⑴ 如何運用數形結合完善小學數學概念教學
數學概念作為小學數學教學中最為基本的知識,是小學數學知識結構的重要組成部分。學生只有掌握了數學概念,才可了解進而掌握數學知識。數形結合思想就是指在教學過程中,藉助於直觀形象的模型和集合圖形來理解抽象的數學概念、規律及數量關系。小學生大多處在直觀的認識階段,很難理解抽象的概念。只有把抽象的數學概念與形象生動的圖形結合起來,豐富小學生的感性認知途徑,就可以幫助學生輕易理解數學概念的真正內容。本文結合筆者多年教學實踐,談談數形結合思想在小學數學概念教學中的運用。
1、數形結合思想的內涵
「數」和「形」是數學教學過程中兩個最為重要的部分,也是數學教學中經常研究的對象。在數學教學過程中,將「數」與「形」結合起來,借用直觀形象的「形」來理解抽象難懂的「數」,運用細致的「數」來解釋「形」的特徵。將兩者有機的組合在一起,相互配合。使得抽象難懂的概念與直觀易懂的圖形統一起來,從而輕松的解決數學問題。
2、數形結合思想在小學數學概念教學中的運用
2.1 建立模型,引入概念
考慮到小學生的理解能力有限,在引入數學概念時必須考慮到學生對於概念的理解和掌握。在引入概念時,需要先建立直觀的模型,讓學生了解其表象,進入深入了解概念的內涵。對於模型表象的建立,是學生通過對感知材料進行分析,以此為基礎而產生的印象。在小學數學教學中引入概念時,圖形演示是建立模型的最常用也是最有用的方法。小學生尚處在簡單的用形象思維考慮問題的階段,在對於抽象的數學概念理解時,需要藉助於豐富而形象的感性材料。在數學概念教學過程中,需要充分展現抽象的概念與形象的圖形之間的相似之處,用最具有表現力的圖形將難懂概念的本質演示出來。通過數形結合,學生將對所學的數學概念輕松掌握,並記憶深刻。
在倍數的教學過程中,學生就很難理解倍數的概念。如何將倍數的概念最為簡單明了的教授給學生,使他們能完全掌握呢?圖形演示絕對是最為簡單而有效的方法。教學時可將2個三角形看成一份,在下面在擺出4個正方形,分成兩份。教授學生們觀察三角形有1個2,正方形中有2個2,以2個為一份,就可以用數學語言表達:正方形的個數是三角形的2倍。在這簡單的圖形演示中,學生從最簡單的「個數」「份數」,再引出「倍數」,過渡自然,不會顯得很突兀和難以理解,從而輕松掌握「倍數」概念的本質。
在利用直觀的圖形建立模型以助理解時需注意分寸,不要為增強圖形對學生的刺激效果,而在圖形演示上下太多功夫,導致學生的注意力集中到圖形上去,失去理解概念的興致。圖形演示只是手段,是為了讓學生直觀的感受概念的本質,更好的理解數學概念的本質,其本身需簡潔明了。
2.2 步步遞進,分析形成
學生對數學概念的認識形成都有一個過程,在教學時僅藉助一個圖形是不夠的,需在圖形的基礎上提出逐步深入的問題,誘導學生進行更深層次的思考,讓學生親自經歷從對概念的直觀感知到深刻理解的過程。學生不僅要能理解概念,還要能運用。故在引入概念時,需對學生理解的圖形表象進一步遞進,分析概念的形成過程,增強問題的形象性,拓展問題的深度,以啟發學生更深層次的思考。在教學中學生需回憶概念引入的過程,觀察和分析抽象概念如何變得形象,從而形成對新概念的掌握。
在概念抽象且難以理解時,教師可在教學過程中藉助於形象的物體設問,引導學生觀察分析。例如在對於「體積」概念的教學時,教師可先引導學生觀察橡皮與粉筆盒,問哪個物體更大,讓學生初步感知「體積」的概念。然後可在燒杯內盛水,並放入小石塊,讓學生觀察燒杯內水位的變化,並詢問:水位為什麼會上升?上升了多少?學生可以從水位上升中明白物體所佔的空間體積大小就是「體積」。水位上升的多少就是小石塊在水中佔有的體積。通過深入討論,學生就能輕易到「體積」就是物體所佔有的空間體積大小。學生不僅因趣味實驗而理解了「體積」的概念,還對次產生深刻的印象,也可以在以後更熟練的應用此概念。
