導航:首頁 > 小學學科 > 小學數學學科論文

小學數學學科論文

發布時間:2020-11-25 00:41:20

小學數學有效性策略研究(論文)

小學數學教學論文--在小學數學教學中培養學生的思維能力

培養學生的思維能力是現代學校教學的一項基本任務。我們要培養社會主義現代化建設所需要的人才,其基本條件之一就是要具有獨立思考的能力,勇於創新的精神。小學數學教學從一年級起就擔負著培養學生思維能力的重要任務。下面就如何培養學生思維能力談幾點看法。
一 培養學生的邏輯思維能力是小學數學教學中一項重要任務
思維具有很廣泛的內容。根據心理學的研究,有各種各樣的思維。在小學數學教學中應該培養什麼樣的思維能力呢?《小學數學教學大綱》中明確規定,要「使學生具有初步的邏輯思維能力。」這一條規定是很正確的。下面試從兩方面進行一些分析。首先從數學的特點看。數學本身是由許多判斷組成的確定的體系,這些判斷是用數學術語和邏輯術語以及相應的符號所表示的數學語句來表達的。並且藉助邏輯推理由一些判斷形成一些新的判斷。而這些判斷的總和就組成了數學這門科學。小學數學雖然內容簡單,沒有嚴格的推理論證,但卻離不開判斷推理,這就為培養學生的邏輯思維能力提供了十分有利的條件。再從小學生的思維特點來看。他們正處在從具體形象思維向抽象邏輯思維過渡的階段。這里所說的抽象邏輯思維,主要是指形式邏輯思維。因此可以說,在小學特別是中、高年級,正是發展學生抽象邏輯思維的有利時期。由此可以看出,《小學數學教學大綱》中把培養初步的邏輯思維能力作為一項數學教學目的,既符合數學的學科特點,又符合小學生的思維特點。
值得注意的是,《大綱》中的規定還沒有得到應有的和足夠的重視。一個時期內,大家談創造思維很多,而談邏輯思維很少。殊不知在一定意義上說,邏輯思維是創造思維的基礎,創造思維往往是邏輯思維的簡縮。就多數學生說,如果沒有良好的邏輯思維訓練,很難發展創造思維。因此如何貫徹《小學數學教學大綱》的目的要求,在教學中有計劃有步驟地培養學生邏輯思維能力,還是值得重視和認真研究的問題。
《大綱》中強調培養初步的邏輯思維能力,只是表明以它為主,並不意味著排斥其他思維能力的發展。例如,學生雖然在小學階段正在向抽象邏輯思維過渡,但是形象思維並不因此而消失。在小學高年級,有些數學內容如質數、合數等概念的教學,通過實際操作或教具演示,學生更易於理解和掌握;與此同時學生的形象思維也會繼續得到發展。又例如,創造思維能力的培養,雖然不能作為小學數學教學的主要任務,但是在教學與舊知識有密切聯系的新知識時,在解一些富有思考性的習題時,如果採用適當的教學方法,可以對激發學生思維的創造性起到促進作用。教學時應該有意識地加以重視。至於辯證思維,從思維科學的理論上說,它屬於抽象邏輯思維的高級階段;從個體的思維發展過程來說,它遲於形式邏輯思維的發展。據初步研究,小學生在10歲左右開始萌發辨證思維。因此在小學不宜過早地把發展辯證思維作為一項教學目的,但是可以結合某些數學內容的教學滲透一些辯證觀點的因素,為發展辯證思維積累一些感性材料。例如,通用教材第一冊出現,可以使學生初步地直觀地知道第二個加數變化了,得數也隨著變化了。到中年級課本中還出現一些表格,讓學生說一說被乘數(或被除數)變化,積(或商)是怎樣跟著變化的。這就為以後認識事物是相互聯系、變化的思想積累一些感性材料。
二 培養學生思維能力要貫穿在小學數學教學的全過程
現代教學論認為,教學過程不是單純的傳授和學習知識的過程,而是促進學生全面發展(包括思維能力的發展)的過程。從小學數學教學過程來說,數學知識和技能的掌握與思維能力的發展也是密不可分的。一方面,學生在理解和掌握數學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學習數學知識時,為運用思維方法和形式提供了具體的內容和材料。這樣說,絕不能認為教學數學知識、技能的同時,會自然而然地培養了學生的思維能力。數學知識和技能的教學只是為培養學生思維能力提供有利的條件,還需要在教學時有意識地充分利用這些條件,並且根據學生年齡特點有計劃地加以培養,才能達到預期的目的。如果不注意這一點,教材沒有有意識地加以編排,教法違背激發學生思考的原則,不僅不能促進學生思維能力的發展,相反地還有可能逐步養成學生死記硬背的不良習慣。
怎樣體現培養學生思維能力貫穿在小學數學教學的全過程?是否可以從以下幾方面加以考慮。
(一)培養學生思維能力要貫穿在小學階段各個年級的數學教學中。要明確各年級都擔負著培養學生思維能力的任務。從一年級一開始就要注意有意識地加以培養。例如,開始認識大小、長短、多少,就有初步培養學生比較能力的問題。開始教學10以內的數和加、減計算,就有初步培養學生抽象、概括能力的問題。開始教學數的組成就有初步培養學生分析、綜合能力的問題。這就需要教師引導學生通過實際操作、觀察,逐步進行比較、分析、綜合、抽象、概括,形成10以內數的概念,理解加、減法的含義,學會10以內加、減法的計算方法。如果不注意引導學生去思考,從一開始就有可能不自覺地把學生引向死記數的組成,機械地背誦加、減法得數的道路上去。而在一年級養成了死記硬背的習慣,以後就很難糾正。
(二)培養學生思維能力要貫穿在每一節課的各個環節中。不論是開始的復習,教學新知識,組織學生練習,都要注意結合具體的內容有意識地進行培養。例如復習20以內的進位加法時,有經驗的教師給出式題以後,不僅讓學生說出得數,還要說一說是怎樣想的,特別是當學生出現計算錯誤時,說一說計算過程有助於加深理解「湊十」的計算方法,學會類推,而且有效地消滅錯誤。經過一段訓練後,引導學生簡縮思維過程,想一想怎樣能很快地算出得數,培養學生思維的敏捷性和靈活性。在教學新知識時,不是簡單地告知結論或計演算法則,而是引導學生去分析、推理,最後歸納出正確的結論或計演算法則。例如,教學兩位數乘法,關鍵是通過直觀引導學生把它分解為用一位數乘和用整十數乘,重點要引導學生弄清整十數乘所得的部分積寫在什麼位置,最後概括出用兩位數乘的步驟。學生懂得算理,自己從直觀的例子中抽象、概括出計算方法,不僅印象深刻,同時發展了思維能力。在教學中看到,有的老師也注意發展學生思維能力,但不是貫穿在一節課的始終,而是在一節課最後出一兩道稍難的題目來作為訓練思維的活動,或者專上一節思維訓練課。這種把培養思維能力只局限在某一節課內或者一節課的某個環節內,是值得研究的。當然,在教學全過程始終注意培養思維能力的前提下,為了掌握某一特殊內容或特殊方法進行這種特殊的思維訓練是可以的,但是不能以此來代替教學全過程發展思維的任務。
(三)培養思維能力要貫穿在各部分內容的教學中。這就是說,在教學數學概念、計演算法則、解答應用題或操作技能(如測量、畫圖等)時,都要注意培養思維能力。任何一個數學概念,都是對客觀事物的數量關系或空間形式進行抽象、概括的結果。因此教學每一個概念時,要注意通過多種實物或事例引導學生分析、比較、找出它們的共同點,揭示其本質特徵,做出正確的判斷,從而形成正確的概念。例如,教學長方形概念時,不宜直接畫一個長方形,告訴學生這就叫做長方形。而應先讓學生觀察具有長方形的各種實物,引導學生找出它們的邊和角各有什麼共同特點,然後抽象出圖形,並對長方形的特徵作出概括。教學計演算法則和規律性知識更要注意培養學生判斷、推理能力。例如,教學加法結合律,不宜簡單地舉一個例子,就作出結論。最好舉兩三個例子,每舉一個例子,引導學生作出個別判斷〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結果相同〕。然後引導學生對幾個例子進行分析、比較,找出它們的共同點,即等號左端都是先把前兩個數相加,再同第三個數相加,而等號右端都是先把後兩個數相加,再同第一個數相加,結果不變。最後作出一般的結論。這樣不僅使學生對加法結合律理解得更清楚,而且學到不完全歸納推理的方法。然後再把得到的一般結論應用到具體的計算(如57+28+12)中去並能說出根據什麼可以使計算簡便。這樣又學到演繹的推理方法至於解應用題引導學生分析數量關系,這里不再贅述。
三 設計好練習題對於培養學生思維能力起著重要的促進作用
培養學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習。而且思維與解題過程是密切聯系著的。培養思維能力的最有效辦法是通過解題的練習來實現。因此設計好練習題就成為能否促進學生思維能力發展的重要一環。一般地說,課本中都安排了一定數量的有助於發展學生思維能力的練習題。但是不一定都能滿足教學的需要,而且由於班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學時往往要根據具體情況做一些調整或補充。為此提出以下幾點建議供參考。
(一)設計練習題要有針對性,要根據培養目標來進行設計。例如,為了了解學生對數學概念是否清楚,同時也為了培養學生運用概念進行判斷的能力,可以出一些判斷對錯或選擇正確答案的練習題。舉個具體例子:「所有的質數都是奇數。( )」如要作出正確判斷,學生就要分析偶數裡面有沒有質數。而要弄清這一點,要明確什麼叫做偶數,什麼叫做質數,然後應用這兩個概念的定義去分析能被2整除的數裡面有沒有一個數,它的約數只1和它自身。想到了2是偶數又是質數,這樣就可以斷定上面的判斷是錯誤的。

