1. 一個小學數學老師,在北師大版小學數學冊上出題,厲害嗎
這個的確有點厲害,值得大家學習。
六年級上冊數學知識點第一單元位置1、什麼是數對?——數對:由兩個數組成,中間用逗號隔開,用括弧括起來。括弧裡面的數由左至右為列數和行數,即「先列後行」。作用:確定一個點的位置。經度和緯度就是這個原理。例:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)(列,行)↓↓豎排叫列橫排叫行(從左往右看)(從下往上看)(從前往後看)2、圖形左右平移行數不變;圖形上下平移列數不變。3、兩點間的距離與基準點(0,0)的選擇無關,基準點不同導致數對不同,兩點間但距離不變。第二單元分數乘法(一)分數乘法意義:1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。註:「分數乘整數」指的是第二個因數必須是整數,不能是分數。例如:×7表示:求7個的和是多少?或表示:的7倍是多少?2、一個數乘分數的意義就是求一個數的幾分之幾是多少。註:「一個數乘分數」指的是第二個因數必須是分數,不能是整數。(第一個因數是什麼都可以)例如:×表示:求的是多少?9×表示:求9的是多少?A×表示:求a的是多少?(二)分數乘法計演算法則:1、分數乘整數的運演算法則是:分子與整數相乘,分母不變。註:(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)(2)約分是用整數和下面的分母約掉最大公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)2、分數乘分數的運演算法則是:用分子相乘的積做分子,分母相乘的積做分母。(分子乘分子,分母乘分母)註:(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。(2)分數化簡的方法是:分子、分母同時除以它們的最大公因數。(3)在乘的過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分後的數。(約分後分子和分母必須不再含有公因數,這樣計算後的結果才是最簡單分數)(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。(三)積與因數的關系:一個數(0除外)乘大於1的數,積大於這個數。a×b=c,當b>1時,c>a.一個數(0除外)乘小於1的數,積小於這個數。a×b=c,當b<1時,c1時,ca(a≠0b≠0)③除以等於1的數,商等於被除數:a÷b=c當b=1時,c=a三、分數除法混合運算1、混合運算用梯等式計算,等號寫在第一個數字的左下角。2、運算順序:①連除:屬同級運算,按照從左往右的順序進行計算;或者先把所有除法轉化成乘法再計算;或者依據「除以幾個數,等於乘上這幾個數的積」的簡便方法計算。加、減法為一級運算,乘、除法為二級運算。②混合運算:沒有括弧的先乘、除後加、減,有括弧的先算括弧裡面,再算括弧外面。註:(a±b)÷c=a÷c±b÷c四、比:兩個數相除也叫兩個數的比1、比式中,比號(∶)前面的數叫前項,比號後面的項叫做後項,比號相當於除號,比的前項除以後項的商叫做比值。註:連比如:3:4:5讀作:3比4比52、比表示的是兩個數的關系,可以用分數表示,寫成分數的形式,讀作幾比幾。例:12∶20==12÷20==0.612∶20讀作:12比20註:區分比和比值:比值是一個數,通常用分數表示,也可以是整數、小數。比是一個式子,表示兩個數的關系,可以寫成比,也可以寫成分數的形式。3、比的基本性質:比的前項和後項同時乘以或除以相同的數(0除外),比值不變。3、化簡比:化簡之後結果還是一個比,不是一個數。(1)、用比的前項和後項同時除以它們的最大公約數。(2)、兩個分數的比,用前項後項同時乘分母的最小公倍數,再按化簡整數比的方法來化簡。也可以求出比值再寫成比的形式。(3)、兩個小數的比,向右移動小數點的位置,也是先化成整數比。4、求比值:把比號寫成除號再計算,結果是一個數(或分數),相當於商,不是比。5、比和除法、分數的區別:除法被除數除號(÷)除數(不能為0)商不變性質除法是一種運算分數分子分數線(——)分母(不能為0)分數的基本性質分數是一個數比前項比號(∶)後項(不能為0)比的基本性質比表示兩個數的關系附:商不變性質:被除數和除數同時乘或除以相同的數(0除外),商不變。分數的基本性質:分子和分母同時乘或除以相同的數(0除外),分數的大小不變。五、分數除法和比的應用1、已知單位「1」的量用乘法。例:甲是乙的,乙是25,求甲是多少?即:甲=乙×(15×=9)2、未知單位「1」的量用除法。例:甲是乙的,甲是15,求乙是多少?即:甲=乙×(15÷=25)(建議列方程答)3、分數應用題基本數量關系(把分數看成比)(1)甲是乙的幾分之幾?甲=乙×幾分之幾(例:甲是15的,求甲是多少?15×=9)乙=甲÷幾分之幾(例:9是乙的,求乙是多少?9÷=15)幾分之幾=甲÷乙(例:9是15的幾分之幾?9÷15=)(「是」字相當「÷」號,乙是單位「1」)(2)甲比乙多(少)幾分之幾?A差÷乙=(「比」字後面的量是單位「1」的量)(例:9比15少幾分之幾?