導航:首頁 > 小學學科 > 小學數學建模論文材料

小學數學建模論文材料

發布時間:2021-01-10 06:06:46

『壹』 如何寫「走美杯」 小學數學建模論文

先選一個自己比較熟悉的事例,然後將題目弄透
寫的時候分幾步:
1,摘要 就是總體分析一下題目及自己的寫作思路
2,假設並建立一種模型
3,進行數學分析,數據分析
4,得出結論
5,對模型的評估和改進
6,標注參考文獻
寫完後最好找輔導老師修改斧正一下,注意與生活中的一些模型相結合

『貳』 數學建模論文具體的格式要求是

數學建模論文具體的格式要求如下:

1、論文用白色A4紙單面列印;上下左右各留出至少2.5厘米的頁邊距;從左側裝訂。

2、論文第一頁為承諾書,具體內容和格式見本規范第二頁。

3、論文第二頁為編號專用頁,用於賽區和全國評閱前後對論文進行編號,具體內容和格式見本規范第三頁。

4、論文題目和摘要寫在論文第三頁上,從第四頁開始是論文正文。

5、論文從第三頁開始編寫頁碼,頁碼必須位於每頁頁腳中部,用阿拉伯數字從「1」開始連續編號。

6、論文不能有頁眉,論文中不能有任何可能顯示答題人身份的標志。

7、論文題目用三號黑體字、一級標題用四號黑體字,並居中;二級、三級標題用小四號黑體字,左端對齊(不居中)。論文中其他漢字一律採用小四號宋體字,行距用單倍行距,列印時應盡量避免彩色列印。

8、摘要應該是一份簡明扼要的詳細摘要(包括關鍵詞),在整篇論文評閱中佔有重要權重,請認真書寫(注意篇幅不能超過一頁,且無需譯成英文)。全國評閱時將首先根據摘要和論文整體結構及概貌對論文優劣進行初步篩選。

9、引用別人的成果或其他公開的資料(包括網上查到的資料) 必須按照規定的參考文獻的表述方式在正文引用處和參考文獻中均明確列出。正文引用處用方括弧標示參考文獻的編號,如[1][3]等;引用書籍還必須指出頁碼。

10、參考文獻按正文中的引用次序列出,其中書籍的表述方式為:[編號] 作者,書名,出版地:出版社,出版年。

11、參考文獻中期刊雜志論文的表述方式為:[編號] 作者,論文名,雜志名,卷期號:起止頁碼,出版年。

12、參考文獻中網上資源的表述方式為:[編號] 作者,資源標題,網址,訪問時間(年月日)。

(2)小學數學建模論文材料擴展閱讀:

電子版論文格式規范

1、參賽隊應按照《全國大學生數學建模競賽報名和參賽須知》的要求命名和提交以下兩個電子文件,分別對應於參賽論文和相關的支撐材料。

2、參賽論文的電子版不能包含承諾書和編號專用頁(即電子版論文第一頁為摘要頁)。除此之外,其內容及格式必須與紙質版完全一致(包括正文及附錄),且必須是一個單獨的文件,文件格式只能為PDF或者Word格式之一(建議使用PDF格式),不要壓縮,文件大小不要超過20MB。

3、支撐材料(不超過20MB)包括用於支撐論文模型、結果、結論的所有必要文件,至少應包含參賽論文的所有源程序,通常還應包含參賽論文使用的數據(賽題中提供的原始數據除外)、較大篇幅的中間結果的圖形或表格、難以從公開渠道找到的相關資料等。

所有支撐材料使用WinRAR軟體壓縮在一個文件中(後綴為RAR);

如果支撐材料與論文內容不相符,該論文可能會被取消評獎資格。支撐材料中不能包含承諾書和編號專用頁,不能有任何可能顯示答題人身份和所在學校及賽區的信息。如果確實沒有需要提供的支撐材料,可以不提供支撐材料。

『叄』 數學建模論文怎麼寫啊

摘要:隨著全球經濟的發展,計算機的迅速發展,利用計算機去解決數學問題再用數學去解決實際問題顯得尤為重要,而數學建模就是利用計算機與數學解決實際問題。本文從四個方面論述了現代數學應用中數學建模的重要性,詳細闡述了數學建模在生活中的應用和怎樣在學校教育中開展數學建模的教學這兩個問題。通過對四個方面即概念、重要性、應用、養數學建模的能力的深刻論述得出結論,數學建模是架於數學理論和生活實際之間的一個橋梁,讓人們看到了數學建模的價值,體會到數學建模的教學在現代教育中的重要地位和作用。
關鍵詞:數學建模;綜合素質;教學;數學應用
(一)數學建模的概念
數學建模非常廣泛、簡單,它一直與生活、學習息息相關。例如,在學習中學數學的課程時,根據應用題的已知量列出的數學等式就是最簡單的數學模型,對方程進行求解的過程就是在進行簡單的數學建模。數學建模就是應用數學模型來解決各種實際問題的方法。也就是通過對實際問題的抽象、簡化、確定變數和參數、並應用某些「規律」建立變數,參數間的確定性的數學問題(也可稱為一個數學模型)求解數學問題,解釋驗證所得到的解,從而確定能否應用於解決實際問題的多次循環,不斷深化結果。它是用數學方法解決各種實際問題的橋梁。
(二)數學建模的思想內涵      

『肆』 數學建模論文摘要該怎麼寫

學術堂來告訴你數學建模論文摘要該怎麼寫:
首先明確摘要要求:
您正在撰寫的論文可能有特定的指導方針和要求,無論是發表在期刊上,還是在課堂上提交,還是工作項目的一部分。在開始寫作之前,請參考你收到的要求或指南,以確定需要記住的重要問題。
其次摘要要自成體系
摘要僅僅是一個摘要嗎?大多數情況下,摘要應該完全獨立於你的論文。不要抄襲和粘貼正文中的內容,也就是不要直接引用自己的原文中的話,避免簡單地從你寫作的其他地方轉述你自己的句子。用全新的詞彙和短語寫出你的摘要,做到精簡與凝練的同時,保持它的趣味性和創新性。
接著尋找核心關鍵詞
完成論文之後,試著用5-7個重要的詞或短語作為摘要研究的關鍵。如果你的論文在期刊上發表了的話,人們能夠在網上資料庫中搜索摘要的核心內容,容易且快速找到你的論文。而且,這樣一些關鍵性的詞語,能夠吸引人們的注意力。
然後避免無關內容
需要注意的是,摘要不能脫離正文,更不能與論文內容相矛盾。不要引用你在論文中沒有提到的觀點或研究,不要引用你在論文中不使用的材料,否則非常容易引起誤導。
最後進行基本修改
摘要是一篇文章,和其他文章一樣,應該在完成之前進行修改。檢查它的語法和拼寫錯誤,並確保它的格式正確。論文摘要不要列舉例證,不講研究過程,不用圖表,不給化學結構式,也不要作自我評價。

『伍』 數學建模論文範文

數學建模--教學樓人員疏散--獲校數學建模二等

數學建模
人員疏散

本題是由我和我的好哥們張勇還有我們區隊的學委謝菲菲經過數個日夜的精心准備而完成的,指導老師沈聰.
摘要
文章分析了大型建築物內人員疏散的特點,結合我校1號教學樓的設定火災場景人員的安全疏散,對該建築物火災中人員疏散的設計方案做出了初步評價,得出了一種在人流密度較大的建築物內,火災中人員疏散時間的計算方法和疏散過程中瓶頸現象的處理方法,並提出了採用距離控制疏散過程和瓶頸控制疏散過程來分析和計算建築物的人員疏散。