㈡ 小學數學論文

數學發展史

此書記錄了世界初等數學的發展與變遷。可大體分為「數的出現」、「數字與符號的起源與發展」、「分數」、「代數與方程」、「幾何」、「數論」與「名著錄」七大項,跨度千萬年。可讓讀者了解數學的光輝歷史與發展。是將歷史與數學結合出的趣味網路讀物。

數的出現

一、數的概念出現

人對於「數」的概念是與身俱來的。從原始人開始,人就能分出一與二與三的區別,從而,就有了對數的認識。而為了表示數,原始人就創造並使用了一種古老卻笨拙且不太實用的方法——結繩計數。通過在繩子上打結來表示所指物體的數量,而為了辨認數量,也就出現了數數這一重要的方法。這一方法如今看來十分笨拙,但卻是人對數學的認識由零到一的關鍵一步。從這笨拙的一步人們也意識到:對數學的闡述必須要盡量得簡潔清楚。這是一個從那時開始便影響至今的人類第一個數學方面的認識,這也是人類為了解數學而邁出的關鍵性一步。

數字與符號的起源與發展

一、數的出現

很快,人類就又邁出了一大步。隨著文字的出現,最原始的數字就出現了。且更令人高興的是,人們將自己的認識代入了設計之中,他們想到了「以一個大的代替多個小的」這種方法來設計,而在字元表示之中,就是「進位制」。在眾多的數碼之中,有古巴比侖的二十進制數碼、古羅馬字元,但一直流傳至今的,世界通用的阿拉伯數字。它們告訴了我們:簡潔的,就是最好的。
而現在,又出現了「二進制數」、「三進制數」等低位進制數,有時人們會認為它們有些過度的「簡潔」,使數據會過多得長,而不便書寫,且熟悉了十進制的阿拉伯數字後,改變進制的換算也十分麻煩。其實,人是高等動物 ,理解能力強,從古至今都以十為整,所以習慣了十進制。可是,不是所有的東西都有智商,而且不可能智商高到能明顯區分1-10,卻能通過明顯相反的方式表達兩個數碼。於是,人類創造了「二進制數」,不過它們不便書寫,只適用於計算機和某些智能機器。但不可否認的是,它又創造了一種新的數碼表示方法。

二、符號的出現

加減乘除〈+、-、×(·)、÷(∶)〉等數學符號是我們每一個人最熟悉的符號,因為不光在數學學習中離不開它們,幾乎每天的日常的生活也離不開它們。別看它們這么簡
單,直到17世紀中葉才全部形成。
法國數學家許凱在1484年寫成的《算術三篇》中,使用了一些編寫符號,如用D表示加法,用M表示減法。這兩個符號最早出現在德國數學家維德曼寫的《商業速演算法》中,他用「+」表示超過,用「-」表示不足。

1、加號(+)和減號(-)

