問題,叫做盈虧問題(也叫做盈不足問題)。
解答這類問題時,應該先將兩種分配方案進行比較,求出由於每份數的變化所引起的余數的變化,從中求出參加分配的總份數,然後根據題意,求出被分配物品的數量。其計算方法是:
當一次有餘數,另一次不足時:
每份數=(余數+不足數)÷兩次每份數的差
當兩次都有餘數時:
總份數=(較大余數-較小數)÷兩次每份數的差
當兩次都不足時:
總份數=(較大不足數-較小不足數)÷兩次每份數的差
例1、解放軍某部的一個班,參加植樹造林活動。如果每人栽5棵樹苗,還剩下14棵樹苗;如果每人栽7棵,就差4棵樹苗。求這個班有多少人?一共有多少棵樹苗?
分析:由條件可知,這道題屬第一種情況。
列式:(14+4)÷(7-5)
=18÷2
= 9(人)
5×9+14
=45+14
=59(棵)
或:7×9-4
=63-4
=59(棵)
答:這個班有9人,一共有樹苗59棵。
年齡問題
年齡問題的主要特點是兩人的年齡差不變,而倍數差卻發生變化。
常用的計算公式是:
成倍時小的年齡=大小年齡之差÷(倍數-1)
幾年前的年齡=小的現年-成倍數時小的年齡
幾年後的年齡=成倍時小的年齡-小的現在年齡
例1、父親今年54歲,兒子今年12歲。幾年後父親的年齡是兒子年齡的4倍?
(54-12)÷(4-1)
=42÷3
=14(歲)→兒子幾年後的年齡
14-12=2(年)→2年後
答:2年後父親的年齡是兒子的4倍。
例2、父親今年的年齡是54歲,兒子今年有12歲。幾年前父親的年齡是兒子年齡的7倍?
(54-12)÷(7-1)
=42÷6
=7(歲)→兒子幾年前的年齡
12-7=5(年)→5年前
答:5年前父親的年齡是兒子的7倍。
例3、王剛父母今年的年齡和是148歲,父親年齡的3倍與母親年齡的差比年齡和多4歲。王剛父母親今年的年齡各是多少歲?
(148×2+4)÷(3+1)
=300÷4
=75(歲)→父親的年齡
148-75=73(歲)→母親的年齡
答:王剛的父親今年75歲,母親今年73歲。
或:(148+2)÷2
=150÷2
=75(歲)
75-2=73(歲)
雞兔問題
已知雞兔的總只數和總足數,求雞兔各有多少只的一類應用題,叫做雞兔問題,也叫「龜鶴問題」、「置換問題」。
一般先假設都是雞(或兔),然後以兔(或雞)置換雞(或兔)。常用的基本公式有:
(總足數-雞足數×總只數)÷每隻雞兔足數的差=兔數
(兔足數×總只數-總足數)÷每隻雞兔足數的差=雞數
例:雞兔同籠共有24隻。有64條腿。求籠中的雞和兔各有多少只?
3k W UEw9I0
R,@ F/|1V7YWd-r0
Gb(e(o/X3QE&dL$Z0 鳳凰博客h7IM?pJ'u7NV
'IG\ rf Y E0
(64-2×24)÷(4-2)
=(64-48)÷(4-2)
=16 ÷2
=8(只)→兔的只數
24-8=16(只)→雞的只數
答:籠中的兔有8隻,雞有16隻
鳳凰博客3@8Zp|S5|+U
。
牛吃草問題(船漏水問題)
若干頭牛在一片有限范圍內的草地上吃草。牛一邊吃草,草地上一邊長草。當增加(或減少)牛的數量時,這片草地上的草經過多少時間就剛好吃完呢?
例1、一片草地,可供15頭牛吃10天,而供25頭牛吃,可吃5天。如果青草每天生長速度一樣,那麼這片草地若供10頭牛吃,可以吃幾天?
分析:一般把1頭牛每天的吃草量看作每份數,那麼15頭牛吃10天,其中就有草地上原有的草,加上這片草地10天長出草,以下類推……其中可以發現25頭牛5天的吃草量比15頭牛10天的吃草量要少。原因是因為其一,用的時間少;其二,對應的長出來的草也少。這個差就是這片草地5天長出來的草。每天長出來的草可供5頭牛吃一天。如此當供10牛吃時,拿出5頭牛專門吃每天長出來的草,餘下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)
=(150-125)÷(10-5)
=25÷5
=5(頭)→可供5頭牛吃一天。
150-10×5
=150-50
=100(頭)→草地上原有的草可供100頭牛吃一天
100÷(10-5)
=100÷5
=20(天)
答:若供10頭牛吃,可以吃20天。
例2、一口井勻速往上涌水,用4部抽水機100分鍾可以抽干;若用6部同樣的抽水機則50分鍾可以抽干。現在用7部同樣的抽水機,多少分鍾可以抽干這口井裡的水?