關鍵字
人員疏散 流體模型 距離控制疏散過程

問題的提出
教學樓人員疏散時間預測
學校的教學樓是一種人員非常集中的場所,而且具有較大的火災荷載和較多的起火因素,一旦發生火災,火災及其煙氣蔓延很快,容易造成嚴重的人員傷亡。對於不同類型的建築物,人員疏散問題的處理辦法有較大的區別,結合1號教學樓的結構形式,對教學樓的典型的火災場景作了分析,分析該建築物中人員疏散設計的現狀,提出一種人員疏散的基礎,並對學校領導提出有益的見解建議。

前言
建築物發生火災後,人員安全疏散與人員的生命安全直接相關,疏散保證其中的人員及時疏散到安全地帶具有重要意義。火災中人員能否安全疏散主要取決於疏散到安全區域所用時間的長短,火災中的人員安全疏散指的是在火災煙氣尚未達到對人員構成危險的狀態之前,將建築物內的所有人員安全地疏散到安全區域的行動。人員疏散時間在考慮建築物結構和人員距離安全區域的遠近等環境因素的同時,還必須綜合考慮處於火災的緊急情況下,人員自然狀況和人員心理這是一個涉及建築物結構、火災發展過程和人員行為三種基本因素的復雜問題。
隨著性能化安全疏散設計技術的發展,世界各國都相繼開展了疏散安全評估技術的開發及研究工作,並取得了一定的成果(模型和程序),如英國的CRISP、EXODUS、STEPS、Simulex,美國的ELVAC、EVACNET4、EXIT89,HAZARDI,澳大利亞的EGRESSPRO、FIREWIND,加拿大的FIERA system和日本的EVACS等,我國建築、消防科研及教學單位也已開展了此項研究工作,並且相關的研究列入了國家「九五」及「十五」科技攻關課題。
一般地,疏散評估方法由火災中煙氣的性狀預測和疏散預測兩部分組成,煙氣性狀預測就是預測煙氣對疏散人員會造成影響的時間。眾多火災案例表明,火災煙氣毒性、缺氧使人窒息以及輻射熱是致人傷亡的主要因素。
其中煙氣毒性是火災中影響人員安全疏散和造成人員死亡的最主要因素,也就是造成火災危險的主要因素。研究表明:人員在CO濃度為4X10-3濃度下暴露30分鍾會致死。
此外,缺氧窒息和輻射熱也是致人死亡的主要因素,研究表明:空氣中氧氣的正常值為21%,當氧氣含量降低到12%~15%時,便會造成呼吸急促、頭痛、眩暈和睏乏,當氧氣含量低到6%~8%時,便會使人虛脫甚至死亡;人體在短時間可承受的最大輻射熱為2.5kW/m2(煙氣層溫度約為200℃)。

圖1 疏散影響因素

預測煙氣對安全疏散的影響成為安全疏散評估的一部分,該部分應考慮煙氣控制設備的性能以及牆和開口部對煙的影響等;通過危險來臨時間和疏散所需時間的對比來評估疏散設計方案的合理性和疏散的安全性。疏散所需時間小於危險來臨時間,則疏散是安全的,疏散設計方案可行;反之,疏散是不安全的,疏散設計應加以修改,並再評估。

圖2 人員疏散與煙層下降關系(兩層區域模型)示意圖

疏散所需時間包括了疏散開始時間和疏散行動時間。疏散開始時間即從起火到開始疏散的時間,它大體可分為感知時間(從起火至人感知火的時間)和疏散准備時間(從感知火至開始疏散時間)兩階段。一般地,疏散開始時間與火災探測系統、報警系統,起火場所、人員相對位置,疏散人員狀態及狀況、建築物形狀及管理狀況,疏散誘導手段等因素有關。
疏散行動時間即從疏散開始至疏散結束的時間,它由步行時間(從最遠疏散點至安全出口步行所需的時間)和出口通過排隊時間(計算區域人員全部從出口通過所需的時間)構成。與疏散行動時間預測相關的參數及其關系見圖3。

圖3 與疏散行動時間預測相關的參數及其關系

模型的分析與建立

我們將人群在1號教學樓內的走動模擬成水在管道內的流動,對人員的個體特性沒有考慮,而是將人群的疏散作為一個整體運動處理,並對人員疏散過程作了如下保守假設:

u 疏散人員具有相同的特徵,且均具有足夠的身體條件疏散到安全地點;
u 疏散人員是清醒狀態,在疏散開始的時刻同時井然有序地進行疏散,且在疏散過程中不會出現中途返回選擇其它疏散路徑;
u 在疏散過程中,人流的流量與疏散通道的寬度成正比分配,即從某一個出口疏散的人數按其寬度占出口的總寬度的比例進行分配
u 人員從每個可用出口疏散且所有人的疏散速度一致並保持不變。

以上假設是人員疏散的一種理想狀態,與人員疏散的實際過程可能存在一定的差別,為了彌補疏散過程中的一些不確定性因素的影響,在採用該模型進行人員疏散的計算時,通常保守地考慮一個安全系數,一般取1.5~2,即實際疏散時間為計算疏散時間乘以安全系數後的數值。

1號教學樓平面圖

教學樓模型的簡化與計算假設

我校1號教學樓為一幢分為A、B兩座,中間連接著C座的建築(如上圖),A、B兩座為五層,C座為兩層。A、B座每層有若干教室,除A座四樓和B座五樓,其它每層都有兩個大教室。C座一層即為大廳,C座二層為幾個辦公室,人員極少故忽略不考慮,只作為一條人員通道。為了重點分析人員疏散情況,現將A、B座每層樓的10個小教室(40人)、一個中教室(100)和一個大教室(240人)簡化為6個教室。

圖4 原教室平面簡圖

在走廊通道的1/2處,將1、2、3、4、5號教室簡化為13、14號教室,將6、7、8、9、10號教室簡化為15、16號教室。此時,13、14、15、16號教室所容納的人數均為100人,教室的出口為距走廊通道兩邊的1/4處,且11、13、15號教室的出口距左樓梯的距離相等,12、14、16號教室的出口距右樓梯的距離相等。我們設大教室靠近大教室出口的100人走左樓梯,其餘的140人從大教室樓外的樓梯疏散,這樣讓每一個通道的出口都得到了利用。由於1號教學樓的A、B兩座樓的對稱性,所以此簡圖的建立同時適用於1號教學樓A、B兩座樓的任意樓層。

圖5 簡化後教室平面簡圖

經測量,走廊的總長度為44米,走廊寬為1.8米,單級樓梯的寬度為0.3米,每級樓梯共有26級,樓梯口寬2.0米,每間教室的面積為125平方米. 則簡化後走廊的1/4處即為教室的出口,距樓梯的距離應為44/4=11米。
對火災場景做出如下假設:
u 火災發生在第二層的15號教室;
u 發生火災是每個教室都為滿人,這樣這層樓共有600人;
u 教學樓內安裝有集中火災報警系統,但沒有應急廣播系統;
u 從起火時刻起,在10分鍾內還沒有撤離起火樓層為逃生失敗;

對於這種場景下的火災發展與煙氣蔓延過程可用一些模擬程序進行計算,並據此確定樓內危險狀況到來的時間.但是為了突出重點,這里不詳細討論計算細節.
人員的整個疏散時間可分為疏散前的滯後時間,疏散中通過某距離的時間及在某些重要出口的等待時間三部分,根據建築物的結構特點,可將人們的疏散通道分成若干個小段。在某些小段的出口處,人群通過時可能需要一定的排隊時間。於是第i 個人的疏散時間ti 可表示為:

式中, ti,delay為疏散前的滯後時間,包括覺察火災和確認火災所用的時間; di,n為第n 段的長度; vi,n 為該人在第n 段的平均行走速度;Δtm,queue 為第n 段出口處的排隊等候時間。最後一個離開教學樓的人員所有用的時間就是教學樓人員疏散所需的疏散時間。
假設二層的15號教室是起火房間,其中的人員直接獲得火災跡象進而馬上疏散,設其反應的滯後時間為60s;教學內的人員大部分是學生,火災信息將傳播的很快,因而同樓層的其他教室的人員會得到15號教室人員的警告,開始決定疏散行動.設這種信息傳播的時間為120s,即這批人的總的滯後時間為120+60=180秒;因為左右兩側為對稱狀態,所以在這里我們就計算一面的.一、三、四、五層的人員將通過火災報警系統的警告而開始進行疏散,他們得到火災信息的時間又比二層內的其他教室的人員晚了60秒.因此其總反應延遲為240秒.由於火災發生在二樓,其對一層人員構成的危險相對較小,故下面重點討論二,三,四,五樓的人員疏散.
為了實際了解教學樓內人員行走的狀況,本組專門進行了幾次現場觀察,具體記錄了學生通過一些典型路段的時間。參考一些其它資料[1、2、3] ,提出人員疏散的主要參數可用圖6 表示。在開始疏散時算起,某人在教室內的逗留時間視為其排隊時間。人的行走速度應根據不同的人流密度選取。當人流密度大於1 人/ m2時,採用0. 6m/ s 的疏散速度,通過走廊所需時間為60s ,通過大廳所需時間為12s ;當人流密度小於1 人/m2 時,疏散速度取為1. 2m/ s ,通過走廊所需時間為30s ,通過大廳所需時間為6s。

圖6 人員疏散的若干主要參數

Pauls[4]提出,下樓梯的人員流量f 與樓梯的有效寬度w 和使用樓梯的人數p 有關,其計算公式為:

式中,流量f 的單位為人/ s , w 的單位為mm。此公式的應用范圍為0. 1 < p/ w < 0. 55 。
這樣便可以通過流量和室內人數來計算出疏散所用時間。出口的有效寬度是從通道的實際寬度里減去其兩側邊界層而得到的凈寬度,通常通道一側的邊界層被設定為150mm。
3 結果與討論
在整個疏散過程中會出現如下幾種情況:
(1) 起火教室的人員剛開始進行疏散時,人流密度比較小,疏散空間相對於正在進行疏散的人群來說是比較寬敞的,此時決定疏散的關鍵因素是疏散路徑的長度。現將這種類型的疏散過程定義為是距離控制疏散過程;
(2) 起火樓層中其它教室的人員可較快獲得火災信息,並決定進行疏散,他們的整個疏散過程可能會分成兩個階段來進行計算: 當f進入2層樓梯口流出2層樓梯口時, 這時的疏散就屬於距離控制疏散過程;當f進入2層樓梯口> f流出2層樓梯口時, 二樓樓梯間的寬度便成為疏散過程中控制因素。現將這種過程定義為瓶頸控制疏散過程;
(3) 三、四層人員開始疏散以後,可能會使三樓樓梯間和二樓樓梯間成為瓶頸控制疏散過程;
(4) 一樓教室人員開始疏散時,可能引起一樓大廳出口的瓶頸控制疏散過程;
(5) 在疏散後期,等待疏散的人員相對於疏散通道來說,將會滿足距離控制疏散過程的條件,即又會出現距離控制疏散過程。
起火教室內的人員密度為100/ 125 = 0.8 人/m2 。然而教室里還有很多的桌椅,因此人員行動不是十分方便,參考表1 給出的數據,將室內人員的行走速度為1.1m/ s。設教室的門寬為1. 80m。而在疏散過程中,這個寬度不可能完全利用,它的等效寬度,等於此寬度上減去0. 30m。則從教室中出來的人員流量f0為:

f0=v0×s0×w0=1.1×0.8×4.7=4.1(人/ s) (3)

式中, v0 和s0 分別為人員在教室中行走速度和人員密度, w0 為教室出口的有效寬度。按此速度計算,起火教室里的人員要在24.3s 內才能完全疏散完畢。
設人員按照4.1 人/ s 的流量進入走廊。由於走廊里的人流密度不到1 人/ m2 ,因此採用1. 2m/s的速度進行計算。可得人員到達二樓樓梯口的時間為9.2s。在此階段, 將要使用二樓樓梯的人數為100人。此時p/ w=100/1700=0.059 < 0. 1 , 因而不能使用公式2 來計算樓梯的流量。採用Fruin[5]提出的人均佔用樓梯面積來計算通過樓梯的流量。根據進入樓梯間的人數,取樓梯中單位寬度的人流量為0.5人 /(m. s) ,人的平均速度為0. 6m/ s ,則下一層樓的樓梯的時間為13s。這樣從著火時刻算起,在第106.5s(60+24.3+9.2+13)時,著火的15號教室人員疏散成功。以上這些數據都是在距離控制疏散過程范圍之內得出的。
起火後120s ,起火樓層其它兩個教室(即11和13號教室)里的人員開始疏散。在進入該層樓梯間之前,疏散的主要參數和起火教室中的人員的情況基本一致。在129.2s他們中有人到達二層樓梯口,起火教室里的人員已經全部撤離二樓大廳。因此,即將使用二樓樓梯間的人數p1 為:
p1 = 100 ×2 = 200 (人) (4)

此時f進入2層樓梯口>f流出2層樓梯口,從該時刻起,疏散過程由距離控制疏散過渡到由二樓樓梯間瓶頸控制疏散階段。由於p/ w =200/1700= 0.12 ,可以使用公式2 計算二樓樓梯口的疏散流量f1 , 即:
?/P>

0.27
0.73

f1 = (3400/ 8040) × 200 = 2.2人/ s) (5)

式中的3400 為兩個樓梯口的總有效寬度,單位是mm。而三、四層的人員在起火後180s 時才開始疏散。三層人員在286.5s(180+106.5)時到達二層樓梯口,與此同時四層人員到達三層樓梯口,第五層到達第四層樓梯口。此時刻二層樓梯前尚等待疏散人員數p′1:

p′1 = 200 - (286.5 – 129.2) ×2.2 = -146.1(人) <0 (6)

所以,二層樓的人員已經全部到達一層
此後,需要使用二層樓梯間的人數p2 :

p2 = 100×3=300 (人) (7)

相應此階段通過二樓樓梯間的流量f 2 :
0.27
0.73

f2 = (3400/8040) × 200 = 2.5(人/ s) (8)

這┤送ü樓樓梯的疏散時間t1 :

t1 = 300÷2.5 = 120 ( s) (9)

因為教學樓三、四、五層的結構相同,所以五層到四層,四層到三層和三層到二層所用的時間相等,因此人員的疏散在樓梯口不會出現瓶頸現象
所以,通過二樓樓梯的總體疏散時間T :

T = 286.5+ 120×3 = 646.5 ( s) (10)

最終根據安全系數得出實際疏散時間為T實際:

T實際 =646.5×(1.5~2)=969.75~1293( s) (11)

