導航:首頁 > 小學學科 > 小學數學整理列表

小學數學整理列表

發布時間:2021-01-10 11:11:55

小學數學整理和復習的方法有哪些

整理以題型或階段區分,復習以記錯本內容為主。
1.分題型記錄錯過的內容
2.根據錯題的題型發現自己較弱的方面。
3.有意識加強弱項的練習題量和測試量
4.再及其它

Ⅱ 小學數學中整理數據的方法有哪些

用統計法,分類法,歸納法等。

Ⅲ 小學數學所有應用題題型整理,附帶舉例的

一、雞兔同籠問題:

基本題型:籠子里有雞兔共只,一共100條腿,問:雞兔各幾只?

解這個題的方法是:先假設30隻都是雞,那麼共有2x30=60條腿,少100-60=40條腿,因為每隻兔子比雞多4-2=2條腿,所以兔子共有40/2=20隻,則雞共有30-20=10隻。

當然也可以倒過來,先假設30隻都是兔子,那麼就120條腿,多了20條,因為雞比兔子少2條腿,所以雞是10隻。

類似的題還有很多,但都是從基本題型變化出來的,如下題:

俱樂部里有30副棋,正好供100位小朋友下,象棋是每2人下一副,跳棋是每6人下一副,問象棋和跳棋各有幾副?

二、工程問題:

基本題型:

甲乙兩人完成某項工程,甲單獨做需要3天完成,乙單獨做需要6天完成,問甲乙共同完成需要幾天?

解題方法:

甲每天的工作量是全部工程的1/3,乙每天的工作量是全部工程的1/6,兩人合作每天的工作量=1/3+1/6=1/2,所以甲乙共同完成需要2天。

這個題會有很多變化,如甲先工作多少天,乙再開始工作;或者甲乙共同工作一天,乙單獨工作等等,但解題思路是一樣的。都是把總的工作量定成1,然後計算。

三、相遇問題:

基本題型:甲乙兩地相距20公里,甲的速度是6公里/小時,乙的速度是4公里/小時,甲乙兩人同時同向出發,問多少時間後相遇?

解題方法:這個比較簡單,20/(6+4)=2

這類的題變化是非常多的,通常有甲先出發若干時間後,乙再發的;或者求相遇地點離甲地多遠的?

四、追擊問題:

基本題型:甲的速度是10公里/小時,乙的速度是15公里/小時,甲先出發2小時,問乙多少時間追上甲?

解題方法:甲出發2小時,走的路程是10x2=20公里,乙的速度比甲快15-10=5公里/小時,所以追上的時間是20/5=4小時。

這個題的變化很多,比如著名的放水問題。某浴池開注水管,10分鍾可注滿,開排水管,20分鍾可排完,問兩管同時開,多少分鍾可注滿。這個題可以按追擊問題思路來做:注水的速度是1/10,排水的速度是1/20,兩者相差1/10,所以10分鍾可注滿。

五、水流問題:

基本題型:甲乙兩地相距300公里,船速為20公里/小時,水流速度為5公里/小時,問來回需要多少時間?

解題方法:假設去的時候順流,則速度為20+5=25公里/小時,所用時間為300/25=12小時,回來的時候逆流,則速度為20-5=15公里/小時,所用時間為300/15=20小時

基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。

僅供參考:

【和差問題公式】

(和+差)÷2=較大數;

(和-差)÷2=較小數。

【和倍問題公式】

和÷(倍數+1)=一倍數;

一倍數×倍數=另一數,

或 和-一倍數=另一數。

【差倍問題公式】

差÷(倍數-1)=較小數;

較小數×倍數=較大數,

或 較小數+差=較大數。

【平均數問題公式】

總數量÷總份數=平均數。

【一般行程問題公式】

平均速度×時間=路程;

路程÷時間=平均速度;

路程÷平均速度=時間。

【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:

(速度和)×相遇(離)時間=相遇(離)路程;

相遇(離)路程÷(速度和)=相遇(離)時間;

相遇(離)路程÷相遇(離)時間=速度和。

【同向行程問題公式】

追及(拉開)路程÷(速度差)=追及(拉開)時間;

追及(拉開)路程÷追及(拉開)時間=速度差;

(速度差)×追及(拉開)時間=追及(拉開)路程。

【列車過橋問題公式】

(橋長+列車長)÷速度=過橋時間;

(橋長+列車長)÷過橋時間=速度;

速度×過橋時間=橋、車長度之和。

【行船問題公式】

(1)一般公式:

靜水速度(船速)+水流速度(水速)=順水速度;

船速-水速=逆水速度;

(順水速度+逆水速度)÷2=船速;

(順水速度-逆水速度)÷2=水速。

(2)兩船相向航行的公式:

甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度

(3)兩船同向航行的公式:

後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。

(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。

【工程問題公式】

(1)一般公式:

工效×工時=工作總量;

工作總量÷工時=工效;

工作總量÷工效=工時。

(2)用假設工作總量為「1」的方法解工程問題的公式:

1÷工作時間=單位時間內完成工作總量的幾分之幾;

1÷單位時間能完成的幾分之幾=工作時間。

(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)

【盈虧問題公式】

(1)一次有餘(盈),一次不夠(虧),可用公式:

(盈+虧)÷(兩次每人分配數的差)=人數。

例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」

解(7+9)÷(10-8)=16÷2

=8(個)………………人數

10×8-9=80-9=71(個)………………………桃子

或8×8+7=64+7=71(個)(答略)

(2)兩次都有餘(盈),可用公式:

(大盈-小盈)÷(兩次每人分配數的差)=人數。

例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」

解(680-200)÷(50-45)=480÷5

=96(人)

45×96+680=5000(發)

或50×96+200=5000(發)(答略)

(3)兩次都不夠(虧),可用公式:

(大虧-小虧)÷(兩次每人分配數的差)=人數。

例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」

解(90-8)÷(10-8)=82÷2

=41(人)

10×41-90=320(本)(答略)

(4)一次不夠(虧),另一次剛好分完,可用公式:

虧÷(兩次每人分配數的差)=人數。

(例略)

(5)一次有餘(盈),另一次剛好分完,可用公式:

盈÷(兩次每人分配數的差)=人數。

(例略)

【雞兔問題公式】

(1)已知總頭數和總腳數,求雞、兔各多少:

(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;

總頭數-兔數=雞數。

或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;

總頭數-雞數=兔數。

例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」

解一 (100-2×36)÷(4-2)=14(只)………兔;

36-14=22(只)……………………………雞。

解二 (4×36-100)÷(4-2)=22(只)………雞;

36-22=14(只)…………………………兔。

(答 略)

(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式

(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數

或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。

(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;

總頭數-兔數=雞數。

或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;

總頭數-雞數=兔數。(例略)

(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:

(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。

例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」

解一 (4×1000-3525)÷(4+15)

=475÷19=25(個)

解二 1000-(15×1000+3525)÷(4+15)

=1000-18525÷19

=1000-975=25(個)(答略)

(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)

(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:

〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;

〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。

例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」

解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2

=20÷2=10(只)……………………………雞

〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2

=12÷2=6(只)…………………………兔(答略)

【植樹問題公式】

(1)不封閉線路的植樹問題:

間隔數+1=棵數;(兩端植樹)

路長÷間隔長+1=棵數。

或 間隔數-1=棵數;(兩端不植)

路長÷間隔長-1=棵數;

路長÷間隔數=每個間隔長;

每個間隔長×間隔數=路長。

(2)封閉線路的植樹問題:

路長÷間隔數=棵數;

路長÷間隔數=路長÷棵數

=每個間隔長;

每個間隔長×間隔數=每個間隔長×棵數=路長。

(3)平面植樹問題:

佔地總面積÷每棵佔地面積=棵數

【求分率、百分率問題的公式】

比較數÷標准數=比較數的對應分(百分)率;

增長數÷標准數=增長率;

減少數÷標准數=減少率。

或者是

兩數差÷較小數=多幾(百)分之幾(增);

兩數差÷較大數=少幾(百)分之幾(減)。

【增減分(百分)率互求公式】

增長率÷(1+增長率)=減少率;

減少率÷(1-減少率)=增長率。

比甲丘面積少幾分之幾?」

解 這是根據增長率求減少率的應用題。按公式,可解答為

百分之幾?」

解 這是由減少率求增長率的應用題,依據公式,可解答為

【求比較數應用題公式】

標准數×分(百分)率=與分率對應的比較數;

標准數×增長率=增長數;

標准數×減少率=減少數;

標准數×(兩分率之和)=兩個數之和;

標准數×(兩分率之差)=兩個數之差。

【求標准數應用題公式】

比較數÷與比較數對應的分(百分)率=標准數;

增長數÷增長率=標准數;

減少數÷減少率=標准數;

兩數和÷兩率和=標准數;

兩數差÷兩率差=標准數;

【方陣問題公式】

(1)實心方陣:(外層每邊人數)2=總人數。

(2)空心方陣:

(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。

或者是

(最外層每邊人數-層數)×層數×4=中空方陣的人數。

總人數÷4÷層數+層數=外層每邊人數。

例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?