在進行實物建立概念模型,設置情境時,教師需特別注意層層遞進,注意概念與圖形的有機結合。在教學過程中,還需要用問題去誘導學生,啟發學生,讓學生在觀察中發現問題,進而分析並解決問題。教師需要在學生形成對概念的表象認識時,引導學生觀察分析概念的本質屬性,使得學生在整個概念學習過程中能步步遞進,了解整個過程的形成情況,完成對概念的理解過程。
2.3 動手作圖,理解本質
小學生難以運用生活經驗將實際遇到的問題轉移在數學問題上,從而形成對數學概念的理解。所以在平時教學過程中,教師需根據實際教學情況,引導學生利用工具動手作圖,以幫助理解概念的本質。通過作圖觀察,學生可建立屬於自己的概念表象,拓展學生的空間觀念,提高空間思維能力。從而培養學生的抽象思考、分析概括等能力。
在三角形的教學中,學生就很難理解三角形「高」的概念。脫離圖形,教師就很難闡述「高」的含義,學生就更不會理解其本質。因此在這種情況下,教師可引導學生自己動手作圖,經歷一個找三角形「高」的過程,這樣就會使學生對「高」產生深刻的印象。教師可指導學生如何過某一點做一條直線的垂線段;然後指導學生過三角形一頂點做底邊的垂線段,這條垂線段就是三角形的「高」。學生們也可通過作圖練習,來充分理解三角形「高」的概念。通過平時的大量作圖練習,可以讓學生去發現各個圖形的特徵,充分調動積極性,培養學生的觀察和作圖能力,更形象理解「高」的本質屬性。
在學生動手作圖的過程中,需著重引導學生總結在此過程中的體驗和感悟,進而充分全面的理解數學概念。指導學生們作圖,讓他們在作圖過程中找到學習的樂趣,獲得掌握知識的快感,讓學生們在此過程中找到學習數學的方法。
3、對數形結合思想的思考
在運用圖形來幫助理解數學概念時,教師可以通過藉助直觀而又形象的圖形,將抽象的數學概念變得通俗易懂,變得直觀形象,以便學生對其的理解和分析。在教學過程中教師需要用清晰的理論來幫助學生理解,進而掌握。分析問題時,需根據具體情況,將圖形問題轉為數量問題,或是將概念問題轉變圖形問題,使復雜的問題簡單明了,幫助學生准確的理解,找到概念的本質,培養和擴展學生邏輯思維能力。
在遇到復雜的幾何圖形時,可以嘗試用簡單的數量關系來表示。通過簡單的代數運算來表示復雜的圖形關系。鼓勵學生觀察圖形,從中分析圖形中數字的意義,藉助數量關系的運算來解決復雜的圖形問題。這樣就可以讓學生們充分了解「數形結合」的思想內涵,熟悉數形結合的思想方法,更好的在學習數學過程中運用「數形結合」方法,使得學生對「數」與「形」產生一定的敏感性。
「數形結合」是一種重要的數學學習方法。它是一個雙向的過程,需根據實際情況處理好兩者的結合,相互配合。教師在小學數學概念教學過程中,需注重對學生應用「數形結合」進行合理的指導,讓學生養成在學習過程使用「數形結合」方法的良好習慣。要重視培養學生的數學思維能力,從而是學生在學習數學時達到數形統一,這將對學生日後的數學學習有非常重要的意義。
⑵ 為什麼要在小學數學中應用數形結合思想
數形結合思想為什麼在現實中有廣泛的應用? 數與形是世界上萬事萬物存在的基本要素,因而專門反映數與形規律的數學在現實世界中無處不在、無處不用.數形結合思想是數學思想方法中非常重要的一種思維方法,本質上,它貫穿於數學發展的每一個階段,而明確地體現則在笛卡兒的「變數」和《解析幾何》誕生之後,並由此促成了初等數學向高等數學的發展,使數學從僅僅研究靜止、平直的對象擴展到研究運動變化和彎曲的對象.數形結合的思想方法應用非常廣泛,在解題過程中,能化繁為簡,化抽象為具體,對於幫助學生開闊思路、突破思維定勢有極好的作用.