加減號「+」,「-」,1489年德國數學家魏德曼在他的著作中首先使用了這兩個符號,但正式為大家公認是從1514年荷蘭數學家荷伊克開始。到1514年,荷蘭的赫克首次用「+」表示加法,用「-」表示減法。1544年,德國數學家施蒂費爾在《整數算術》中正式用「+」和「-」表示加減,這兩個符號逐漸被公認為真正的算術符號,廣泛採用。

2、乘號(×、·)

乘號「×」,英國數學家奧屈特於1631年提出用「×」表示相乘。英國數學家奧特雷德於1631年出版的《數學之鑰》中引入這種記法。據說是由加法符號+變動而來,因為乘法運算是從相同數的連加運算發展而來的。另一乘號「·」是數學家赫銳奧特首創的。後來,萊布尼茲認為「×」容易與「X」相混淆,建議用「·」表示乘號,這樣,「·」也得到了承認。

3、除號(÷)

除法除號「÷」,最初這個符號是作為減號在歐洲大陸流行,奧屈特用「:」表示除或比.也有人用分數線表示比,後來有人把二者結合起來就變成了「÷」。瑞士的數學家拉哈的著作中正式把「÷」作為除號。符號「÷」是英國的瓦里斯最初使用的,後來在英國得到了推廣。除的本意是分,符號「÷」的中間的橫線把上、下兩部分分開,形象地表示了「分」。
至此,四則運算符號齊備了,當時還遠未達到被各國普遍採用的程度。

4、等號(=)

等號「=」,最初是1540年由英國牛津大學教授瑞柯德開始使用。1591年法國數學家韋達在其著作中大量使用後,才逐漸為人們所接受。

分數

一、分數的產生與定義

人類歷史上最早產生的數是自然數(正整數),以後在度量和均分時往往不能正好得到整數的結果,這樣就產生了分數。
一個物體,一個圖形,一個計量單位,都可看作單位「1」。把單位「1」平均分成幾份,表示這樣一份或幾份的數叫做分數。在分數里,表示把單位「1」平均分成多少份的叫做分母,表示有這樣多少份的叫做分子;其中的一份叫做分數單位。
分子,分母同時乘或除以一個相同的數〔0除外〕,分數的大小不變.這就是分數的基本性質.
分數一般包括:真分數,假分數,帶分數.
真分數小於1.
假分數大於1,或者等於1.
帶分數大於1而又是最簡分數.帶分數是由一個整數和一個真分數組成的。
注意 :
①分母和分子中不能有0,否則無意義。
②分數中的分子或分母不能出現無理數(如2的平方根),否則就不是分數。
③一個最簡分數的分母中只有2和5兩個質因數就能化成有限小數;如果最簡分數的分母中只含有2和5以外的質因數那麼就能化成純循環小數;如果最簡分數的分母中既含有2或5兩個質因數也含有2和5以外的質因數那麼就能化成混循環小數。(註:如果不是一個最簡分數就要先化成最簡分數再判斷;分母是2或5的最簡分數一定能化成有限小數,分母是其他質數的最簡分數一定能化成純循環小數)

二、分數的歷史與演變

分數在我們中國很早就有了,最初分數的表現形式跟現在不一樣。後來,印度出現了和我國相似的分數表示法。再往後,阿拉伯人發明了分數線,分數的表示法就成為現在這樣了。
在歷史上,分數幾乎與自然數一樣古老。早在人類文化發明的初期,由於進行測量和均分的需要,引入並使用了分數。
在許多民族的古代文獻中都有關於分數的記載和各種不同的分數制度。早在公元前2100多年,古代巴比倫人(現處伊拉克一帶)就使用了分母是60的分數。
公元前1850年左右的埃及算學文獻中,也開始使用分數。
200多年前,瑞士數學家歐拉,在《通用算術》一書中說,要想把7米長的一根繩子分成三等份是不可能的,因為找不到一個合適的數來表示它.如果我們把它分成三等份,每份是3/7 米.像3/7 就是一種新的數,我們把它叫做分數.
為什麼叫它分數呢?分數這個名稱直觀而生動地表示這種數的特徵.例如,一隻西瓜四個人平均分,不把它分成相等的四塊行嗎?從這個例子就可以看出,分數是度量和數學本身的需要——除法運算的需要而產生的.
最早使用分數的國家是中國.我國春秋時代(公元前770年~前476年)的《左傳》中,規定了諸侯的都城大小:最大不可超過周文王國都的三分之一,中等的不可超過五分之一,小的不可超過九分之一。秦始皇時代的歷法規定:一年的天數為三百六十五又四分之一。這說明:分數在我國很早就出現了,並且用於社會生產和生活。
《九章算術》是我國1800多年前的一本數學專著,其中第一章《方田》里就講了分數四則演算法.
在古代,中國使用分數比其他國家要早出一千多年.所以說中國有著悠久的歷史,燦爛的文化 。

幾何

一、公式

1、平面圖形

正方形: S=a² C=4a
三角形: S=ah/2 a=2S/h h=2S/a
平行四邊形:S=ah a=S/h h=S/a
梯形: S=(a+b)h/2 h=2S/(a+b) a=2S/h-b b=2S/h-a
圓形: S=∏r² C=2r∏=∏d r=d/2=C/∏/2r²=S/∏ d=C/∏
半圓: S=∏r²/2 C=∏r+d=5.14r

頂點數+面數-塊數=1

2、立體圖形

正方體: V=a³=S底·a S表=6a² S底=a² S側=4a² 棱長和=12a
長方體: V=abh=S底·h S表=2(ab+ac+bc) S側=2(a+b)h 棱長和=4(a+b+h)
圓柱: V=∏r²h S表=2∏r²+∏r²h=S底(h+2) S側=∏r²h S底=∏r²
其它柱體:V=S底h
錐體: V=V柱體/3
球: V=4/3∏r³ S表=4∏r²

頂點數+面數-棱數=2

數論

一、數論概述

人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們合起來叫做整數。(現在,自然數的概念有了改變,包括正整數和0)
對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。
人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。
數論這門學科最初是從研究整數開始的,所以叫做整數論。後來整數論又進一步發展,就叫做數論了。確切的說,數論就是一門研究整數性質的學科。

