❶ 小學數學設計的三種主要理論
如果你是今年要升學了,我可以提點意見。我以前帶過一小學六年級的小孩的家教。現列舉如下。
1、整個小學學的那些混合運送要熟悉。(加、減、乘、除的運算順序)
2、小數。要熟悉。特別是小數的運算。與整數和分數綜合運算。
3、分數,特別是與小數的轉化。幾個特別的數。如四分之一。
4、解方程,小學學的主要是簡單的方程。要記住那幾個公式。
5、簡單的幾何,三角形,正方形,長方形,還有圓的周長和面積計算公式與方法。
6、解應用題,主要要注意小學里的那幾種形式。
7、基本的概念。如整數,小數,分數的一些概念。還有其他的概念。
我家教的經驗就是這些了,可能還有一些疏漏的地方。不過,我覺得小學里學好這些應該就差不多啦!。。
希望能給你有所幫助。。。
❷ 小學數學理論基礎理論課後答案
1、雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;
基本思路:
①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):
②假設後,發生了和題目條件不同的差,找出這個差是多少;
③每個事物造成的差是固定的,從而找出出現這個差的原因;
④再根據這兩個差作適當的調整,消去出現的差。
基本公式:
①把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)
②把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)
關鍵問題:找出總量的差與單位量的差。
2、盈虧問題
基本概念:一定量的對象,按照某種標准分組,產生一種結果:按照另一種標准分組,又產生一種結果,由於分組的標准不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量.
基本思路:先將兩種分配方案進行比較,分析由於標準的差異造成結果的變化,根據這個關系求出參加分配的總份數,然後根據題意求出對象的總量.
基本題型:
①一次有餘數,另一次不足;
基本公式:總份數=(余數+不足數)÷兩次每份數的差
②當兩次都有餘數;
基本公式:總份數=(較大余數一較小余數)÷兩次每份數的差
③當兩次都不足;
基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差
基本特點:對象總量和總的組數是不變的。
關鍵問題:確定對象總量和總的組數。
3、牛吃草問題
基本思路:假設每頭牛吃草的速度為「1」份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點:原草量和新草生長速度是不變的;
關鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);
總草量=較長時間×長時間牛頭數-較長時間×生長量;
4、周期循環與數表規律
周期現象:事物在運動變化的過程中,某些特徵有規律循環出現。
周期:我們把連續兩次出現所經過的時間叫周期。
關鍵問題:確定循環周期。
閏 年:一年有366天;
①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
5、平均數
基本公式:①平均數=總數量÷總份數
總數量=平均數×總份數
總份數=總數量÷平均數
②平均數=基準數+每一個數與基準數差的和÷總份數
基本演算法:
①求出總數量以及總份數,利用基本公式①進行計算.
②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標准,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最後求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②。
6、抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那麼必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那麼就有以下四種情況:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發現一個共同特點:總有那麼一個抽屜里有2個或多於2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那麼必有一個抽屜至少有:
①k=[n/m ]+1個物體:當n不能被m整除時。