解一 先看作實心方陣,則總人數有

10×10=100(人)

再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是

10-2×3=4(人)

所以,空心部分方陣人數有

4×4=16(人)

故這個空心方陣的人數是

100-16=84(人)

解二 直接運用公式。根據空心方陣總人數公式得

(10-3)×3×4=84(人)

【利率問題公式】利率問題的類型較多,現就常見的單利、復利問題,介紹其計算公式如下。

(1)單利問題:

本金×利率×時期=利息;

本金×(1+利率×時期)=本利和;

本利和÷(1+利率×時期)=本金。

年利率÷12=月利率;

月利率×12=年利率。

(2)復利問題:

本金×(1+利率)存期期數=本利和。

例如,「某人存款2400元,存期3年,月利率為10.2‰(即月利1分零2毫),三年到期後,本利和共是多少元?」

解 (1)用月利率求。

3年=12月×3=36個月

2400×(1+10.2%×36)

=2400×1.3672

=3281.28(元)

(2)用年利率求。

先把月利率變成年利率:

10.2‰×12=12.24%

再求本利和:

2400×(1+12.24%×3)

=2400×1.3672

=3281.28(元)(答略)
(希望採納)

Ⅳ 小學的數學知識點總結歸納

1、數與代數:數的認識、數的運算、式與方程、比和比例。

2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。

3、統計與可能性:量的計量、統計、可能性。

4、實踐與綜合應用:探索規律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。

(4)小學數學整理列表擴展閱讀:

整數

1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。

2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。

3、計數單位

一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。

每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。

4、數位

計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。

5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a。

如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。

因為35能被7整除,所以35是7的倍數,7是35的約數。

7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3

比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。

8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18

9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。

10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18

解比例的依據是比例的基本性質。

11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y

12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y=k(k一定)或k/x=y

百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。

13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。

把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。

14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。

把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

15、要學會把小數化成分數和把分數化成小數的化法。

16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)

17、互質數:公因數只有1的兩個數,叫做互質數。

18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。

19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)

20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公因數)

21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。

分數計算到最後,得數必須化成最簡分數。

個位上是0、2、4、6、8的數,都能被2整,即能用2進行

約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。

22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。

23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。

24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。

28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)

29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。

30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。

31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。

32、一天的時間:一天有24小時,一小時60分,1分60秒

Ⅳ 小學數學的所有運算定律及意義 還有數的運算的整理(人教版

加法交換律
加法交換律的概念為:兩個加數交換位置,和不變。 字母公式:a+b=b+a 題例(簡算過程):6+18+4 =(6+4)+18 =10+18 =28
加法結合律
加法結合律的概念為:先把前兩個數相加,或者先把後兩個數相加,和不變。 字母公式:a+b+c=a+(b+c) 題例(簡算過程):6+18+2 =6+(18+2) =6+20 =26
編輯本段乘法運算定律
乘法交換律
乘法交換律的概念為:兩個因數交換位置,積不變。 字母公式:a×b=b×a 題例(簡算過程):125×12×8 =125×8×12 =1000×12 =12000
乘法結合律
乘法結合律的概念為:先乘前兩個數,或者先乘後兩個數,積不變。 字母公式:a×b×c=a×(b×c) 題例(簡算過程):30×25×4 =30×(25×4) =30×100 =3000
乘法分配律
乘法分配律的概念為:兩個數與一個數相乘,可以先把它們與這個數分別相乘,再相加。 字母公式:(a+b)×c=a×c+b×c 題例(簡算過程):(1)12×6.2+3.8×12 =12×(6.2+3.8) =12×10 =120
編輯本段減法性質
減法性質的概念為:一個數連續減去兩個數,可以先把後兩個數相加,再相減。 字母公式:A-B-C=A-(B+C) 題例(簡算過程):20-8-2 =20-(8+2) =20-10 =10
差不變的規律
字母公式:A-B-C=A-(B+C) 題例:6-1.99 = 6X100-1.99X100 =( 600-199)/100 =4.01
編輯本段除法性質
除法性質的概念為:一個數連續除以兩個數,可以先把後兩個數相乘,再相除。 字母公式:a÷b÷c=a÷(b×c) 題例(簡算過程):20÷8÷1.25 =20÷(8×1.25) =20÷10 =2
商不變的規律
概念:被除數和除數同時乘上或除以相同的數(0除外)它們的商不變。 字母公式:A÷B=(AN)÷(BN)=(A÷N)÷(B÷N) (N≠0 B≠0) 題例:80÷125 =(80×8)÷(125×8) =640÷1000 =0.64
編輯本段小數的基本性質
小數的基本性質:小數的末尾添上「0」或去掉「0」,數的大小不變。