二、數論的發展簡況

自古以來,數學家對於整數性質的研究一直十分重視,但是直到十九世紀,這些研究成果還只是孤立地記載在各個時期的算術著作中,也就是說還沒有形成完整統一的學科。
自我國古代,許多著名的數學著作中都關於數論內容的論述,比如求最大公約數、勾股數組、某些不定方程整數解的問題等等。在國外,古希臘時代的數學家對於數論中一個最基本的問題——整除性問題就有系統的研究,關於質數、和數、約數、倍數等一系列概念也已經被提出來應用了。後來的各個時代的數學家也都對整數性質的研究做出過重大的貢獻,使數論的基本理論逐步得到完善。
在整數性質的研究中,人們發現質數是構成正整數的基本「材料」,要深入研究整數的性質就必須研究質數的性質。因此關於質數性質的有關問題,一直受到數學家的關注。
到了十八世紀末,歷代數學家積累的關於整數性質零散的知識已經十分豐富了,把它們整理加工成為一門系統的學科的條件已經完全成熟了。德國數學家高斯集中前人的大成,寫了一本書叫做《算術探討》,1800年寄給了法國科學院,但是法國科學院拒絕了高斯的這部傑作,高斯只好在1801年自己發表了這部著作。這部書開始了現代數論的新紀元。
在《算術探討》中,高斯把過去研究整數性質所用的符號標准化了,把當時現存的定理系統化並進行了推廣,把要研究的問題和意志的方法進行了分類,還引進了新的方法。
由於近代計算機科學和應用數學的發展,數論得到了廣泛的應用。比如在計算方法、代數編碼、組合論等方面都廣泛使用了初等數論范圍內的許多研究成果;又文獻報道,現在有些國家應用「孫子定理」來進行測距,用原根和指數來計算離散傅立葉變換等。此外,數論的許多比較深刻的研究成果也在近似分析、差集合、快速變換等方面得到了應用。特別是現在由於計算機的發展,用離散量的計算去逼近連續量而達到所要求的精度已成為可能。

三、數論的分類

初等數論
意指使用不超過高中程度的初等代數處理的數論問題,最主要的工具包括整數的整除性與同餘。重要的結論包括中國剩餘定理、費馬小定理、二次互逆律等等。
解析數論
藉助微積分及復分析的技術來研究關於整數的問題,主要又可以分為積性數論與加性數論兩類。積性數論藉由研究積性生成函數的性質來探討質數分布的問題,其中質數定理與狄利克雷定理為這個領域中最著名的古典成果。加性數論則是研究整數的加法分解之可能性與表示的問題,華林問題是該領域最著名的課題。此外例如篩法、圓法等等都是屬於這個范疇的重要議題。我國數學家陳景潤在解決「哥德巴赫猜想」問題中使用的是解析數論中的篩法。
代數數論
是把整數的概念推廣到代數整數的一個分支。關於代數整數的研究,主要的研究目標是為了更一般地解決不定方程的問題,而為了達到此目的,這個領域與代數幾何之間的關聯尤其緊密。建立了素整數、可除性等概念。
幾何數論
是由德國數學家、物理學家閔可夫斯基等人開創和奠基的。主要在於透過幾何觀點研究整數(在此即格子點)的分布情形。幾何數論研究的基本對象是「空間格網」。在給定的直角坐標繫上,坐標全是整數的點,叫做整點;全部整點構成的組就叫做空間格網。空間格網對幾何學和結晶學有著重大的意義。最著名的定理為Minkowski 定理。由於幾何數論涉及的問題比較復雜,必須具有相當的數學基礎才能深入研究。
計算數論
藉助電腦的演算法幫助數論的問題,例如素數測試和因數分解等和密碼學息息相關的話題。
超越數論
研究數的超越性,其中對於歐拉常數與特定的 Zeta 函數值之研究尤其令人感到興趣。
組合數論
利用組合和機率的技巧,非構造性地證明某些無法用初等方式處理的復雜結論。這是由艾狄胥開創的思路。

四、皇冠上的明珠

數論在數學中的地位是獨特的,高斯曾經說過「數學是科學的皇後,數論是數學中的皇冠」。因此,數學家都喜歡把數論中一些懸而未決的疑難問題,叫做「皇冠上的明珠」,以鼓勵人們去「摘取」。
簡要列出幾顆「明珠」:費爾馬大定理、孿生素數問題、歌德巴赫猜想、角谷猜想、圓內整點問題、完全數問題……

五、中國人的成績

在我國近代,數論也是發展最早的數學分支之一。從二十世紀三十年代開始,在解析數論、刁藩都方程、一致分布等方面都有過重要的貢獻,出現了華羅庚、閔嗣鶴、柯召等第一流的數論專家。其中華羅庚教授在三角和估值、堆砌素數論方面的研究是享有盛名的。1949年以後,數論的研究的得到了更大的發展。特別是在「篩法」和「歌德巴赫猜想」方面的研究,已取得世界領先的優秀成績。 特別是陳景潤在1966年證明「歌德巴赫猜想」的「一個大偶數可以表示為一個素數和一個不超過兩個素數的乘積之和」以後,在國際數學引起了強烈的反響,盛贊陳景潤的論文是解析數學的名作,是篩法的光輝頂點。至今,這仍是「歌德巴赫猜想」的最好結果。

名著錄

《幾何原本》 歐幾里得 約公元前300年
《周髀算經》 作者不詳 時間早於公元前一世紀
《九章算術》 作者不詳 約公元一世紀
《孫子算經》 作者不詳 南北朝時期
《幾何學》 笛卡兒 1637年
《自然哲學之數學原理》 牛頓 1687年
《無窮分析引論》 歐拉 1748年
《微分學》 歐拉 1755年
《積分學》(共三卷) 歐拉 1768-1770年
《算術探究》 高斯 1801年
《堆壘素數論》 華羅庚 1940年左右

任意選一段吧!!!