(15-9)÷15===)B多幾分之幾是:–1(例:15比9少幾分之幾?15÷9=-1=–1=)C少幾分之幾是:1–(例:9比15少幾分之幾?1-9÷15=1–=1–=)D甲=乙±差=乙±乙×=乙±乙×=乙(1±)(例:甲比15少,求甲是多少?15–15×=15×(1–)=9(多是「+」少是「–」)E乙=甲÷(1±)(例:9比乙少,求乙是多少?9÷(1-)=9÷=15)(多是「+」少是「–」)(例:15比乙多,求乙是多少?15÷(1+)=15÷=9)(多是「+」少是「–」)4、按比例分配:把一個量按一定的比分配的方法叫做按比例分配。例如:已知甲乙的和是56,甲、乙的比3∶5,求甲、乙分別是多少?方法一:56÷(3+5)=7甲:3×7=21乙:5×7=35方法二:甲:56×=21乙:56×=35例如:已知甲是21,甲、乙的比3∶5,求乙是多少?方法一:21÷3=7乙:5×7=35方法二:甲乙的和21÷=56乙:56×=35方法二:甲÷乙=乙=甲÷=21÷=355、畫線段圖:(1)找出單位「1」的量,先畫出單位「1」,標出已知和未知。(2)分析數量關系。(3)找等量關系。(4)列方程。註:兩個量的關系畫兩條線段圖,部分和整體的關系畫一條線段圖。第四單元圓一、.圓的特徵1、圓是平面內封閉曲線圍成的平面圖形,.2、圓的特徵:外形美觀,易滾動。3、圓心o:圓中心的點叫做圓心.圓心一般用字母O表示.圓多次對折之後,摺痕的相交於圓的中心即圓心。圓心確定圓的位置。半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2=d=4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。摺痕所在的直線叫做對稱軸。有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角有二條對稱軸的圖形:長方形有三條對稱軸的圖形:等邊三角形有四條對稱軸的圖形:正方形有無條對稱軸的圖形:圓,圓環6、畫圓(1)圓規兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。二、圓的周長:圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。1、圓的周長總是直徑的三倍多一些。2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。即:圓周率π==周長÷直徑≈3.14所以,圓的周長(c)=直徑(d)×圓周率(π)——周長公式:c=πd,c=2πr註:圓周率π是一個無限不循環小數,3.14是近似值。3、周長的變化的規律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。如果r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c34、半圓周長=圓周長一半+直徑=×2πr=πr+d三、圓的面積s1、圓面積公式的推導如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。圓的半徑=長方形的寬圓的周長的一半=長方形的長長方形面積=長×寬所以:圓的面積=長方形的面積=長×寬=圓的周長的一半(πr)×圓的半徑(r)S圓=πr×rS圓=πr×r=πr22、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則最大,而長方形的面積則最小。周長相同時,圓面積最大,利用這一特點,籃子、盤子做成圓形。3、圓面積的變化的規律:半徑擴大多少倍直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。如果:r1∶r2∶r3=d1∶d2∶d3=c1∶c2∶c3=2∶3∶4則:S1∶S2∶S3=4∶9∶164、環形面積=大圓–小圓=πr大2-πr小2=π(r大2-r小2)扇形面積=πr2×(n表示扇形圓心角的度數)5、跑道:每條跑道的周長等於兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。註:一個圓的半徑增加a厘米,周長就增加2πa厘米一個圓的直徑增加b厘米,周長就增加πb厘米6、任意一個正方形的內切圓即最大圓的直徑是正方形的邊長,它們的面積比是4∶π7、常用數據π=3.142π=6.283π=9.424π=12.565π=15.7第五單元、百分數一、百分數的意義:表示一個數是另一個數的百分之幾。註:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比,所以,百分數又叫百分比或百分率,百分數不能帶單位。1、百分數和分數的區別和聯系:(1)聯系:都可以用來表示兩個量的倍比關系。(2)區別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只以是整數。註:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數並不是百分數,必須把分母寫成「%」才是百分數,所以「分母是100的分數就是百分數」這句話是錯誤的。「%」的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70、80%,出油率在30、40%。2、小數、分數、百分數之間的互化(1)百分數化小數:小數點向左移動兩位,去掉「%」。(2)小數化百分數:小數點向右移動兩位,添上「%」。(3)百分數化分數:先把百分數寫成分母是100的分數,然後再化簡成最簡分數。(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然後化成百分數。(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。(6)分數化小數:分子除以分母。二、百分數應用題1、求常見的百分率如:達標率、及格率、成活率、發芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節約了百分之幾等來表示增加、或減少的幅度。求甲比乙多百分之幾(甲-乙)÷乙求乙比甲少百分之幾(甲-乙)÷甲3、求一個數的百分之幾是多少一個數(單位「1」)×百分率4、已知一個數的百分之幾是多少,求這個數部分量÷百分率=一個數(單位「1」)5、折扣折扣、打折的意義:幾折就是十分之幾也就是百分之幾十折扣成數幾分之幾百分之幾小數通用八折八成十分之八百分之八十0.8八五折八成五十分之八點五百分之八十五0.85五折五成十分之五百分之五十0.5半價6、納稅繳納的稅款叫做應納稅額。(應納稅額)÷(總收入)=(稅率)(應納稅額)=(總收入)×(稅率)7、利率(1)存入銀行的錢叫做本金。(2)取款時銀行多支付的錢叫做利息。(3)利息與本金的比值叫做利率。利息=本金×利率×時間稅後利息=利息-利息的應納稅額=利息-利息×5%註:國債和教育儲蓄的利息不納稅8、百分數應用題型分類(1)求甲是乙的百分之幾——(甲÷乙)×100%=×100%=百分之幾(2)求甲比乙多(少)百分之幾——×100%=×100%例①甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%②甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%③乙是40,甲是乙的125%,甲數是多少?(40的125%是多少?)40×125%=50④甲是50,乙是甲的80%,乙數是多少?(50的80%是多少?)50×80%=40⑤乙是40,乙是甲的80%,甲數是多少?(一個數的80%是40,這個數是多少?)40÷80%=50⑥甲是50,甲是乙的125%,乙數是多少?(一個數的125%是50,這個數是多少?)50÷125%=40⑦甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25%⑧甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20%⑨甲比乙多25%,多10,乙是多少?10÷25%=40⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50⑪乙比甲少20%,少10,甲是多少?10÷20%=50⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40⑬乙是40,甲比乙多25%,甲數是多少?(什麼數比40多25%?)40×(1+25%)=50⑭甲是50,乙比甲少20%,乙數是多少?(什麼數比50多25%?)50×(1-20%)=40⑮乙是40,比甲少20%,甲數是多少?(40比什麼數少20%?)40÷(1-20%)=50⑯甲是50,比乙多25%,乙數是多少?(50比什麼數多25%?)40÷(1+25%)=40第六單元、統計1、扇形統計圖的意義:用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間關系,也就是各部分數量占總數的百分比,因此也叫百分比圖。2、常用統計圖的優點:(1)、條形統計圖直觀顯示每個數量的多少。(2)、折線統計圖不僅直觀顯示數量的增減變化,還可清晰看出各個數量的多少。(3)、扇形統計圖直觀顯示部分和總量的關系。第七單元、數學廣角一、研究中國古代的雞兔同籠問題。1、用表格方式解決有局限性,數目必須小,例:頭數雞(只)兔(只)腿數351343523335332……(逐一列表法、腿數少,小幅度跳躍;腿數多,大幅度跳躍。跳躍逐一相結合、取中列表)2、用假設法解決(1)假如都是兔(2)假如都是雞(3)假如它們各抬起一條腿(4)假如兔子抬起兩條前腿3、用代數方法解(一般規律)注釋:這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》中就記載了這個有趣的問題。書中是這樣敘述的:「今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?