圖7 二樓樓梯口流量隨時間的變化曲線圖

關於幾點補充說明:
以上是我們只對B座二樓的15號教室起火進行的假設分析和計算,此時當人員到達一樓即視為疏散成功。同理,當三樓起火的時候,人員到達二樓即視為疏散成功,四樓、五樓以此類推。因為1號教學樓A、B座結構的對稱性所以樓層的其他教室起火與此是同一個道理。所以本文上述的分析與計算同時適用於A、B兩座樓。另外當三層以上(包括三樓)起火的時候,便體現出C座二樓的作用。當B座的三樓起火的時候,B座二樓的人員肯定是在B座三樓人員後對起火做出應對反應,所以會出現當三樓人員疏散到二樓的時候,二樓的人員也開始疏散的情況,勢必造成二樓樓梯口出現瓶頸現象。因為A、B座的三、四、五樓並沒有連接,都是獨立的結構,出現火災不會直接從B座的三樓威脅到A座三樓及其他樓層人員的安全,所以為了避免上述二樓樓梯口出現瓶頸現象的發生,我們讓二樓的所有人員向A座的二樓轉移,這樣就會讓起火樓層的人員能夠更快的疏散到安全區域。當B座的四、五樓起火的時候也同樣讓二樓的人員向A座的二樓轉移,為二樓以上的人員疏散創造條件。同理,A座也是如此。
在對火災假設分析和計算的時候,我們並沒有對大教室的後門樓梯的疏散做出計算,由於1號教學樓的特殊性,A座的四樓和B座的五樓沒有大教室,所以大教室的後門樓梯疏散人員的速度是很快的,不會在大教室後門的樓梯出現瓶頸現象。
關於1號教學樓的幾個出口:
u 大廳有一個大門
u A座一樓靠近正廳有一個門
u A座大教室旁邊有一個門
u B座中教室靠近大廳正門側面的窗戶可以作為一個應急出口
u A、B座的底層都有一個地下室(當煙氣蔓延太快來不及疏散,受煙氣威脅的時候可以作為一個逃生去向)
u A、B座大教室各有一個後門
合計: 8個出口
致校領導的一封信
尊敬的校領導,你們好。
針對我校1號教學樓,我們數學建模小組通過實際測量、建立模型、模型分析,得出如下結論:一旦1號教學樓發生火災,人員有可能不能全部安全疏散。
以上的分析是按一種很理想的條件進行的,並沒有進行任何修正。實際上人在火災中的行為是很復雜的,尤其是沒有經過火災安全訓練的人,可能會出現盲目亂跑、逆向行走等現象,而這也會延長總的疏散時間。
該模型在現階段是一個人員疏散分析模型的基礎,目前屬於理論上的模型,以上的計算結果都是通過手算或文曲星計算得到的。模型中的人員行走速度是通過多次觀察該教學樓內下課時人員的行走速度和參照Fru2in 給出的疏散時人員行走速度、NFPA 中給出的人員行走速度以及目前人員疏散模型中通用的計算速度等修正而得到的,具有較為廣泛的通用性。而預測的疏散時間是根據建築物的結構特點和人員行走速度而得到的,在計算疏散所用時間的時候在剔除疏散前人員的滯後時間(或稱預移動時間) 外,所得到的時間是合理的。對於疏散前人員的滯後時間,參考T. J . Shields 等試驗結論:75 %人員在聽到火災警報後的15~40 s 才開始移動,而整個疏散所用的時間為646.5 s。在該例中起火教室的反應滯後時間為60 s ,這是從開始著火時刻算起的。預移動時間與不同類型的建築物、建築物中人員的自身特點和建築物中的報警系統有著很大的關系,它是一個很不確定的數值。本文中所用的預移動時間不到整個疏散過程中所用的時間的 10 %。二樓樓梯口流量隨時間的變化曲線如圖7所示。由上可知,二層以上的所有人通過二樓樓梯所需的時間為646.5 s ,這比前面設定的可用安全疏散時間要長,因而不能保證有關人員全部安全疏散出去。樓梯的寬度和大廳的正門顯然是制約人員疏散的一個瓶頸。造成這種情況的基本原因是該教學樓的疏散通道安排不當,樓梯通道的寬度不夠,對此可以適當增大樓梯的總寬度;或者在教學樓的每個分支上再修一個樓梯,則人員的疏散會更加的暢通;最好是分別在A座和B座新建一個象正門一樣的出口,這樣將大大的緩解了大廳正門疏散人員的壓力,不至於造成大廳人員堵塞而影響樓上人員的疏散。另一方面,學校還應多增加一些消防設施,每個教室都該配備滅火器;學校還應加強學生消防意識的培養和教育,形式可以多樣化、新穎化,比如做報告,上實踐課,做消防演習等等。讓他們了解一些消防逃生的常識,學會一些消防器材的使用,並讓他們對自己所使用的教學樓有充分發認識和了解,一旦發生火災好知道採取何種疏散方法才能在最短的時間內到達安全區域。
如果學校經費有限,也可以不花一分錢就可以消除這個消防隱患,就是合理安排上課的教室,避免每個樓層的所有教室都被用於上課。每層至少可以空出幾個,這樣就會大大的緩解人員疏散不利帶來的危險。但是這樣也有弊端,就是沒有充分利用教室的使用價值,浪費資源。

『陸』 數學建模論文範文怎麼寫

數學建模論文寫作

一、寫好數模答卷的重要性
1. 評定參賽隊的成績好壞、高低,獲獎級別,數模答卷,是唯一依據。
2. 答卷是競賽活動的成績結晶的書面形式。
3. 寫好答卷的訓練,是科技寫作的一種基本訓練。
二、答卷的基本內容,需要重視的問題
1.評閱原則
假設的合理性,建模的創造性,結果的合理性,表述的清晰程度。
2.答卷的文章結構
題目(寫出較確切的題目;同時要有新意、醒目)
摘要(200-300字,包括模型的主要特點、建模方法和主要結論)
關鍵詞(求解問題、使用的方法中的重要術語)
1)問題重述。
2)問題分析。
3)模型假設。
4)符號說明。
5)模型的建立(問題分析,公式推導,基本模型,最終或簡化模型等)。
6)模型求解(計算方法設計或選擇;演算法設計或選擇,演算法思想依據,步驟及實現,計算框圖;所採用的軟體名稱;引用或建立必要的數學命題和定理;求解方案及流程。)
7)進一步討論(結果表示、分析與檢驗,誤差分析,模型檢驗)
8)模型評價(特點,優缺點,改進方法,推廣。)
9)參考文獻。
10)附錄(計算程序,框圖;各種求解演算過程,計算中間結果;各種圖形,表格。)
3. 要重視的問題
1)摘要。
包括:
a. 模型的數學歸類(在數學上屬於什麼類型);
b. 建模的思想(思路);
c. 演算法思想(求解思路);
d. 建模特點(模型優點,建模思想或方法,演算法特點,結果檢驗,靈敏度分析,模型檢驗……);
e. 主要結果(數值結果,結論;回答題目所問的全部「問題」)。
▲ 注意表述:准確、簡明、條理清晰、合乎語法、要求符合文章格式。務必認真校對。
2)問題重述。
3)問題分析。
因素之間的關系、因素與環境之間的關系、因素自身的變化規律、確定研究的方法或模型的類型。
5)模型假設。
根據全國組委會確定的評閱原則,基本假設的合理性很重要。
a. 根據題目中條件作出假設
b. 根據題目中要求作出假設
關鍵性假設不能缺;假設要切合題意。
6) 模型的建立。
a. 基本模型:
ⅰ)首先要有數學模型:數學公式、方案等;
ⅱ)基本模型,要求完整,正確,簡明;
b. 簡化模型:
ⅰ)要明確說明簡化思想,依據等;
ⅱ)簡化後模型,盡可能完整給出;
c. 模型要實用,有效,以解決問題有效為原則。
數學建模面臨的、要解決的是實際問題,不追求數學上的高(級)、深(刻)、難(度大)。
ⅰ)能用初等方法解決的、就不用高級方法;
ⅱ)能用簡單方法解決的,就不用復雜方法;
ⅲ)能用被更多人看懂、理解的方法,就不用只能少數人看懂、理解的方法。
d.鼓勵創新,但要切實,不要離題搞標新立異。數模創新可出現在:
▲ 建模中,模型本身,簡化的好方法、好策略等;
▲ 模型求解中;
▲ 結果表示、分析、檢驗,模型檢驗;
▲ 推廣部分。
e.在問題分析推導過程中,需要注意的問題:
ⅰ)分析:中肯、確切;
ⅱ)術語:專業、內行;
ⅲ)原理、依據:正確、明確;
ⅳ)表述:簡明,關鍵步驟要列出;
ⅴ)忌:外行話,專業術語不明確,表述混亂,冗長。
7)模型求解。
a. 需要建立數學命題時:
命題敘述要符合數學命題的表述規范,盡可能論證嚴密。
b. 需要說明計算方法或演算法的原理、思想、依據、步驟。
若採用現有軟體,說明採用此軟體的理由,軟體名稱。
c. 計算過程,中間結果可要可不要的,不要列出。
d. 設法算出合理的數值結果。
8) 結果分析、檢驗;模型檢驗及模型修正;結果表示。
a. 最終數值結果的正確性或合理性是第一位的;
b. 對數值結果或模擬結果進行必要的檢驗;
結果不正確、不合理、或誤差大時,分析原因, 對演算法、計算方法、或模型進行修正、改進。
c. 題目中要求回答的問題,數值結果,結論,須一一列出;
d. 列數據問題:考慮是否需要列出多組數據,或額外數據對數據進行比較、分析,為各種方案的提出提供依據;
e. 結果表示:要集中,一目瞭然,直觀,便於比較分析。
▲ 數值結果表示:精心設計表格;可能的話,用圖形圖表形式。
▲ 求解方案,用圖示更好。
9)必要時對問題解答,作定性或規律性的討論。最後結論要明確。
10)模型評價
優點突出,缺點不迴避。
改變原題要求,重新建模可在此做。
推廣或改進方向時,不要玩弄新數學術語。
11)參考文獻
12)附錄
詳細的結果,詳細的數據表格,可在此列出,但不要錯,錯的寧可不列。主要結果數據,應在正文中列出,不怕重復。