㈢ 小學500字數學小論文

從一年級開始接觸數學;從一個什麼也不懂的孩子時開始接觸數學;從1+1=2、1+2=3…… 開始學習數學,直至今天還在學習數學。學數學不是一兩天的事,而是一條漫長的道路!在學習數學的道路上,你會不知不覺的發現學數學的樂趣,數學的奧妙,你也會發現數學在生活中無處不在!學數學就是為了能在實際生活中應用,其實,數學就產生在生活中。比如說,上街買東西自然要用到加減法,修房造屋要畫圖紙.......
同學們,你們肯定知道商人們批發商品吧,而且,商人們為了賺錢,會不停地把商品賣出買進,這樣就能獲得更多利潤了。
一次,我和爸爸在文具店買東西,爸爸拿起一個7元的筆盒對我說:「如果一個商人買了50個這種筆盒,以每個8元賣給文具批發商,又以每隻9元收購回來,再以每隻10元賣出去,那麼他是虧了還是賺了?」
我不假思索地回答道:「這么簡單的題還想考我!他肯定是賺了,而且是賺了一大筆錢呢!」
「那他到底賺了多少利潤?」爸爸追問道。
我毫不猶豫地說:「他一個筆盒以7元買進,8元賣出,9元買進,10元賣出,一共可得利潤(8+10)—(7+9)=2(元)。就是說一個筆盒就可以賺得2元,50個筆盒按這種方式買進賣出,共得利潤100元。他是個很精明的商人。」
「不錯!」爸爸微笑著說。「也可以這樣算:買進時用了(7+9)×50=800(元)。賣出時得了(8+10)×50=900(元)。則這個商人賺了900—800=100(元)。」不過,爸爸話鋒一轉,「你知道為什麼要問你一個這么簡單的問題嗎?」
「不知道。」我搖搖頭,驚奇地說。
「一般來說,計算一道題有很多種方法。只要思考方式和推理過程是對的,結果就是一樣的。計算和預測利潤或損失就是用賣出商品得到的錢減去買入花的錢,結果是正數,就是賺了;結果是負數,就是虧了。就像剛才那個筆盒,如果商人用7元買走筆盒,用6元賣給另一個人,他就虧了1元。而商人用8元賣給另一個人後,他就賺了1元。」
「這就是說,生活中數學的影子無處不在,在商場里、交易所里都要廣泛運用到數學。」我恍然大悟。
在六年的小學生涯里我學到了許多許多,及將需要我探討是初中、高中、大學……的知識,我一定要努力學習!

㈣ 小學數學教學論文 淺談如何上好小學的數學課

數學這門學科,自古以來就被認為為是理性最強的學科,需要聰明的大腦和天賦才能學好的,其實不然,對於天真浪漫的小學生來講,他們接受各種文化知識的能力是等同的,那麼如何才能學好數學呢?我認為關鍵在於如何調動學生學習數學的興趣。通過分析,不論學生自身的因素還是學校、家庭環境對學生自身興趣的影響都與教師有直接關系,就像鄧小平曾說的:「一個學校能不能為社會主義建設培養合格人才,培養德、智、體全面發展、有社會主義覺悟的、有文化的勞動者,關鍵在教師。」同樣,能否調動學生學習的興趣,關鍵也是在教師,如何調動學生學數學的積極性呢?教師在學生學習中又處於什麼地位呢?下面是本人在教學中的幾點淺見:
一、先從本身著手,讓學生喜歡上你,從而喜歡上你的課。
作為教者本身來講,要從各方面來完善自己,比如,師德修養,文體方面等等,讓學生從內心尊重你,要和學生結交成各方面的朋友,從而使他們喜歡你的同時,也喜歡你所教的學科。現在很多教師在思考如何讓學生學好數學時,經常考慮的是如何激發學生的興趣,卻忽視了自身的素質要求,如果自身不修邊幅、口無遮攔的,如何讓學生喜歡上你,更不用說喜歡上你的課了。學生一開始就抵觸你,即使你再如何調動學生的學習興趣,都只是「剃頭擔子一頭熱」。
二、其次先要誘發興趣,通過游戲性活動,讓學生喜歡上你上的數學課。
興趣是學生最好的老師,也是智力開發的原動力,「良好的開端是成功的一半」,誘發學生從新課剛開始時就產生強烈的求知慾是至關重要的。愉快的游戲能喚起學生的愉悅感,引起學生的直接興趣,並由無意注意引導到有意注意,發展間接興趣。因此,教師導入新課時,根據教學內容,可選擇組織學生做數學游戲的方法,讓學生人人參加,能很快地激發學生的學習熱情,比如,在學習100以內二位數加減二位數中,我讓一部分學生當作售貨員,一部分學生當作買東西的顧客,讓他們從實際出發,從一買一賣中得到樂趣,更在不知不覺中學到了知識,讓學生在玩中學,在學中玩,更讓學生們懂得了學習數學的重要性,何樂而不為呢?
三、再次要設計疑點,激發思維火花,「勾引」出學生的學習興趣。
「學起於思,思起於源」。心理學認為。疑是最容易引起探究反射,思維也就應運而生。例如:我在教學中,經常會問,如果是你,你會怎麼樣?通過換位思考,改變以前學生被動學習的境況,讓學生設身處地的思考問題,讓學生產生「疑」。引起思考,是需要學習的開始。疑問使學生萌發出求知的慾望。同學們躍躍欲試,開始了對新知識的探求。
四、通過讓學生進行「爭吵」,在爭論中提出問題,開拓思維能力升華興趣。
學習數學是一項艱苦而又細致的勞動。學習的直接興趣不是與生俱有的,而是學生在刻苦學習,認真鑽研的學習活動中得到發展升華的。一個懶於學習,不願思考的學生,是很難對數學產生興趣的。因此,在教學中教師首先要創設條件,讓學生有充分施展才能的機會,鼓勵學生質疑問難,大膽發表與教師不同的看法;培養學生善於獨立思考的習慣,要求學生遇事要勤於思考,善於思考,豐富想像,開拓思維。這樣,對升華學生學習數學的興趣,能起到一定的促進作用。其次,課堂上組織學生討論是開拓學生思維能力,升華興趣的一個好辦法。因此,教師可採用同桌、小組、全班等討論形式,組織學生對某一個問題進行開放式的討論,讓學生思維的火花互相觸發,交流各自對問題的不同看法,最後由教師進行總結概括。利用這個方法的目的是引起更深入地鑽研某些問題的更高興趣。
五、最後通過表揚、鼓勵,讓學生體驗喜悅,延長學習的興趣。
學生有了興趣,還要想方設法使興趣持久。因為小學生的興趣既不穩定,又不長久。一位心理學家曾說過:「一個人只要體驗一次成功的意念和勝利的欣慰,便會激發追求無休止成功的意念和力量。」這種無休止成功的意念和力量也就是學生興趣的源泉。對學生來說,老師的一點點鼓勵,一次的肯定,一次表揚,都是他成功的標志,他都能從中體驗成功的喜悅,這時學生的興趣就如同永不枯竭的源泉,就會濃厚、持久。綜上所述,是我在教學中的點滴體會,總之,在數學教學過程中,只要我們認真鑽研教材,把握學生的學習心態,運用靈活多樣的教學方法,精心設計每一個教學環節,就能激發和增強學生的學習興趣,使他們