②k=n/m個物體:當n能被m整除時。
理解知識點:[X]表示不超過X的最大整數。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而後依據抽屜原則進行運算。
❸ 小學數學知識的相關基礎理論知識有哪些
小學數學學習概述
數學學習主要是對學生數學思維能力的培養。這要以數學基礎知識和基本技能為基礎,以數學問題為誘因,以數學思想方法為核心,以數學活動為主線,遵循數學的內在規律和學生的思維規律開展教學。
學習類型分析
1.方式性分類
(1)接受學習與發現學習
定義:將學習的內容以定論的形式呈現給學習者的學習方式。
模式:呈現材料—講解分析—理解領會—反饋鞏固
(2)發現學習
定義:向學習者提供一定的背景材料,由學習者獨立操作而習得知識的學習方式。
模式:呈現材料—假設嘗試—認知整合—反饋鞏固。
2.知識性分類一
(1)知識學習 定義:以理解、掌握數學基礎知識為主的學習活動。過程:選擇—領會—習得——鞏固
(2)技能學習
定義:將一連串(內部或外部的)動作經練習而形成熟練的、自動化的反應過程。
過程:演示—模仿—練習—熟練—自動化
(3)問題解決學習
以關心問題解決過程為主、反思問題解決思考過程的一種數學學習活動。
提出問題—分析問題—解決問題—反思過程
3.知識性分類二
(1)概念性(陳述性)知識的學習
把數學中的概念、定義、公式、法則、原理、定律、規則等都稱為概念性知識。
概念學習:同化與形成。
利用已有概念來學習相關新概念的方式,稱概念同化;依靠直接經驗,從大量的具體例子出發,概括出新概念的本質屬性的方式,稱為概念形成。概念形成是小學生獲得數學概念的主要形式。
(2)技能性(程序性)知識的學習
小學數學技能主要是運算技能。 運算技能的形成分為三個階段:
①認知階段:「引導式」的嘗試錯誤。從老師演算例題或自學法則中初步了解運演算法則,在頭腦中形成運算方法的表徵。②聯結階段:法則階段,即按法則一步步地運算,保證算對(使用法則解決問題,陳述性知識提供了基本的操作線索)—程序化階段(將相關的小法則整合為整體的法則系統,此時概念性知識已退出),能算得比較快速正確。③自動化階段:更清楚更熟練地應用第二階段中的程序,通過較多的練習,不再思考程序,達到一定程序的自動化,獲得了運算的速度和較高的正確率。
(3)問題解決(策略性知識)的學習
通過重組所掌握的數學知識,找出解決當前問題的適用策略和方法,從而獲得解決問題的策略的學習。
小學生解決問題的主要方式,一是嘗試錯誤式(又稱試誤法),即通過進行無定向的嘗試,糾正暫時性
嘗試錯誤,直至解決問題;二是頓悟式(也稱啟發式),好像答案或方法是突然出現的,而實際上是有一
定的「心向」作基礎的,這就是問題解決所依據的規則、原理的評價和識別。
4.任務性分類
(1)記憶操作類學習
如口算、尺規作(畫)圖和掌握基本的運演算法則並能進行准確計算等。
(2)理解性的學習
如認識並掌握概念的內涵、懂得數學原理並能用於解釋或說明、理解一個數學命題並能用於推得新命題。
(3)探索性的學習
如需要讓學生經過自己探索,發現並提出問題或學習任務,讓學生通過自己的探究能總結出一個數學規律或規則,讓學生通過自己的探究過程而逐步形成新的策略性知識等。
小學生數學認知學習
一、小學生數學認知學習的基本特徵
1.生活常識是小學生數學認知的起點
要在兒童的生活常識和數學知識之間構建一座橋梁,讓兒童從生活常識和經驗出發,不斷通過嘗試、探索和反思,從而達到「普通常識」的「數學化」。
2.小學生數學認知是一個主體的數學活動過程
數學認知過程要成為一個「做數學」的過程,讓兒童從生活常識出發,在「做數學」的過程中,去發現、了解、體驗和掌握數學,去認識數學的價值、了解數學的特性、總結數學的規律,去學會用數學、提高數學修養、發展數學能力。
3.小學生數學認知思維具有直觀化的特徵
由於一方面兒童生活常識是其數學認知的基礎,另一方面兒童思維是以直觀具體形象思維為主,所以要以直觀為主要手段,讓兒童理解並構建起數學認知結構。
4.小學生數學認知是一個「再發現」和「再創造」的過程
小學生的數學學習,主要的不是被動的接受學習,而是主動的「再發現」和「再創造」學習的過程。要讓他們在數學活動或是實踐中去重新發現或重新創造數學的概念、命題、法則、方法和原理。
二、小學生數學認知發展的基本規律
1.小學生數學概念的發展
(1)從獲得並建立初級概念為主發展到逐步理解並建立二級概念
(2)從認識概念的自身屬性逐步發展到理解概念間的關系
(3)數學概念的建立受經驗的干擾逐漸減弱
2.小學生數學技能的發展
(1)從依賴結構完滿的示範導向發展到依賴對內部意義的理解