檢查答卷的主要三點,把三關:
a. 模型的正確性、合理性、創新性
b. 結果的正確性、合理性
c. 文字表述清晰,分析精闢,摘要精彩

三、關於寫答卷前的思考和工作規劃
答卷需要回答哪幾個問題――建模需要解決哪幾個問題;
問題以怎樣的方式回答――結果以怎樣的形式表示;
每個問題要列出哪些關鍵數據――建模要計算哪些關鍵數據;
每個量,列出一組還是多組數――要計算一組還是多組數。

四、答卷要求的原理
1. 准確――科學性;
2. 條理――邏輯性;
3. 簡潔――數學美;
4. 創新――研究、應用目標之一,人才培養需要;
5. 實用――建模、實際問題要求。

五、建模理念
1. 應用意識
要解決實際問題,結果、結論要符合實際;
模型、方法、結果要易於理解,便於實際應用;站在應用者的立場上想問題,處理問題。
2. 數學建模
用數學方法解決問題,要有數學模型;
問題模型的數學抽象,方法有普適性、科學性,不局限於本具體問題的解決。
3. 創新意識
建模有特點,更加合理、科學、有效、符合實際;更有普遍應用意義;不單純為創新而創新。

『柒』 數學建模小論文:

你可以假設形狀的影響因素就是截面積,速度的影響因素為kv(k為一個正數)。
那麼阻內力f=-kAv,A為截面積。
冰雹受到的容合力F=G+f=ma。
這里還可以對冰雹的形狀做進一步假設,如果是球,那麼m=密度*球的體積, 體積可以和截面積A對應。
這樣,如果k和A已知,那其實就只剩下v和a的方程了,將a=dv/dt,帶入初始條件v=0, 以及初始高度,就可以解出微分方程了。

『捌』 生活中的數學建模論文,畢業論文

本文作者(袁衛東),請您在閱讀本文時尊重作者版權。

數學建模在生活實際中的應用

【摘要】數學建模應用非常廣泛。數學模型的最優之處,就是它揚棄了具體事物中的一切與研究目標無本質聯系的各種具體的物質屬性,是在一種純粹狀態下的數量、關系的結構,因此更具有普遍性。數學學科以外的諸多自然科學和人文、社會科學,只有成功地建立起數學模型,才算得上趨於成熟和完善。本文結合數學教學,介紹了建立數學模型的一般步驟和一些簡單的數學模型形式。

【關鍵詞】數學模型 函數關系 數據分析 職業教育

依據職業教育的培養目標,在職業教育階段,學生僅掌握書本知識已經不能滿足社會的要求,因此,引導學生把所學的數學知識與生活中的實際問題相結合,開展數學建模活動應成為職業教育數學教學活動的重要理念之一。

1 問題提出

1.1 問題

商場經營者即要考慮商品的銷售額、銷售量。同時也要考慮如何在短期內獲得最大利潤。這個問題與商場經營的商品的定價有直接關系。定價低、銷售量大、但利潤小;定價高、利潤大但銷售量減少。下面研究在銷售總收入有限制的情況下.商品的最高定價問題。

1.2 實例分析

某商場銷售某種商品單價25元。每年可銷售3萬件。設該商品每件提價1元。銷售量減少0.1萬件。要使總銷售收入不少於75萬元。求該商品的最高提價。

解:設最高提價為x元。提價後的商品單價為(25x)元

提價後的銷售量為(30000-1000x)件

則(25 x)(30000-1000x)≥750000

(25 x)(30-x)≥750

0≤x≤5

即提價最高不能超過5元。

2 數學建模的概念

數學建模,即構造數學模型,具體地說就是將某一領域或部門的某個實際問題,經過抽象、簡化、明確變數和參數,並依據某種「規律」建立變數和參數間的明確關系(數學模型),然後求解該問題,並對結果進行解釋和驗證,如果正確,則可投入使用,否則將重新對問題的假設進行改進,多次循環,直到正確。

3 數學建模的一般步驟

這里所說的建模步驟只是大體上的規范,實際操作中應針對具體問題作具體分析,靈活運用。建立數學模型的一般步驟如下:

(1)模型准備:

了解熟悉實際問題,以及與問題有關的背景知識,明確建模的目的,掌握研究對象的各種信息(如數據、資料等),弄清對象的特徵,分析原型的結構,有時要求建模者做深入細致的調查研究,按模型的需要有目的地收集所需要的數據。

(2)模型假設:

分析處理數據、資料,確定現實原型的主要因素,拋棄次要因素,對問題進行必要的簡化,用精確的語言找出必要的假設,這是非常關鍵的一步。

(3)模型建立:

根據主要因素及所作的假設,利用適當的數學工具描述有關變數和元素的關系,並建立相應的數學模型(如方程、不等式、表格、圖形、函數、邏輯運算式、數值計算式等)。在建模時,數學工具的採用要根據實際問題的特徵、建模的目的和要求以及建模者的數學特長而定。因此,採用的數學方法不同,建立的模型可能也不同。但應遵循一條原則,即盡量採用簡單的數學工具,以使模型得到更廣泛的應用。

(4)模型求解:

使用已知數據,觀測數據或者實際問題的有關背景知識對所建模型中的參數給出估計值。利用數學工具,對模型進行求解,包括解方程、圖解、邏輯推理、定理證明、性質討論等,以找出數學上的結果。要求建模者掌握相關的數學知識,尤其是計算技巧和計算機技術。

(5)模型分析:

對模型求解的結果進行數學上的分析,有時需要根據問題的性質分析各變數之間的依賴關系或性態,有時需要根據所得結果給出數學式的預測和最優決策、控制等。

(6)模型檢驗:

把模型分析的結果返回到實際應用中,用實際現象、數據等檢驗模型的合理性和實用性,即驗證模型的正確性。通常,一個成攻的模型不僅能夠解釋已知現象,而且還能預言一些未知現象。

(7)模型應用:

如果檢驗結果與實際不符或部分不符,而且求解過程沒有錯誤,那麼問題一般出在模型假設上,此時應該修改或補充假設。如果檢驗結果與實際相符,並滿足問題所要求的精度,則認為模型可用,便可進行模型應用。

我們用圖1示來解釋一下它的基本過程:

4 數學模型介紹

4.1 建立豎式模型

例1 從社會效益和經濟效益出發,某地投入資金進行生態環境建設,並以此發展旅遊產業,根據規劃本年度投入800萬元,以後每年投入比上一年減少,本年度當地旅遊業收入估計約400萬元,由於該項建設對旅遊業的促進作用,預計今後的旅遊收入每年比上年增加。問至少經過多少年,旅遊業總收入才能超過總投入?