⑶ 如何在小學數學教學中滲透數形結合思想
1 以形促思,在數的認識教學中,滲透數形結合思想方法,幫助學生很好地建立數感數感是一種主動、自覺或自動化的理解數和運用數的態度和意識,是對數學對象、材料直接迅速、正確敏感的感受能力。《數學課程標准》指出:「數感主要表現在理解數的意義;能用多種方法表示數。」例如教學《10 的認識》時,我請小朋友們認真觀察圖,從圖中你知道了什麼?讓學生利用數數的經驗上台現場數數後,學生明白10 個人、10 只鴿子都可以用數字10 表示。接著讓學生擺小棒操作,知道一捆就是1 個十,所以10 個1 是十。接著我讓學生找一找生活中哪些物體的個數可以用數字10 表示。最後讓「10」寶寶參加數字排隊隊,0~9這幾個數字寶寶已經按從小到大的順序排好隊了(出示尺子圖),10 應該排在哪兒?請計數器來幫忙。學生動手操作先拔8 顆,再添一顆是幾顆(使生能直觀感覺到9 比8 多1)?9 顆再添上一顆是幾顆?10 顆再去掉一顆是幾顆(使生感覺到10 比9 多1)?10 應該排在哪兒?回到尺子圖,讓生猜猜9 的後面是幾?請生分別按從小到大、從大到小的順序讀0~10 這幾個數字。在以上教學中,我巧妙滲透數形結合的思想方法,使學生在對具體數量的感知和體驗中,進一步強化了數感,加深了對數的意義的認識。
2 借形理解,在概念教學中,加強實驗操作,滲透數形結合思想方法,使學生直觀地理解概念數學概念是知識教學中的重要組成部分,在概念教學中,僅闡明其實際意義是不夠的,還應從事物的整體、本質和內在聯系出發,對概念進行進行全面分析,突出其本質屬性,但它的抽象性、枯燥性使得教學效果不盡如人意,學生學起來比較困難。藉助直觀的圖形、加強實驗操作可以將概念教學趣味化、形象化,從而幫助學生在輕松、愉快的學習氛圍中理解概念的形成過程。
例如:在《認識體積》的教學中,我通過3 個步驟滲透數形結合的思想方法,讓學生借形直觀地理解概念:2.1 通過實驗,使學生體會到物體是佔有空間的。教師出示兩個一樣的杯子,左邊的盛滿水,右邊的放了一個柑果。請同學們猜猜,如果把左邊杯子里的水倒入右邊的杯子,結果會怎樣?學生猜測,並通過實驗來驗證猜測是否是對的。學生倒水操作明白:原來兩個杯子裝的水是一樣多的,現在放進去一個柑果,杯中有一部分空間被柑果佔去了,能裝水的空間就少了。使學生體會到物體佔有一定的空間。
2.2 通過實驗,使學生體會到物體所佔的空間是有大有小的。出示兩個完全一樣的玻璃杯:一個杯子里放的是柑果,另一個杯子里放的是葡萄,如果往這兩個杯子里倒水,倒進哪個杯里的水會多一些?學生猜測並再次實驗操作,驗證猜想:兩個杯子能裝的水同樣多,柑果占的空間大,因而相應杯中的水就少;葡萄占的空間小,因而相應杯中的水就多。
2.3 揭示體積的含義。出示3 個大小不同的水果,這3 個水果,哪一個占的空間大?把它們放在同樣大的杯中,再倒滿水,哪個杯里水占的空間大?學生實驗操作,明確:物體是佔有空間的,一個物體越大,它佔有的空間就越大,反之,一個物體越小,它佔有的空間就越小。我們把物體所佔空間的大小叫做物體的體積。學生舉生活實例比較兩個物體體積的大小,認識體積,我通過三部教學,加強實驗操作,滲透數形結合思想方法,學生不僅借形直觀地理解概念,而且能夠應用概念。
3 看形想量,結合「量的計量」的教學滲透數形結合思想方法,幫助學生建立質量觀念數學的主要研究對象是數與形。但在現實生活中,數與形和量與計量總是密切聯系著的,學習數學必然要涉及量與計量。如何在量與計量中滲透數形結合呢?