(2)從外部的展開的思維發展到內部的壓縮的思維
(3)數感和符號意識的逐步提高,支持著運算向靈活性、簡潔性和多樣性發展
3.小學生空間知覺能力的發展
(1)方位感是逐步建立的
(2)空間概念的建立逐漸從外顯特徵的把握發展到對本質特徵的把握
(3)空間透視能力是逐步增強的
4.小學生數學問題解決能力的發展
(1)語言表述階段 (2)理解結構階段 (3)多級推理能力的形成 (4)符號運算階段
小學生數學能力的培養
一、數學能力概述
1.能力概述 能力是指個體能勝任某種活動所具有的心理特徵
2.數學能力 數學能力是順利完成數學活動所具備的,且直接影響其活動效率的一種個性心理特徵
(1)運算能力:數據運算、邏輯運算和操作運算
(2)空間想像力:依據實物建立模型、依據模型還原實物、依據模型抽象出特徵、大小和位置關系、模型或實物進行分解與組合等能力
(3)數學觀察能力:對象的概括化、知覺的形式化、對空間結構的知覺和邏輯模式的識別等能力
(4)數學記憶能力:對概括化、形式化的符號、命題、性質及空間結構、邏輯模式等識記與再現的能力
(5)數學思維能力:對已有數學信息運用數學推理的思考方式進行思維的能力。
二、兒童數學思維能力的差異性
1.產生差異的原因 (1)多元智力理論 (2)思維類型不同
2.對待差異的態度 (1)求同存異 (2)揚長避短
三、數學能力的培養
1.培養學生的數學學習興趣
(1)從學生生活經驗著手 (2)從建立問題情境開始 (3)讓學生在「做數學」中學
2.培養基本的數學能力
(1)數學操作能力動手操作既能吸引學生的注意力,又易於激發學生的思維和想像,從而調動學習積極性,培養學習興趣,使學生主動獲得知識。
在操作中,學生既「玩」了,又「學」了,也 「想」了,思維能力得到提高,學習興趣得到培養,書本知識得到理解和消化。
2.數學語言能力
在學生動手操作活動中,還要求學生通過語言表達,對數學概念逐步建立起清晰而深刻的表象,進而自覺而鞏固地掌握數學知識。
學生在表達數學時,要求語言簡潔,運用數學術語准確。嚴謹的數學態度,需要嚴謹的數學語言相伴。
3.問題解決能力
發現、提出、分析、解決數學問題的能力, 是最重要的也是最終數學能力的表現。
(1)創設問題情境,培養問題意識
有目的、有意識地創設問題情境,設障立疑,造成學生對新學知識感到有問題可想,有矛盾可解決的情境,讓學生處於「心求通而不能,口欲言而未得」。
(2)主動探索,增強學生的主體意識
①對問題進行大膽猜想、嘗試解題
從生活經驗出發提出猜想 ,從已有知識經驗基礎上提出猜想。
②通過各種形式交流猜想,選擇更優方案
(3)拓展變化,增強學生的應用意識
強調數學應用,不全是回到測量、制圖、會計等教學活動,而是培養一種應用數學知識和思想方法解決問題的慾望和方式
(4)運用所學知識,解決數學問題
生活中的數學問題很多,在教學中引導學生把生活中的問題抽象為數學問題,這樣既可以加深學生對所學知識的理解,又有助於提高解決問題的能力。如房屋裝修粉刷面積,鋪地用多少塊磚,種植面積與棵數,車輪為什麼製成圓形等。
小學數學課堂教學過程
一、小學數學教學過程的主要矛盾
1.數學教與學的矛盾
教師是主導位,學生是主體。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
2.小學生的認知特點與數學學科知識間的矛盾
數學的抽象性與小學生認知的具體形象性之間,數學的嚴密性與小學生認知的簡單化、直觀化之間,數學應用的廣泛性與小學生知識面窄、接觸實際生活少之間,都會產生矛盾。
3.小學生認知結構發展水平與教師傳授的
數學知識之間的矛盾 首先,教師對數學知識的傳授與學生對數學知識的理解、掌握之間就有矛盾。其次,教師的數學語言表達與學生對它的理解之間的矛盾。再次,小學生掌握的新知識與舊有知識的矛盾。
二、小學數學教學過程
1.小學數學教學過程是師生交往與互動的過程
交往的基本屬性是互動性和互惠性,交往的基本方式是對話和參與。對小學生而言,交往為他們心態的開放,主體性的凸現,創造性的解放提供了空間;對教師而言,課堂上的交往是與學生共同分享對數學的理解、共同感受學習的快樂。小學數學家教學過程是師生間、學生間的平等對話、交流的過程,這種對話、交流的內容,包括數學知識、技能的信息和情感、態度、態度價值觀等各個方面的信息。師生正是通過這種對話和交流來實現課堂中的師生之間的互動的。
有效的交往互動要注意以下兩個方面:
(1) 要充分調動小學生的主動性、積極性
數學教學過程對數學內容進行探索、實踐與思考的學習過程,學生是學習活動的主體。教師只有引導學生開展觀察、操作、比較、猜想、推理、交流等多種形式的活動,才能促使學生建構自己對數學的理解,進行掌握數學知識和技能,逐步學會從數學的角度觀察事物,思考問題,產生學習數學的興趣與願望。