解:設n年內(本年度為第一年),總投入為an萬元,旅遊業總收入為bn萬元。

第一年投入800萬元,

第二年投入萬元……,

第n年投入為萬元,所以n年內的總收入為:

第一年旅遊收入為400萬元,

第二年旅遊收入為萬元,……,

第n年旅遊收入為萬元,所以n年內的總收入為:

,化簡得:

>0

解得<即n>5.

故至少經過5年,旅遊業總收入才能超過總投入。

4.2 建立方程(方程組)模型

例2 永強加工廠接到一批訂單,為完成訂單任務,需用a米長的材料440根,b米長的材料480根,可采購到的原材料有三種,一根甲種材料可截得a米長的材料4 根,b米長的材料8根,成本為60元;一根乙種材料可截得a米長的材料6根,b米長的材料2根,成本為50元;一根丙種材料可截得a米長材料4根,b米長的材料4根,成本為40元。問怎樣采購,可使材料成本最低? 數學建模在生活實際中的應用(2)

分析:若直接設材料成本最低為x元,則根據已給條件不好列方程,所以我們不妨藉助於輔助變數;令甲種取x根,乙種取y根,丙種取z根,那麼可得到

再設總成本為p元,則求出p=60x 50y 40z的最小值即可。

解:設甲種材料取x根,乙種材料取y根,丙種材料取z根,則x,y,z滿足

設總成本為p元,則求p的最小值,由①,②得

因x,y都是正數∴0≤z≤100又∵x,y都是非負整數 ∴令z=5t,則0≤t≤20

於是p=60x 50y 40z=60(50-2t) 50(40-2t)=5000-20t

顯然t=20時,成本最低,即當x=10,y=0,z=100時,取得材料的最低成本為4600元。

4.3 建立不等式模型

例3 南泉汽車租賃公司共有30輛出租汽車,其中甲型汽車20輛,乙型汽車10輛。現將這30輛汽車租賃給A、B兩地的旅遊公司,其中20輛派往A地,10輛派往B地,兩地旅遊公司與汽車租賃公司商定每天價格如表1:

(1)設派往A地的乙型汽車x輛,租賃公司這30輛汽車一天共獲得租金為y(元),求y與x之間的函數解析式,並寫出自變數x的取值范圍;

(2)若要使租賃公司這30輛汽車一天所獲得的租金總額不低於26800元,請你說明有多少種分派方案,並將各種方案設計出來。

解:(1)y=1000(20-x) 900x 800x 600(10-x)=26000 100x (0≤x≤10)

(2)由題意得:26000 100x≥26800,

又因為0≤x≤10,且x是整數,所以x取8,9,10故方案有3種。

方案1:A地派甲型車12輛,乙型車8輛;B地派甲型車8輛,乙型車2輛;

方案2:A地派甲型車11輛,乙型車9輛;B地派甲型車9輛,乙型車1輛;

方案3:A地派甲型車10輛,乙型車10輛;B地派甲型車10輛。

例4 學校食堂定期從糧店以每噸1500元的價格購買大米,每次購進大米需支付運輸費100元,食堂每天需用大米1噸,貯存大米的費用為每噸每天2元,假定食堂每次均在用完大米的當天購買。(1)該食堂每多少天購買一次大米可使平均每天支付的總費用最少?(2)糧店提出價格優惠條件:一次購買量不少於20噸時, 大米價格可享受九五折(即原價的95%),問食堂可否接受此優惠條件?說明理由。

解:(1)設每n天購進一次大米,則購米量為n噸,那麼庫存費用為:

2[n (n-1) … 2 1]=n(n 1),

記平均每天的總費用為y1,則

當且僅當,即n=10時,等號成立,故應每10天購買一次大米,可使平均每天支付的總費用最少。

(2)顯然,若接受優惠條件,則至少每20天訂購一次,即每m天購一次時,有m≥20,記此時每天總費用為y2,那麼

(m≥20)

因為

所以函數是增函數,故當m=20時,y2最小值為1451,因為1451<1521,所以接受價格優惠條件。

4.4 構建幾何模型

例5 在某海濱城市附近海面有一台風,據監測,當前台風中心位於城市O(如圖所示)的東偏南方向300km的海面P處,並以20kmh的速度向西偏北方向移動, 台風侵襲的范圍為圓形區域,當前半徑為60km,並以10kmh的速度不斷增大,問幾小時後該城市開始受到台風的侵襲?

解:記時刻t(h)台風中心為p,台風侵襲區域的半徑為r(t)



,由題意當時,城市O受到台風侵襲。

而令,

所以

即:



所以12小時後該城市開始受到台風的侵襲。

4.5 構建排列,組合模型

例6 兩條直徑把圓面分為四部分,如圖所示:現用四種顏色塗這四個區域,問相鄰區域不同色的塗法有幾種?

解:分三類:用四種顏色去塗有

用三種顏色去塗,則相對的兩個區域塗同一顏色,

於是有

用兩種顏色去塗有。

所以共有24 48 12=84種。

4.6 構建函數模型

例7 一商場經銷某種電器,根據銷售情況年進貨量為5000台,分若干次進貨,若每台電器價格為2400元,每次進貨需費用1600元(包括運輸等各種費用), 且在售完該電器時能立即進貨,每一台電器的年庫存保管費率為10﹪。為降低成本,使一年的進貨費用和庫存保管費用之和最省,每次應進貨多少台?此時一年的進貨費與庫存保管費之和是多少?

解:設每次進貨x台,則由上述分析知,每年總費用y(進貨費與庫存保管費之和)為:

當且僅當即x=250時取等號,此時可取最小值60000。

答:每次進貨250台時,一年的進貨費與庫存保管費之和最省,為60000元。

例8建造一個容積為8m3,深為2m的長方無蓋水池,如果池底和池壁的造價每平方米分別120元和80元,那麼水池的最低造價為多少元?

分析設池長為xm,由已知條件,池底面積4m2,則池寬為4m,那麼水池總造價y元為:

解:將函數轉化為方程,利用判別式△來解決。

時取得最小值解得=1760元,此時x=2附條件,則水池的最低造價為1760元,

4.7 構建實際生活的數學模型

例9海中有一個小島A,該島四周10海里內有暗礁,今有貨輪由西向東航行。開始在A島南偏西55°的B處,往東行駛20海里後到達該島的南偏西25°的C處後,貨輪繼續向東航行。你認為貨輪繼續向東航行途中會有觸礁的危險嗎?

已知:由數學模型知

求AD的長

解:由數學模型得



由BD—CD=BC 又BC=20海里,



海里

∵20.79海里>10海里, ∴貨輪沒有觸礁的危險. 例10我們都知道,《烏鴉喝水》的故事,說的是:一隻烏鴉口渴了,到處找水喝。烏鴉看見一個瓶子,瓶子里有水。可是瓶子里的水不多,瓶子口有小,烏鴉喝不著水,怎麼辦呢?烏鴉看見瓶子旁邊有許多小石子,想出辦法來了。烏鴉把小石子一個一個地放進瓶子里,瓶子里的水漸漸升高,烏鴉就喝著水了。問:這一隻聰明的烏鴉,可是這只聰明的烏鴉真的能喝到水嗎?