二、和尚分饅頭100個和尚吃100個饅頭,大和尚一人吃3個,小和尚三人吃一個。大小和尚各多少人?國明代珠算家程大位的名著《直指演算法統宗》里有一道著名算題:一百饅頭一百僧,大僧三個更無爭,小僧三人分一個,大小和尚各幾丁?"如果譯成白話文,其意思是:有100個和尚分100隻饅頭,正好分完。如果大和尚一人分3隻,小和尚3人分一隻,試問大、小和尚各有幾人?方法一,用方程解:解:設大和尚有x人,則小和尚有(100-x)人,根據題意列得方程:3x+(100-x)=100x=25100-25=75人方法二,雞兔同籠法:(1)假設100人全是大和尚,應吃饅頭多少個?3×100=300(個).(2)這樣多吃了幾個呢?300-100=200(個).(3)為什麼多吃了200個呢?這是因為把小和尚當成大和尚。那麼把小和尚當成大和尚時,每個小和尚多算了幾個饅頭?3-=(個)(4)每個小和尚多算了8/3個饅頭,一共多算了200個,所以小和尚有:小和尚:200÷=75(人)大和尚:100-75=25(人)方法三,分組法:由於大和尚一人分3隻饅頭,小和尚3人分一隻饅頭。我們可以把3個小和尚與1個大和尚編為一組,這樣每組4個和尚剛好分4個饅頭,那麼100個和尚總共分為100÷(3+1)=25組,因為每組有1個大和尚,所以有25個大和尚;又因為每組有3個小和尚,所以有25×3=75個小和尚。這是《直指演算法統宗》里的解法,原話是:"置僧一百為實,以三一並得四為法除之,得大僧二十五個。"所謂"實"便是"被除數","法"便是"除數"。列式就是:100÷(3+1)=25(組)大和尚:25×1=25(人)小和尚:100-25=75(人)或25×3=75(人)我國古代勞動人民的智慧由此可見一斑。三、整數、分數、百分數應用題結構類型(一)求甲是乙的幾倍(或幾分之幾或百分之幾)的應用題。解法:甲數除以乙數例:校園里有楊樹40棵,柳樹有50棵,楊樹的棵樹占柳樹的百分之幾?(或幾分之幾?)(二)求甲數的幾倍(或幾分之幾或百分之幾)是多少的應用題。解答分數應用題,首先要確定單位「1」,在單位「1」確定以後,一個具體數量總與一個具體分數(分率)相對應,這種關系叫「量率對應」,這是解答分數應用題的關鍵。求一個數的幾倍(幾分之幾或百分之幾)是多少用乘法,單位「1」×分率=對應數量例:六年級有學生180人,五年級的學生人數是六年級人數的56。五年級有學生多少人?180×56=150(三)已知甲數的幾倍(或幾分之幾或百分之幾)是多少,求甲數(即求標准量或單位「1」)的應用題。解法:對應數量÷對應分率=單位「1」例:育紅小學六年級男生有120人,占參加興趣活動小組人數的35.六年級參加興趣活動小組人數共有學生多少人?120÷35=200(人)請採納,謝謝
3. 小學數學人教版與北師大版有什麼區別
區別:
1、課文不同,排版也不同,人教版的要活潑些,而北師大的題比較多,北師大版的比人教版的難。
2、人教版的內容多,比較詳細。但是,這樣對於老師而言,是比較難講完。而且,如果講完了的話,可能進度會好快。那樣會導致學生聽不懂。
3、北師大版就不一樣了。他內容少,但是關鍵的,重要的還是都在。也就是說,基本內容都在。所以相對來說。大家都輕鬆了一點點。
人教版即由人民教育出版社出版,簡稱為人教版。小學到高中都有這個版本的教材。也是大多數學校所用的教材。
北京師范大學出版社是改革開放以來發展最快的大學出版社之一,也是中國最具影響力的教育出版社之一。
兩種教材都有優勢又各有不足,人教版教材邏輯性強,編寫嚴密,注重基礎知識,能適應全國大多數地區。
北師大版教材思維活躍,形式生動,富有童趣,但所表現出的邏輯性不強,教材內容跳躍性較大,一些學生思維學習能力跟不上,教材中留給教師學生的空間過多,由於教師能力的不同,所把握的教學標准就不一致,由此導致學生學習效果不一,同時該教材不太適用於大班教學。
教師在選用教材時,應以人教版教材為主線,適時穿插北師大版的一些教學思路和方法。
4. 小學數學是人教版難還是北師大版難
兩個版本基本上差不多。北師大版重視通過情景來讓學生體會知識,感受知識,盡可能地通回過個人的努力來進行答學習,對於學生自主探索、主動學習的要求比較高。
人教版側重於知識的系統化和條理化。能夠讓學生沿著一條有跡可循的知識脈絡進行研究,使學生對於知識的掌握比較系統完善。
北師大版義務教育標准實驗教科書已在成都各小學全面「實驗」了三年。這套教材將「更高、更快、更強」的理念貫注於教育領域,試圖為打造新一代知識精英做充足的准備。有一個不爭的共識:教材需要隨著時代變遷重新修改編纂。
(4)北師大版小學數學擴展閱讀:
其實既然是實驗教材,與穩定使用了幾十年的人教版老教材相比,必定有諸多不足,何況還有南橘北枳的可能。對編寫這套教材的專家而言,遇到意見、不滿都屬正常,怕的就是缺乏討論和溝通
這兩個教材都是拓展性思維,一個問題要求多面分析,比較容易理解,且能運用到生活中。總的來說,這兩個版本在趣味、拓展、延伸方面都非常好。
5. 小學數學人教版與北師大版的區別
課文不同,好象排版也不同,人教版的要活潑些,北師大的題蠻多的 北師大版的比人教版的難大概就這些!