Ⅵ 如何上好小學數學整理和復習課

一、引導自主復習,注重「理」

在復習課的教學中,可以放手讓學生採用不同的方法,獨立自主地、自由自在地操作、思考與整理,全身心地投入探究數學知識的形成過程。然後引導學生對各自獨創的結果進行分析與綜合的同時,運用「比較」異同這一思維方式逐步構建相同的結果,在學生體驗、交流、反思、辯論中尋求一種最佳的結果。通過「存異——求同——求佳」的操作策略,學生的認知結構也得到充分的發展,即達到「感悟——理解——升華」,促使學生從「無序」思維到「有序」思維再到「科學」思維方式的發展。雖然學生在「求異」過程中所使用的方式和方法,可能是正確和簡捷的,也可能是繁瑣錯誤和無序的,但他們這種別出心裁的方法是自己獨創的,是一種不可多得的「創新」行為。例如,在復習「平面圖形的分類」時,課始老師布置學生回憶在小學階段學過的平面圖形有哪些?提示學生可以用圖或表的形式表示它們的內在聯系,有兩個小組通過自我學習、自我整理、合作討論參與,最後以自己獨特的方式梳理成如下的知識網路。

二、指導復習方法,注重「建」

在復習課的教學中,要針對知識的重點、學習的難點、學生的弱點,引導學生按一定的標准把有關知識、概念作縱向、橫向聯系歸類、整理,使之「豎成線」、「橫成片」,達到所復習的知識要點條理清晰,知識結構脈絡分明。教給學生整理與歸類的方法,使學生在獲得比較系統的知識的同時,不斷構建和完善認知結構,極大地提高學生的整體素質。

在復習《平面圖形的面積和周長》時,在自己課前整理的基礎上,學生們通過小組合作交流,很多組都能夠整理出下面的網路圖。很好地再現了面積的公式推導中各個平面圖形的關系。

復習課為我們提供了重新組建學生認知結構的時機,我們必須充分運用,而且高度重視在復習課中對學生所學知識、認識事物的方法和分析,解決問題的思維方式進行高層次的歸納、概括、提煉,使新、舊知識完美融合為一體,達到構建學生良好的數學認知結構的目的,從而有效地提高學生的數學素質。

三、重視生活聯系,注重「用」

學習數學要以一定的經驗為背景,復習課的設計應該為學生提供有利於學生進一步理解數學、探索數學的情境。要給學生充分的機會,通過對實際問題的感知、操作等活動來認識數學,讓學生「做數學」比簡單地教給數學知識更重要。讓學生「做數學」的途徑之一就是設計與學生生活實際密切相關的數學情境。

例如,復習「空間與圖形」的內容,可設計這樣一道綜合題:城北新區有一塊正方形空地,面積是3600平方米。(1)如果要在這塊空地上圍出一個最大的圓,並鋪上草坪,這塊草坪的面積有多大?(2)在這塊空地上設計一片花圃,使花圃的面積占正方形面積的25%。請你設計方案。這樣聯系生活實際,把空間與圖形的知識與百分數知識相聯系,讓學生設計方案,有利於考查學生綜合知識的應用能力及整體設計思想、優化策略、創新精神和審美意識。

總之,習題的設計在內容上要「全」,在形式上要「精」,在方法上要「活」,在時間上要「足」。教師要在課堂上給學生充分的演練機會,為學生的評價提供豐富的資源,讓每一位學生都能享受到成功的喜悅。

四、注重拓展延伸,注重「延」

在復習課中精心設計開放性、綜合性的習題,給學生提供一個能夠充分表現個性、激勵創新的空間,讓學生自己動手、動腦、動口,引導和幫助學生用所學的數學知識去發現問題和解決問題,把知識結構轉化為認知結構,促進學生智力、能力的發展。

例如,在復習分數(百分數)應用題時,安排如下一道開放題,「李阿姨於2006年6月20日將5000元存入銀行定期5年,可今天(2009年6月20日)李阿姨的丈夫突然病重住院,急需5000元錢交住院費,可銀行規定,定期存款不到期提前支取按活期計息。李阿姨該怎麼辦?」

教有法而無定法。復習課的梳理不一定完全在課上,比如我們現在經常運用的讓學生辦數學小報、寫數學日記進行梳理;然後在課上,孩子們可以對數學小報,數學日記進行展評。從中相互借鑒,相互學習。比如高年級可以讓學生根據單元知識,或者是需要復習的知識,讓學生畫一些樹形圖,把知識進行梳理,並內化自己的已有認知當中。六年級的學生還可以採用小老師授課制,由學生來當老師。當然了這時教師不是閑了而是更忙了。

Ⅶ 小學數學整理與分類日記

認真聽課,把每個單元的課題作為標題,然後再把單元里的小知識點一條一條寫

閱讀全文

與小學數學整理列表相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99