解構建數學模型,不妨假定所投入的石塊都是大小相同的石球,其直徑為r,共有n 個。所有的小石球都緊密地排在一起,並且球心都在同一條直線上。再假定瓶了的形狀是方柱體,其內部空間被分成 n個棱長為r 的小正方體。這樣,瓶子里的總空隙就可以看作是每個小石子的外切正方體與小石球體積差的總和。由上面的假定可知:每一個小石球的體積為,其外切小正方體的體積為r3,所以瓶子里的總空隙為,

而就表示瓶子里所有空隙的總和等於瓶子總空隙的48﹪,也就是說,瓶子里所有空隙 的總和比瓶子容積的一半稍小一些,因此,瓶子里的原有水量不及瓶子的一半時,烏鴉就不可能用投石塊的方法把水面升到瓶口而喝到水。事實上,這個結論與小石塊是不是球體,瓶子的形狀是不是方柱體都無關。而且,生活中的瓶子一般都是中下部較大,瓶口較細,這也應該會減少水面上升的高度,就更增加了烏鴉喝水的難度。所以說,當瓶子里的原有水量不到瓶子的一半時,烏鴉是不可能喝到水的。

上述是對數學建模在生活實際中應用的一些總結,利用數學建模的方法,能夠開拓學生思路,加深對學習過程的認識,培養學習興趣,提高求知慾和認知能力,更好的完成職業教育目標。數學建模具有廣闊的發展前景,我們的建模不應該拘泥於形式,束縛於教條。我們應該密切關注生活,密切結合課本,改變原本,將知識重新分析組合,綜合拓廣,使之成為立意高,情景新,設問巧,並賦予時代氣息的問題,這對培養學生思維的靈活性,敏捷性,深刻性,廣闊性,創造性是大有益處的。

參考文獻

[1] 章建躍,郭麗華.建構觀下的數學教學.數學通報,2000,6:12-14.

[2] 辛明廷,劉志安.怎樣列方程組解應用題.吉林教育出版社,1996.

[3] 楊首中.國民經濟方面的數學應用問題的解決方案.中學數學教與學,2002,4:52-55.

[4] 吳文銳.求解排列組合應用題的八字訣.中學數學研究,2005,1:11-12.

[5] 彭林,喬家瑞.巧學數學.中國青年出版社,1997.

[6] 翟正才.高考概率統計知識與其它內容的交匯.中學數學研究,2006,1:19-20.

[7] 張勝元,李清.談數學建模與教育改革.福建中學數學,2001,9:2-3.

[8] 朱成傑.數學思想方法教學研究導論.上海文匯出版社,2001.

[9] 莫紹弟.數學應用題的幾類建模方法.科教文匯報會,2007.9.

『玖』 小學數學建模論文

數學建模論文範文--利用數學建模解數學應用題
數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。

一、數學應用題的特點
我們常把來源於客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源於實際生活的應用題;與模向學科知識網路交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要採用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示後再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難於進行題型模式訓練,用「題海戰術」無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,註解圖為:
將題材設條件翻譯
成數學表示形式

應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然後確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然後才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然後才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關繫到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,並給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了「減薄率」這一專門術語,並給出了即時定義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今後幾年內,計劃使成本平均每一年比上一年降低p%,經過五年後的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等

3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對於多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利於實踐能力的培養,是實施素質教育所必須的,需要引起教育工作者的足夠重視。

加強高中數學建模教學培養學生的創新能力

摘要:通過對高中數學新教材的教學,結合新教材的編寫特點和高中研究性學習的開展,對如何加強高中數學建模教學,培養學生的創新能力方面進行探索。
關鍵詞:創新能力;數學建模;研究性學習。
《全日制普通高級中學數學教學大綱(試驗修訂版)》對學生提出新的教學要求,要求學生:
(1)學會提出問題和明確探究方向;
(2)體驗數學活動的過程;
(3)培養創新精神和應用能力。
其中,創新意識與實踐能力是新大綱中最突出的特點之一,數學學習不僅要在數學基礎知識,基本技能和思維能力,運算能力,空間想像能力等方面得到訓練和提高,而且在應用數學分析和解決實際問題的能力方面同樣需要得到訓練和提高,而培養學生的分析和解決實際問題的能力僅僅靠課堂教學是不夠的,必須要有實踐、培養學生的創新意識和實踐能力是數學教學的一個重要目的和一條基本原則,要使學生學會提出問題並明確探究方向,能夠運用已有的知識進行交流,並將實際問題抽象為數學問題,就必須建立數學模型,從而形成比較完整的數學知識結構。
數學模型是數學知識與數學應用的橋梁,研究和學習數學模型,能幫助學生探索數學的應用,產生對數學學習的興趣,培養學生的創新意識和實踐能力,加強數學建模教學與學習對學生的智力開發具有深遠的意義,現就如何加強高中數學建模教學談幾點體會。
一.要重視各章前問題的教學,使學生明白建立數學模型的實際意義。
教材的每一章都由一個有關的實際問題引入,可直接告訴學生,學了本章的教學內容及方法後,這個實際問題就能用數學模型得到解決,這樣,學生就會產生創新意識,對新數學模型的渴求,實踐意識,學完要在實踐中試一試。
如新教材「三角函數」章前提出:有一塊以O點為圓心的半圓形空地,要在這塊空地上劃出一個內接矩形ABCD辟為綠冊,使其冊邊AD落在半圓的直徑上,另兩點BC落在半圓的圓周上,已知半圓的半徑長為a,如何選擇關於點O對稱的點A、D的位置,可以使矩形面積最大?
這是培養創新意識及實踐能力的好時機要注意引導,對所考察的實際問題進行抽象分析,建立相應的數學模型,並通過新舊兩種思路方法,提出新知識,激發學生的知欲,如不可挫傷學生的積極性,失去「亮點」。
這樣通過章前問題教學,學生明白了數學就是學習,研究和應用數學模型,同時培養學生追求新方法的意識及參與實踐的意識。因此,要重視章前問題的教學,還可據市場經濟的建設與發展的需要及學生實踐活動中發現的問題,補充一些實例,強化這方面的教學,使學生在日常生活及學習中重視數學,培養學生數學建模意識。
2.通過幾何、三角形測量問題和列方程解應用題的教學滲透數學建模的思想與思維過程。
學習幾何、三角的測量問題,使學生多方面全方位地感受數學建模思想,讓學生認識更多現在數學模型,鞏固數學建模思維過程、教學中對學生展示建模的如下過程:
現實原型問題
數學模型
數學抽象
簡化原則
演算推理
現實原型問題的解
數學模型的解
反映性原則
返回解釋
列方程解應用題體現了在數學建模思維過程,要據所掌握的信息和背景材料,對問題加以變形,使其簡單化,以利於解答的思想。且解題過程中重要的步驟是據題意更出方程,從而使學生明白,數學建模過程的重點及難點就是據實際問題特點,通過觀察、類比、歸納、分析、概括等基本思想,聯想現成的數學模型或變換問題構造新的數學模型來解決問題。如利息(復利)的數列模型、利潤計算的方程模型決策問題的函數模型以及不等式模型等。
3.結合各章研究性課題的學習,培養學生建立數學模型的能力,拓展數學建模形式的多樣性式與活潑性。
高中新大綱要求每學期至少安排一個研究性課題,就是為了培養學生的數學建模能力,如「數列」章中的「分期付款問題」、「平面向是『章中』向量在物理中的應用」等,同時,還可設計類似利潤調查、洽談、采購、銷售等問題。設計了如下研究性問題。
例1根據下表給出的數據資料,確定該國人口增長規律,預測該國2000年的人口數。
時間(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990
人中數(百萬) 39 50 63 76 92 106 123 132 145
分析:這是一個確定人口增長模型的問題,為使問題簡化,應作如下假設:(1)該國的政治、經濟、社會環境穩定;(2)該國的人口增長數由人口的生育,死亡引起;(3)人口數量化是連續的。基於上述假設,我們認為人口數量是時間函數。建模思路是根據給出的數據資料繪出散點圖,然後尋找一條直線或曲線,使它們盡可能與這些散點吻合,該直線或曲線就被認為近似地描述了該國人口增長規律,從而進一步作出預測。
通過上題的研究,既復習鞏固了函數知識更培養了學生的數學建模能力和實踐能力及創新意識。在日常教學中注意訓練學生用數學模型來解決現實生活問題;培養學生做生活的有心人及生活中「數」意識和觀察實踐能力,如記住一些常用及常見的數據,如:人行車、自行車的速度,自己的身高、體重等。利用學校條件,組織學生到操場進行實習活動,活動一結束,就回課堂把實際問題化成相應的數學模型來解決。如:推鉛球的角度與距離關系;全班同學手拉手圍成矩形圈,怎樣圍使圍成的面積最大等,用磚塊搭成多米諾牌骨等。
四、培養學生的其他能力,完善數學建模思想。
由於數學模型這一思想方法幾乎貫穿於整個中小學數學學習過程之中,小學解算術運用題中學建立函數表達式及解析幾何里的軌跡方程等都孕育著數學模型的思想方法,熟練掌握和運用這種方法,是培養學生運用數學分析問題、解決問題能力的關鍵,我認為這就要求培養學生以下幾點能力,才能更好的完善數學建模思想:
(1)理解實際問題的能力;
(2)洞察能力,即關於抓住系統要點的能力;
(3)抽象分析問題的能力;
(4)「翻譯」能力,即把經過一生抽象、簡化的實際問題用數學的語文符號表達出來,形成數學模型的能力和對應用數學方法進行推演或計算得到注結果能自然語言表達出來的能力;
(5)運用數學知識的能力;
(6)通過實際加以檢驗的能力。
只有各方面能力加強了,才能對一些知識觸類旁通,舉一反三,化繁為簡,如下例就要用到各種能力,才能順利解出。
例2:解方程組