(2)要實現教師角色的轉變
教師的主導作用可在以下活動中得到體現。
①調動學生的學習積極性,激發學生的學習動機,引導學生積極主動地投入到學習活動中去。 ②了解學生的想法,有針對性地引導,幫助學生解決學習困難;同時鼓勵不同的觀點,參與學生的討論,評估學習,作出調整。 ③為學生的學習創設一個良好的課堂環境和精神氛圍,引導學生開展積極主動的數學活動。
2.小學數學教學過程是老師引導學生開展數學活動的過程
(1)組織和引導學生經歷「數學化」的過程
學生數學學習應當成為「數學化」的過程。即學生從具體情境出發,經過歸納、抽象和概括等思維活動,尋找數學模型,得出數學結論的過程。教師要善於引導學生把生活經驗上升到數學知識和方法。
(2)師生共同生成與建構數學知識的過程
在學校學習的情境下,教師對於指導學生進行數學知識的建構具有重要的引導和指導作用,教師要注重引導學生有效地建構數學知識,在數學課堂教學過程中「生成」知識與方法。這種「生成」的過程正是通過師生雙方交互作用、教師的外因促使學生的內因而完成的。
(3)在活動中體驗數學,獲得數學發展的過程
小學數學教學過程應成為師生共同參與的活動過程。在這一過程中,教師為學生設計和提供有意義的情境,組織學生共同進行操作、交流、思考等活動。要給學生提供相對充分的時間和空間,讓學生獲得自主探索動手實踐的機會,從現實問題出發學習數學知識的機會,從相關學科和已有知識提出數學問題的機會,對數學內部的規律和原理進行探索和研究的機會。
3.小學數學教學過程是師生共同發展的過程
(1)促進學生的發展 小學數學教學的基本目的是促進學生的發展,為小學生終身發展奠定基礎。學生應該在數學知識與技能、數學思考、解決問題和情感態度價值觀等四個方面得到發展。這四個方面應交織、滲透,密不可分,形成一個整體。
(2)促進教師的專業成長優秀教師都是在教學實踐中成長起來的。 良好的知識結構、能力結構,專業領引,同行間的切磋、交流,不斷的自我反思,是優秀教師成長的關鍵因素。教師的專業能力包括教學設計、教學實施和教學反思等能力。教學過程必須遵循教育規律和兒童身心發展的規律,還要教師有創造性地解決師生、生生間的認知、情感和價值觀的沖突的能力,形成獨具個人魅力的教學風格,教學是一個富有個性化的創造過程。
❹ 小學數學中的理論
約數:如果來一個整數能源被另一個整數整除,那麼第二個整數就是第一個整數的約數。約數的個數是有限的。
如:24的約數有:1、2、3、4、6、8、12、24
質數: 一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數)。例如 2,3,5,7 是質數
合數: 有的數除了1和它本身以外,還能被別的整數整除,這種數就叫合數,如4、6、8、9、10、14、...等,就是合數。1這個數比較特殊,它既不算素數也不算合數
這樣,所有的自然數就又被分為1和素數、合數三類。
❺ 小學數學基本理論有哪些
1、整個小學學的那些混合運送要熟悉。(加、減、乘、除的運算順序)
2、小數回。要熟悉。特別是答小數的運算。與整數和分數綜合運算。
3、分數,特別是與小數的轉化。幾個特別的數。如四分之一。
4、解方程,小學學的主要是簡單的方程。要記住那幾個公式。
5、簡單的幾何,三角形,正方形,長方形,還有圓的周長和面積計算公式與方法。
6、解應用題,主要要注意小學里的那幾種形式。
7、基本的概念。如整數,小數
❻ 數學高手,小學數學原理論述題
在小學階段,減抄法的定義是:已知兩個加數的和與其中一個加數,求另一個加數的運算叫做減法。
您所談到的兩種情況數學意義的不同在於,前者是「和減少20,一個加數不變,求另一個加數。」,後者是「和不變,一個加數增加20,求另一個加數。」
❼ 小學數學基礎訓練 - 抽屜原理
認識的人數目為1-24,有25個人,所以至少有兩人認識的人一樣多
根據是抽屜內原理:
桌上有十個容蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,有的抽屜可以放一個,有的可以放兩個,有的可以放五個,但最終我們會發現至少我們可以找到一個抽屜裡面至少放兩個蘋果。這一現象就是我們所說的抽屜原理。
抽屜原理的一般含義為:「如果每個抽屜代表一個集合,每一個蘋果就可以代表一個元素,假如有n+1或多於n+1個元素放到n個集合中去,其中必定至少有一個集合里至少有兩個元素。」
❽ 小學數學原理
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.