㈤ 小學數學優秀論文:淺談如何構建小學數學高效

如何構建小學數學高效論文具體如下:

高效課堂是一種教學形態,集中表現為教師教得輕松、學生學得愉快;它是一種融學生認知建構與情感激活、教學控制與情境創設為一體的教學形態。高效課堂也是一種教學理想,其意義是為現實教學產生一種動力、牽引、導向作用。實施高效課堂教學是教學永恆的主題,是教師永遠的追求。因此,高效課堂應是一個動態的轉化過程,即從追求高效的教學理想轉化成實現教師高效地教和學生高效地學的教學狀態。

課堂教學集各種要素於一體。由於學科不同、教學內容不同、教學對象不同,決定了高效課堂教學的多樣性和可變性。

高效課堂是以學生終身發展的教學理念為指導以規范具體的教學目標為導向。促進學生的終身發展、為學生終身發展奠基是高效課堂教學所遵循的理念。高效課堂教學就應該著眼於學生的未來發展,培養學生的學習熱情,使學生「愛學習」;促進學生掌握學習的方法,使學生「會學習」。

高效課堂要以扎實的教學內容為載體。扎實的教學內容是課堂教學促進學生發展的載體。高效課堂教學並不是教學內容越「多」越好,也不是越「難」越好,而是要在了解學生的實際發展水平和特點的基礎上,合理地確定教學內容的重點。因此,課堂上教師要以「精講多練」方式落實教學重點,要讓學生扎實掌握基礎知識,發展熟練的基本技能。課堂上學生可以採用自主學習、合作學習、探究學習等學習方式,讓學生變「被動學習」為「自主學習」,變「要我學」為「我要學」。充分發揮學生的積極性、主動性、創造性為前提,引導他們在民主、寬松、和諧的課堂氣氛中自主學習、合作學習與探究學習,才能達到高效課堂教學的效果。

那麼如何有效的提高高校課堂,大體總結為下面幾點:

(一)以大綱為基礎,結合實際,設計好教學方案:

學生預習,教師備課。備課過程中,教師根據大綱系統把握教材外,更要以身作則,熟練掌握教材的內容;典型題例自己先要做,相關的知識要充分學習。還要提前一周集體研究下周備課時的教學方案。教學方案是教師對整個一課教學設計意圖的體現。教學方案設計的重點教學過程的設計。教師在設計教學過程時,一定要針對學生已有的知識基礎,能力水平與思想水平,符合學校現有的實際條件。這樣設計出的教學方案才切合實際,才具有可操作性。

(二)把握好時間安排和學法指導,努力創建學習型課堂:

時間就是效率。抓緊時間,用好時間才能保證課堂的高效率。我們要改變觀念,一堂課一般由學習、講解和練習三部分構成。講的時間不宜超過15分鍾,練的時間不宜少於15分鍾。這里的練包括教學過程中的訓練。課堂上要少講精講,多學多練。教師要精心安排學、講、練的內容,以保證各個環節的時間。

教師要在課堂上惜時如金,同時還要學會節約時間。比方說運用信息技術手段,合理安排收發作業等。上課要守時,不要遲到,更不允許拖堂。教師要以自己的時間觀念影響學生時間觀念,幫助學生制訂時間安排,反思時間利用情況,讓學生學會經營課堂40分鍾,讓它產生最大的效益。教師一定要樹立學生可以學會,每個學生都可以學會的觀念,幫助學生制訂自學方案,解答學生疑難。對於大多數學生通過自學可以解決的問題不講,解決不了的問題精講,遺漏的問題予以補充。以課堂作業、來回巡視等手段督促學生自學,最大限度地反饋學生的學習情況,創建和諧高效的課堂氣氛。

(三)營造和諧的師生關系和學習氛圍:

親其師、信其道。只有在平等寬松的氛圍中,學生才能愉悅地學習,才能取得好的效果。陶行知提出:「創造力量最能發揮的條件是民主。」要提高學生的學習積極性,培養學生的創造力,教師應努力創設出民主、寬松、和諧的教學氛圍,這有利於激勵學生的自主意識,有利於活躍學生的創造性思維,有利於激發學生的想像力,有利於不同觀點的相互碰撞和交流。

教師要經常聽取學生對於本學科學習的建議,並及時地調整自己的教學策略,要盡最大可能地尊重學生意願選取學習方式。教師要尊重學生的勞動成果,不要挖苦諷刺回答錯誤的學生。教師要以真誠的眼光注視學生,親切的語氣教育學生,信任的心態引導學生。營造民主、寬松、和諧氛圍的主動權在教師手中,教師必須主動地承擔改善師生關系的責任。

(四)練習到位,當堂檢測、鞏固課堂教學效果:

練習的目的有三個:檢驗學生的學習情況;鞏固學習成果;將學生的知識轉化為能力。

課堂練習是檢驗學生學習情況的最佳途徑,因此課堂作業要緊扣當堂教學內容。課外作業是一個增效過程,著眼於學生的發展,要有彈性。課內外作業都要分層,使各檔學生都能完成並獲得發展。

練習要精心設計,堅決避免重復。各科作業都必須做到最遲隔天反饋。重視課後的輔導,對於作業中的共性問題要認真進行全班講解,個性問題單獨解決,絕不積壓學生學習中出現的問題。

這是我對高效課堂的幾點認識和自己認為在使用過程中的幾點看法,通過高效課堂和四大理論的學習,會使我們的教學更優化。

新課標提倡學生主體、教師主導的課堂教學理念。在課堂教學過程中,教師是起引導、組織的作用,突出學生的主體參與意識、主動學習意識,改變過去的滿堂灌。而要讓學生真正參與到學習中,則要求教師在充分了解學生的基礎上結合教材、合理科學地設置教學活動,通過激發學生的興趣,刺激學生的求知慾,讓其主動融入學習活動,並從中發現問題、思考問題、解決問題,從而獲取知識。因此,如何組織課堂、設計有效活動無疑是教師必須認真對待的。要設計有效活動,首先要對有效作個理解,我個人認為,作為課堂教學活動,其面對的主體是學生,目的要讓學生能夠通過活動獲取知識,