x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本題若用常規解法求相當繁難,仔細觀察題設條件,挖掘隱含信息,聯想各種知識,即可構造各種等價數學模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不難得到兩兩之積的和(XY+YZ+ZX)=1/3,再由(3)又可將三根之積(XYZ=1/27),由韋達定理,可構造一個一元三次方程模型。(4)x,y,z 恰好是其三個根
t3-t2+1/3t-1/27=0 (4)
函數模型:
由(1)(2)知若以xz(x+y+z)為一次項系數,(x2+y2+z2)為常數項,則以3=(12+12+12)為二次項系數的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2為完全平方函數3(t-1/3)2,從而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也適合(3)
平面解析模型
方程(1)(2)有實數解的充要條件是直線x+y=1-z與圓x2+y2=1/3-z2有公共點後者有公共點的充要條件是圓心(O、O)到直線x+y的距離不大於半徑。
總之,只要教師在教學中通過自學出現的實際的問題,根據當地及學生的實際,使數學知識與生活、生產實際聯系起來,就能增強學生應用數學模型解決實際問題的意識,從而提高學生的創新意識與實踐能力。

數學建模隨著人類的進步,科技的發展和社會的日趨數字化,應用領域越來越廣泛,人們身邊的數學內容越來越豐富。強調數學應用及培養應用數學意識對推動素質教育的實施意義十分巨大。數學建模在數學教育中的地位被提到了新的高度,通過數學建模解數學應用題,提高學生的綜合素質。本文將結合數學應用題的特點,把怎樣利用數學建模解好數學應用問題進行剖析,希望得到同仁的幫助和指正。

一、數學應用題的特點
我們常把來源於客觀世界的實際,具有實際意義或實際背景,要通過數學建模的方法將問題轉化為數學形式表示,從而獲得解決的一類數學問題叫做數學應用題。數學應用題具有如下特點:
第一、數學應用題的本身具有實際意義或實際背景。這里的實際是指生產實際、社會實際、生活實際等現實世界的各個方面的實際。如與課本知識密切聯系的源於實際生活的應用題;與模向學科知識網路交匯點有聯系的應用題;與現代科技發展、社會市場經濟、環境保護、實事政治等有關的應用題等。
第二、數學應用題的求解需要採用數學建模的方法,使所求問題數學化,即將問題轉化成數學形式來表示後再求解。
第三、數學應用題涉及的知識點多。是對綜合運用數學知識和方法解決實際問題能力的檢驗,考查的是學生的綜合能力,涉及的知識點一般在三個以上,如果某一知識點掌握的不過關,很難將問題正確解答。
第四、數學應用題的命題沒有固定的模式或類別。往往是一種新穎的實際背景,難於進行題型模式訓練,用「題海戰術」無法解決變化多端的實際問題。必須依靠真實的能力來解題,對綜合能力的考查更具真實、有效性。因此它具有廣闊的發展空間和潛力。
二、數學應用題如何建模
建立數學模型是解數學應用題的關鍵,如何建立數學模型可分為以下幾個層次:
第一層次:直接建模。
根據題設條件,套用現成的數學公式、定理等數學模型,註解圖為:
將題材設條件翻譯
成數學表示形式

應用題 審題 題設條件代入數學模型 求解
選定可直接運用的
數學模型
第二層次:直接建模。可利用現成的數學模型,但必須概括這個數學模型,對應用題進行分析,然後確定解題所需要的具體數學模型或數學模型中所需數學量需進一步求出,然後才能使用現有數學模型。
第三層次:多重建模。對復雜的關系進行提煉加工,忽略次要因素,建立若干個數學模型方能解決問題。
第四層次:假設建模。要進行分析、加工和作出假設,然後才能建立數學模型。如研究十字路口車流量問題,假設車流平穩,沒有突發事件等才能建模。
三、建立數學模型應具備的能力
從實際問題中建立數學模型,解決數學問題從而解決實際問題,這一數學全過程的教學關鍵是建立數學模型,數學建模能力的強弱,直接關繫到數學應用題的解題質量,同時也體現一個學生的綜合能力。
3.1提高分析、理解、閱讀能力。
閱讀理解能力是數學建模的前提,數學應用題一般都創設一個新的背景,也針對問題本身使用一些專門術語,並給出即時定義。如1999年高考題第22題給出冷軋鋼帶的過程敘述,給出了「減薄率」這一專門術語,並給出了即時定義,能否深刻理解,反映了自身綜合素質,這種理解能力直接影響數學建模質量。
3.2強化將文字語言敘述轉譯成數學符號語言的能力。
將數學應用題中所有表示數量關系的文字、圖象語言翻譯成數學符號語言即數、式子、方程、不等式、函數等,這種譯釋能力是數學建成模的基礎性工作。
例如:一種產品原來的成本為a元,在今後幾年內,計劃使成本平均每一年比上一年降低p%,經過五年後的成本為多少?
將題中給出的文字翻譯成符號語言,成本y=a(1-p%)5
3.3增強選擇數學模型的能力。
選擇數學模型是數學能力的反映。數學模型的建立有多種方法,怎樣選擇一個最佳的模型,體現數學能力的強弱。建立數學模型主要涉及到方程、函數、不等式、數列通項公式、求和公式、曲線方程等類型。結合教學內容,以函數建模為例,以下實際問題所選擇的數學模型列表:
函數建模類型 實際問題
一次函數 成本、利潤、銷售收入等
二次函數 優化問題、用料最省問題、造價最低、利潤最大等
冪函數、指數函數、對數函數 細胞分裂、生物繁殖等
三角函數 測量、交流量、力學問題等

3.4加強數學運算能力。
數學應用題一般運算量較大、較復雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數學運算推理能力是使數學建模正確求解的關鍵所在,忽視運算能力,特別是計算能力的培養,只重視推理過程,不重視計算過程的做法是不可取的。
利用數學建模解數學應用題對於多角度、多層次、多側面思考問題,培養學生發散思維能力是很有益的,是提高學生素質,進行素質教育的一條有效途徑。同時數學建模的應用也是科學實踐,有利於實踐能力的培養,是實施素質教育所必須的,需要引起教育工作者的足夠重視。

閱讀全文

與小學數學建模論文材料相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99