6. 新版北師大版小學數學三年級上冊教材的總目標是什麼
1、會筆算三位數的加、減法,會進行相應的估算和驗算。
2、會口算一位數乘整十、整百數;會筆算一位數乘二、三位數,並會進行估算;能熟練地計算除數和商是一位數的有餘數的除法。
3、初步認識簡單的分數(分母小於10),會讀、寫分數並知道各部分的名稱,初步認識分數的大小,會計算簡單的同分母分數的加減法。
4、初步認識平行四邊形,掌握長方形和正方形的特徵,會在方格紙上畫長方形、正方形和平行四邊形;知道周長的含義,會計算長方形、正方形的周長;能估計一些物體的長度,並會進行測量。
5、認識長度單位千米,初步建立1千米的長度觀念,知道1千米=1000米;認識質量單位噸,初步建立1噸的質量觀念,知道1噸=1000千克;認識時間單位秒,初步建立分、秒的時間觀念,知道1分=60秒,會進行一些有關時間的簡單計算。
6、初步體驗有些事件的發生是確定的,有些則是不確定的;能夠列出簡單實驗所有可能發生的結果,知道事件發生的可能性是有大小的,能對一些簡單事件發生的可能性做出描述。
7、能找出事物簡單的排列數和組合數,形成發現生活中的數學的意識和全面地思考問題的意識,初步形成觀察、分析及推理的能力。
8、體會學習數學的樂趣,提高學習數學的興趣,建立學好數學的信心。
9、養成認真作業、書寫整潔的良好習慣。
10、體驗數學與日常生活的密切聯系,初步形成綜合運用數學知識解決問題的能力。
11、在課堂中改進筆算教學,體現計算教學改革的理念,重視培養學生的數感。
12、在教學量與計量的教學時聯系生活實際,重視學生的感受和體驗。
13、在空間與圖形的教學中,強調實際操作與自主探索,加強估測意識和能力的培養。
14、給學生提供豐富的現實學習素材,體現知識的形成過程。
15、逐步發展學生綜合運用知識的能力,注重情感、態度、價值觀的培養。
精心設計每節課來激發學生的學習興趣,讓學生獲得愉快的數學學習體驗。
在教學中,注意體現自主探索、合作交流的學習方式,讓學生在己動手「做數學」、「玩數學」、「用數學」,的氣氛中學習數學,每個學生在原有的基礎上都有所進步。
對於學習較困難的學生平時要多加關注,注意讓好的學生去帶動他們、幫助他們,並加強與家長的聯系,共同促進他們進步。
對於優生,要盡可能地拓寬他們的知識面,提高他們的思維能力,讓他們學得好,學得精。
7. 小學數學 北師大版和人教版哪個難度大,各有什麼特點
我個人認為人教版的復難度稍微大一些制。
北師大版重視通過情境來讓學生體會知識,感受知識,盡可能地通過個人的努力來進行學習,對於學生自主探索、主動學習的要求比較高。
人教版側重於知識的系統化和條理化。能夠讓學生延著一條有跡可循的知識脈絡進行研究,使學生對於知識的掌握比較系統完善。
8. 小學數學北師大版所有概念
小學1-6年級數學概念大全 三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b )*c
小學數學公式大全 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%) 長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
9. 小學數學人教版和北師大版教材比較及思考
人教版的內容多,比較詳細。但是,這樣對於老師而言,是比較難講完。而且內,如果講完了的話容,可能進度會好快。那樣會導致學生聽不懂。
但是,北師大版就不一樣了。他內容少,但是關鍵的,重要的還是都在。也就是說,基本內容都在。所以相對來說。大家都輕鬆了一點點。