教師在設計活動之前,必須考慮以下幾點:

(一)活動應具有實效性。

通過活動,學生可以發現什麼?能夠為學生的學習帶來多大幫助,即活動的目的是什麼。教師在設計活動時,首先要想到活動的目的,明確學生通過活動能夠達到什麼效果。如果活動進行後學生收獲甚少或一無所獲,那麼,這樣的活動不如不要。如:導入部分的觀看動畫,目的通常有兩個:一是激發學生學習興趣;二是為新知的學習設下疑問。如果動畫內容,學生興趣不大,產生問題的效果不佳,那麼這個活動的設置就顯得意義不大。再比如:小組合作交流,目的讓學生通過交流發現問題,找出不足,共同尋求解決辦法,如果安排一個大家幾乎都能掌握的內容讓學生討論、交流,結果肯定會讓學生感到乏味,既浪費課堂教學的寶貴時間,又不能產生良好效益,得不償失。因此,教師在設計活動之前必須精心思考,充分結合學生水平、興趣等多方因素,讓學生都能樂於參與,從中受益

(二)活動的全面性。

即有多少學生能參與其中。一項活動的安排,如果能在有效的時間內,盡量讓更多的學生融入其中,才能發揮其作用。新課標提倡人人學數學,人人有數學學。因此教師在設計活動時,應將面盡量擴大,力爭讓所有學生都能有事可做。

(三)活動的完整性。

有些教師在安排學生活動時,經常出現這樣的錯誤,即當學生沒有得出結論時,教師便將其打斷,終止了活動的正常進行,結果變成了教師告訴了學生結果,而不是學生自己發現了結果。對於學生來說,他自己通過努力得到的,遠比教師塞給他的要好。因此,教師在設計活動時,要充分考慮到學生的能力,要讓學生通過一定的努力能夠有所收獲,不能讓他們望而興嘆、無能為力,這樣便可確保活動順利的進行,完整的結束。

總結:

課堂教學的高效性就是通過課堂教學活動,學生在學業上有超常收獲,有超常提高,有超常進步。具體一點說就是學生在認知上,從不懂到懂,從少知到多知,從不會到會;在情感上,從不喜歡到喜歡,從不熱愛到熱愛,從不感興趣到感興趣。作為教師,高效課堂將成為我們畢生追求的目標,讓我們致力於課堂,致力於課改,在今後的教學中,不比誰付出的多,就比在單位時間里誰投入最少,收獲最多。也就是說誰能做到輕鬆快樂中達高效。

㈥ 小學數學教學論文

小學數學教學論文(2)

小學數學教學論文--在小學數學教學中培養學生的思維能力

培養學生的思維能力是現代學校教學的一項基本任務。我們要培養社會主義現代化建設所需要的人才,其基本條件之一就是要具有獨立思考的能力,勇於創新的精神。小學數學教學從一年級起就擔負著培養學生思維能力的重要任務。下面就如何培養學生思維能力談幾點看法。

一 培養學生的邏輯思維能力是小學數學教學中一項重要任務

思維具有很廣泛的內容。根據心理學的研究,有各種各樣的思維。在小學數學教學中應該培養什麼樣的思維能力呢?《小學數學教學大綱》中明確規定,要「使學生具有初步的邏輯思維能力。」這一條規定是很正確的。下面試從兩方面進行一些分析。首先從數學的特點看。數學本身是由許多判斷組成的確定的體系,這些判斷是用數學術語和邏輯術語以及相應的符號所表示的數學語句來表達的。並且藉助邏輯推理由一些判斷形成一些新的判斷。而這些判斷的總和就組成了數學這門科學。小學數學雖然內容簡單,沒有嚴格的推理論證,但卻離不開判斷推理,這就為培養學生的邏輯思維能力提供了十分有利的條件。再從小學生的思維特點來看。他們正處在從具體形象思維向抽象邏輯思維過渡的階段。這里所說的抽象邏輯思維,主要是指形式邏輯思維。因此可以說,在小學特別是中、高年級,正是發展學生抽象邏輯思維的有利時期。由此可以看出,《小學數學教學大綱》中把培養初步的邏輯思維能力作為一項數學教學目的,既符合數學的學科特點,又符合小學生的思維特點。

值得注意的是,《大綱》中的規定還沒有得到應有的和足夠的重視。一個時期內,大家談創造思維很多,而談邏輯思維很少。殊不知在一定意義上說,邏輯思維是創造思維的基礎,創造思維往往是邏輯思維的簡縮。就多數學生說,如果沒有良好的邏輯思維訓練,很難發展創造思維。因此如何貫徹《小學數學教學大綱》的目的要求,在教學中有計劃有步驟地培養學生邏輯思維能力,還是值得重視和認真研究的問題。

《大綱》中強調培養初步的邏輯思維能力,只是表明以它為主,並不意味著排斥其他思維能力的發展。例如,學生雖然在小學階段正在向抽象邏輯思維過渡,但是形象思維並不因此而消失。在小學高年級,有些數學內容如質數、合數等概念的教學,通過實際操作或教具演示,學生更易於理解和掌握;與此同時學生的形象思維也會繼續得到發展。又例如,創造思維能力的培養,雖然不能作為小學數學教學的主要任務,但是在教學與舊知識有密切聯系的新知識時,在解一些富有思考性的習題時,如果採用適當的教學方法,可以對激發學生思維的創造性起到促進作用。教學時應該有意識地加以重視。至於辯證思維,從思維科學的理論上說,它屬於抽象邏輯思維的高級階段;從個體的思維發展過程來說,它遲於形式邏輯思維的發展。據初步研究,小學生在10歲左右開始萌發辨證思維。因此在小學不宜過早地把發展辯證思維作為一項教學目的,但是可以結合某些數學內容的教學滲透一些辯證觀點的因素,為發展辯證思維積累一些感性材料。例如,通用教材第一冊出現,可以使學生初步地直觀地知道第二個加數變化了,得數也隨著變化了。到中年級課本中還出現一些表格,讓學生說一說被乘數(或被除數)變化,積(或商)是怎樣跟著變化的。這就為以後認識事物是相互聯系、變化的思想積累一些感性材料。