(100×4-50×6)÷(100-50)
=(400-300)÷(100-50)
=100÷50
=2
400-100×2
=400-200
=200
200÷(7-2)
=200÷5
=40(分)
答:用7部同樣的抽水機,40分鍾可以抽干這口井裡的水。
公約數、公倍數問題
運用最大公約數或最小公倍數解答應用題,叫做公約數、公倍數問題。
例1:一塊長方體木料,長2.5米,寬1.75米,厚0.75米。如果把這塊木料鋸成同樣大小的正方體木塊,不準有剩餘,而且每塊的體積盡可能的大,那麼,正方體木塊的棱長是多少?共鋸了多少塊?
分析:2.5=250厘米
1.75=175厘米
0.75=75厘米
其中250、175、75的最大公約數是25,所以正方體的棱長是25厘米。
(250÷25)×(175÷25)×(75÷25)
=10×7×3
=210(塊)
答:正方體的棱長是25厘米,共鋸了210塊。
例2、兩嚙合齒輪,一個有24個齒,另一個有40個齒,求某一對齒從第一次接觸到第二次接觸,每個齒輪至少要轉多少周?
分析:因為24和40的最小公倍數是120,也就是兩個齒輪都轉120個齒時,第一次接觸的一對齒,剛好第二次接觸。
120÷24=5(周)
120÷40=3(周)
答:每個齒輪分別要轉5周、3周。
分數應用題
指用分數計算來解答的應用題,叫做分數應用題,也叫分數問題。
分數應用題一般分為三類:
1.求一個數是另一個數的幾分之幾。
2.求一個數的幾分之幾是多少。
3.已知一個數的幾分之幾是多少,求這個數。
其中每一類別又分為二種,其一:一般分數應用題;其二:較復雜的分數應用題。
例1:育才小學有學生1000人,其中三好學生250人。三好學生佔全校學生的幾分之幾?
答:三好學生佔全校學生的。
例2:一堆煤有180噸,運走了。走了多少噸?
180×=80(噸)
答:運走了80噸。
例3:某農機廠去年生產農機1800台,今年計劃比去年增加。今年計劃生產多少台?
1800×(1+)
=1800×
=2400(台)
答:今年計劃生產2400台。
例4:修一條長2400米的公路,第一天修完全長的,第二天修完餘下的。還剩下多少米?
2400×(1-)×(1-)
=2400××
=1200(米)
答:還剩下1200米。
例5:一個學校有三好學生168人,佔全校學生人數的。全校有學生多少人?
168÷=840(人)
答:全校有學生840人。
例6:甲庫存糧120噸,比乙庫的存糧少。乙庫存糧多少噸?
120÷=120×=180(噸)
答:乙庫存糧180噸。
例7:一堆煤,第一次運走全部的,第二次運走全部的,第二次比第一次少運8噸。這堆煤原有多少噸?
8÷(-)
= 8÷
=48(噸)
答:這堆煤原有48噸。
工程問題
它是分數應用題的一個特例。是已知工作量、工作時間和工作效率,三個量中的兩個求第三個量的問題。
解答工程問題時,一般要把全部工程看作「1」,然後根據下面的數量關系進行解答:
6q1U]7in!S7x0
鳳凰博客tr IJ0OYWV
P tAd)J.IH0
&h|il)t&ZS6h&kC0
nVg2v IdgI0
工作效率×工作時間=工作量
'F5q/f,z5b@y0
工作量÷工作時間=工作效率
鳳凰博客q!q1Nc3E-n`a9[Q$M
工作量÷工作效率=工作時間
鳳凰博客9FA*o d#`7I!l
例1:一項工程,甲隊單獨做需要18天,乙隊單獨做需要24天。如果兩隊合作8天後,餘下的工程由甲隊單獨做,還要幾天完成?
N W5l,VjH`|0
鳳凰博客+ZO'R HhI
鳳凰博客hq$TU!bO$rEQ
鳳凰博客6O]p/ZV2wc
[1-()×8]÷
,l!l9zI"b&W0
=[1-]÷
=×18
=4(天)
答:(略)。
鳳凰博客1Q0RO&]%owG
例2:一個水池,裝有甲、乙兩個進水管,一個出水管。單開甲管2小時可以注滿;單開乙管3小時可以注滿;單開出水管6小時可以放完。現在三管在池空時齊開,多少小時可以把水池注滿?