例如《千克的認識》教學:①認識秤和秤面。觀察秤面從秤面上看到了什麼?②建立1 千克的質量觀念。a.掂一掂,初步體驗一千克的重量。分小組稱一稱2 袋鹽,通過觀察發規2 袋鹽重1 千克。b.猜一猜,再次體驗1 千克的重量。先猜一猜幾個這樣的蘋果、桔子、桃子重1 千克,最後稱一稱,數一數1 千克這樣的果到底有幾個?c.比一比,加深對一千克的認識。師出示一個重2 千克大米,讓幾名學生拎一拎,說說感覺,猜猜重多少千克,通過比較進一步加深對1 千克的體驗。
建立「千克」這個計量單位的觀念,對學生來說比較抽象,滲透數形結合的思想方法,學生就很容易建立「千克」的表象,並能運用。
4 看數畫形,在解決問題教學中,滲透數形結合思想方法,使解題過程具體化、明朗化數學家華羅庚曾說:「人們對數學早就產生了乾燥無味、神秘難懂的印象,成因之一便是脫離實際。」數形結合的思維方法,便是理論與實際的有機聯系,是思維的起點,是兒童建構數學模型的基本方法。
例如學生初步認識分數時,通過數形結合的對應思想,幫助學生構建了整體「1」與部分量之間的關系,在各種圖形的運用中,線段圖的使用顯得更為清晰方便,使學生能夠一目瞭然地獲取相關的信息和問題,直觀形象地了解到各信息與問題之間的數量關系。
氣象小組有12 人,攝影小組的人數是氣象小組的13 ,航模小組的人數是攝影小組的34 。航模小組有多少人?很多學生在讀完題後顯得較為迷茫,覺得有些混亂,不知道從何開始思考,這時我引導他們與老師一起嘗試用線段圖來表示三者之間的數量關系。
運用數形結合畫出圖形,幫助學生分析數量關系,揭示本質,有助於學生邏輯思維與形象思維協調發展,相互促進,提高學生的思維能力,而且有助於培養學生的創新思維和數學意識,並能正確解題。攝影小組:12×13=4(人),航模小組:4×43=3(人)。
5 看「數」想「形」,在幾何與圖形教學中,滲透數形結合思想方法,使學生的空間觀念得到培養在教學中我們都知道,雖然「形」有形象、直觀的優點,但在定量方面還必須藉助「數」來計算。
例如練習題:把一根長20 厘米,寬5 厘米,高3 厘米的長方體木料沿橫截面鋸成2 段,表面積增加多少?這樣的題目一出現,學生就無從下手,不知道應該怎樣計算?這時我就利用看「數」想「形」的數形結合思想,引導學生經歷三個空間觀念的建立解題過程:動手操作,畫出一個長方體,才長方體上切2 段,看看錶面積多了幾個面,多的這幾個面的面積合起來就是表面積增加的部分———教師實物操作,讓學生驗證自己所切的面是否與老師操作的一樣———抽象概括,使物體的整體模型印刻在腦海中,從而空間觀念在活動體驗中得到培養和形成。
6 數形結合、數形互用,學生的思維能力得到提升在實際教學中,數和形往往是緊密結合在一起,相互並存的。數形結合、數形互用往往會啟發學生展開發散思維。經過長期發散思維訓練的學生,解題方法多樣,思維靈活多變,往往能在發散的基礎上產生奇特的思路,從而使解法變得十分簡明扼要而且巧妙。
⑷ 結合自己的教學實踐談一談數形結合思想在小學數學教學中的滲透與應用
數形結合不僅是一種數學思想,也是一種很好的教學方法。著名數學家華羅庚先生曾經說過:「數缺形時少直觀,形少數時難入微」。在教學中,許多算理學生模稜兩可,如能做到數形結合,學生便可透徹地加以理解。如在教學《異分母分數加減法》時,我們利用數形結合使學生體會「通分」的必要性,理解異分母分數加減法的算理,突破教學難點。
在例題講解後的回顧過程教師問道:
(1)讓我們一起回顧一下用通分的方法計算這三道題的過程,想一想,你發現了什麼?
教師這時邊播放課件邊語言講解。
通過以上數形結合的辦法,既強化了異分母分數加法的演算法,又深刻理解了這個演算法的算理所在,數形結合相得益彰。