二 培養學生思維能力要貫穿在小學數學教學的全過程

現代教學論認為,教學過程不是單純的傳授和學習知識的過程,而是促進學生全面發展(包括思維能力的發展)的過程。從小學數學教學過程來說,數學知識和技能的掌握與思維能力的發展也是密不可分的。一方面,學生在理解和掌握數學知識的過程中,不斷地運用著各種思維方法和形式,如比較、分析、綜合、抽象、概括、判斷、推理;另一方面,在學習數學知識時,為運用思維方法和形式提供了具體的內容和材料。這樣說,絕不能認為教學數學知識、技能的同時,會自然而然地培養了學生的思維能力。數學知識和技能的教學只是為培養學生思維能力提供有利的條件,還需要在教學時有意識地充分利用這些條件,並且根據學生年齡特點有計劃地加以培養,才能達到預期的目的。如果不注意這一點,教材沒有有意識地加以編排,教法違背激發學生思考的原則,不僅不能促進學生思維能力的發展,相反地還有可能逐步養成學生死記硬背的不良習慣。

怎樣體現培養學生思維能力貫穿在小學數學教學的全過程?是否可以從以下幾方面加以考慮。

(一)培養學生思維能力要貫穿在小學階段各個年級的數學教學中。要明確各年級都擔負著培養學生思維能力的任務。從一年級一開始就要注意有意識地加以培養。例如,開始認識大小、長短、多少,就有初步培養學生比較能力的問題。開始教學10以內的數和加、減計算,就有初步培養學生抽象、概括能力的問題。開始教學數的組成就有初步培養學生分析、綜合能力的問題。這就需要教師引導學生通過實際操作、觀察,逐步進行比較、分析、綜合、抽象、概括,形成10以內數的概念,理解加、減法的含義,學會10以內加、減法的計算方法。如果不注意引導學生去思考,從一開始就有可能不自覺地把學生引向死記數的組成,機械地背誦加、減法得數的道路上去。而在一年級養成了死記硬背的習慣,以後就很難糾正。

(二)培養學生思維能力要貫穿在每一節課的各個環節中。不論是開始的復習,教學新知識,組織學生練習,都要注意結合具體的內容有意識地進行培養。例如復習20以內的進位加法時,有經驗的教師給出式題以後,不僅讓學生說出得數,還要說一說是怎樣想的,特別是當學生出現計算錯誤時,說一說計算過程有助於加深理解「湊十」的計算方法,學會類推,而且有效地消滅錯誤。經過一段訓練後,引導學生簡縮思維過程,想一想怎樣能很快地算出得數,培養學生思維的敏捷性和靈活性。在教學新知識時,不是簡單地告知結論或計演算法則,而是引導學生去分析、推理,最後歸納出正確的結論或計演算法則。例如,教學兩位數乘法,關鍵是通過直觀引導學生把它分解為用一位數乘和用整十數乘,重點要引導學生弄清整十數乘所得的部分積寫在什麼位置,最後概括出用兩位數乘的步驟。學生懂得算理,自己從直觀的例子中抽象、概括出計算方法,不僅印象深刻,同時發展了思維能力。在教學中看到,有的老師也注意發展學生思維能力,但不是貫穿在一節課的始終,而是在一節課最後出一兩道稍難的題目來作為訓練思維的活動,或者專上一節思維訓練課。這種把培養思維能力只局限在某一節課內或者一節課的某個環節內,是值得研究的。當然,在教學全過程始終注意培養思維能力的前提下,為了掌握某一特殊內容或特殊方法進行這種特殊的思維訓練是可以的,但是不能以此來代替教學全過程發展思維的任務。

(三)培養思維能力要貫穿在各部分內容的教學中。這就是說,在教學數學概念、計演算法則、解答應用題或操作技能(如測量、畫圖等)時,都要注意培養思維能力。任何一個數學概念,都是對客觀事物的數量關系或空間形式進行抽象、概括的結果。因此教學每一個概念時,要注意通過多種實物或事例引導學生分析、比較、找出它們的共同點,揭示其本質特徵,做出正確的判斷,從而形成正確的概念。例如,教學長方形概念時,不宜直接畫一個長方形,告訴學生這就叫做長方形。而應先讓學生觀察具有長方形的各種實物,引導學生找出它們的邊和角各有什麼共同特點,然後抽象出圖形,並對長方形的特徵作出概括。教學計演算法則和規律性知識更要注意培養學生判斷、推理能力。例如,教學加法結合律,不宜簡單地舉一個例子,就作出結論。最好舉兩三個例子,每舉一個例子,引導學生作出個別判斷〔如(2+3)+5=2+(3+5),先把2和3加在一起再同5相加,與先把3和5加在一起再同2相加,結果相同〕。然後引導學生對幾個例子進行分析、比較,找出它們的共同點,即等號左端都是先把前兩個數相加,再同第三個數相加,而等號右端都是先把後兩個數相加,再同第一個數相加,結果不變。最後作出一般的結論。這樣不僅使學生對加法結合律理解得更清楚,而且學到不完全歸納推理的方法。然後再把得到的一般結論應用到具體的計算(如57+28+12)中去並能說出根據什麼可以使計算簡便。這樣又學到演繹的推理方法至於解應用題引導學生分析數量關系,這里不再贅述。

三 設計好練習題對於培養學生思維能力起著重要的促進作用

培養學生的思維能力同學習計算方法、掌握解題方法一樣,也必須通過練習。而且思維與解題過程是密切聯系著的。培養思維能力的最有效辦法是通過解題的練習來實現。因此設計好練習題就成為能否促進學生思維能力發展的重要一環。一般地說,課本中都安排了一定數量的有助於發展學生思維能力的練習題。但是不一定都能滿足教學的需要,而且由於班級的情況不同,課本中的練習題也很難做到完全適應各種情況的需要。因此教學時往往要根據具體情況做一些調整或補充。為此提出以下幾點建議供參考。

(一)設計練習題要有針對性,要根據培養目標來進行設計。例如,為了了解學生對數學概念是否清楚,同時也為了培養學生運用概念進行判斷的能力,可以出一些判斷對錯或選擇正確答案的練習題。舉個具體例子:「所有的質數都是奇數。( )」如要作出正確判斷,學生就要分析偶數裡面有沒有質數。而要弄清這一點,要明確什麼叫做偶數,什麼叫做質數,然後應用這兩個概念的定義去分析能被2整除的數裡面有沒有一個數,它的約數只1和它自身。想到了2是偶數又是質數,這樣就可以斷定上面的判斷是錯誤的。

%

閱讀全文

與小學數學學科論文相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99