|5W.WuC3p0
鳳凰博客 SX}9q7|f
鳳凰博客UO`8_%F(u8Br
"[6Xr3MHv)I0 1÷(+-) 鳳凰博客I@ ?b&W+CD
=1÷
=1(小時)
答:(略)
鳳凰博客o Sj4ON:}2\/a+N
百分數應用題
這類應用題與分數應用題的解答方式大致相同,僅求「率」時,表達方式不同,意義不同。
例1.某農科所進行發芽試驗,種下250粒種子。發芽的有230粒。求發芽率。
答:發芽率為92%。
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
Ⅳ 小學數學第一課講什麼是自我介紹,還是什麼
教數字
Ⅳ 作為一名小學數學老師,應如何像學生介紹自己
教數學幾年級?可以根據他們的所學來將一些 數學小故事和一些看似簡單地難題。
例如內化圓為方(五容,六年級應該能夠聽懂,做出來是不可能的),或者一些 小故事,例如 歐洲數學學派,畢達哥拉斯的一些 有趣的學說 阿喀琉斯跑不過烏龜和飛矢不動。
盡管這些 是畢達哥拉斯學派的 理論,但是事實上,其實很容易理解,但是卻又很難推翻(4-6年級試用)
如果是 小學1-3年級,那麼你直接講勵志故事吧。
總而言之就是要調動積極性,而不是卻在介紹自己上花功夫,
Ⅵ 小學數學知識大全的介紹
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
Ⅶ 小學數學概念大全
你好!你是教師可到新華書店去買這方面的書,你是學生或家長,就把小學數學書拿出來,一本一本的從頭把有關概念抄一遍,抄在採集本上。到開校還來得及,也算是復習一遍。祝:好好學習,天天向上。
Ⅷ 小學數學教師簡介如何寫
姓名、性別、出生年月、民族、初始學歷、最高學歷、畢業學校、專業、學制、職務、職稱、普通話水平、教師證編號、工作簡歷、工作總結、是否參加繼續教育、獲獎情況、違紀情況、科研項目等。
Ⅸ 小學數學:請介紹一下"抽屜原理"
例3:口袋裡有4種不同顏色的玻璃球,每次摸出2個。要保證有10次摸出的結果是一樣的,最少要摸多少次?
分析:當摸出的兩個球顏色相同時,可以有4種不同的結果。當摸出來的兩個球顏色不同時,最多可以有3+2+1=6(種)不同結果。把4+6=10(種)不同結果作為抽屜。
解:因為要10次摸出的結果相同,根據抽屜原則,至少要摸9×10+1=91(次)。
例4:一個盒子里裝有紅、黃、藍三種顏色的果凍各10個,問最少要取多少個才能保證其中至少有兩對顏色不相同的果凍?
分析:要保證至少有2對果凍顏色不相同,從最不利的情況出發,先取了10個同一顏色的果凍,剩下的兩種顏色局可以看作2個抽屜,就能求得結果。
解:如果取了10個顏色相同的果凍,那麼剩下兩種顏色的果凍可以看作2個抽屜,比抽屜數多1,也就是取3個果凍就一定能得到顏色相同的另一對果凍了。這樣至少取13個果凍才能保證至少有兩對顏色不同的果凍。
例5:一個紙盒裡面有一些顏色不同的小球其中黃球10個,白球9個,黑球8個,紫球2個,小明閉著眼睛取出若干,他至少取出多少個球,才能保證至少有4個球顏色相同?
分析:要取出顏色相同的4個小球,只能是黃、白、黑3種顏色,不可能是紫球,因為紫球只有2個。假設運氣非常不好,正好取到了2個紫球,那麼剩下的就只有黃、白、黑3種顏色,把這三種顏色看作3個抽屜。
解:假設已取到2個紫球,剩下的黃、白、黑三種球看作3個抽屜,每個抽屜中放入3個球,那麼就要取3×3=9(個),如果多取一個球,就能保證4個球顏色相同。即2+9+1=12(個)球,才能保證有4個球顏色相同。
例6:在一副撲克牌中,最少拿出多少張,才能保證拿出的牌中四種花色都有?
分析:假如一開始就抽到大小王,接著的十三張抽了紅心,接下來的十三張抽了黑桃,再接下來十三張抽了紅方塊,這時就是2+13×3=41,下一張他必定得抽黑方塊41+1=42(張)。
解:2+13×3+1=42(張)
Ⅹ 小學數學實習老師如何自我介紹啊
呵呵,剛准備上崗的女生啊?其實自我介紹不需要照搬別人的,自我介紹要介紹出自己的個性。而且你面對的是小孩子,他們不會看你的介紹,是否有很高的文化水平,只會通過你的介紹,來猜測這個老師是否容易相處。面對小學生,介紹的時候最好要讓他們覺得你很和藹,很容易跟他們打成一片就好。盡量簡潔一點,只要他們對你的印象好,自然就會對你的課感興趣,那成績也就不是很大的問題啦!