導航:首頁 > 小學學科 > 小學數學自然數的概念

小學數學自然數的概念

發布時間:2021-01-07 16:55:14

小學數學中的概念,比如說自然數的意義,越多越好!

小學數學的基礎知識、基本概念
自然數
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……叫做自然數。
整數
自然數都是整數,整數不都是自然數。
小數
小數是特殊形式的分數。但是不能說小數就是分數。
混小數(帶小數)
小數的整數部分不為零的小數叫混小數,也叫帶小數。
純小數
小數的整數部分為零的小數,叫做純小數。
循環小數
小數部分一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環小數。例如:0.333……,1.2470470470……都是循環小數。
純循環小數
循環節從十分位就開始的循環小數,叫做純循環小數。例如: , 。混循環小數
與純循環小數有唯一的區別:不是從十分位開始循環的循環小數,叫混循環小數。例如, , 。
有限小數
小數的小數部分只有有限個數字的小數(不全為零)叫做有限小數。
無限小數
小數的小數部分有無數個數字(不包含全為零)的小數,叫做無限小數。循環小數都是無限小數,無限小數不一定都是循環小數。例如,圓周率π也是無限小數。
分數
表示把一個「單位1」平均分成若干份,取其中的一份或幾份的數,叫做分數。(分成0份在此不討論)
真分數
分子比分母小的分數叫真分數。
假分數
分子比分母大,或者分子等於分母的分數叫做假分數。(分母、分子為零在此不討論)
帶分數
一個整數(零除外)和一個真分數組合在一起的數,叫做帶分數。帶分數也是假分數的另一種表示形式,相互之間可以互化。
關於 (n表示自然數)是否是分數
是分數,但不能用分數的意義去解釋它,它既不屬於真分數,也不屬於假分數,而是一個特殊分數,叫零分數。
數與數字的區別
數字(也就是數碼):是用來記數的符號,通常用國際通用的阿拉伯數字 0~9這十個數字。其他還有中國小寫數字,大寫數字,羅馬數字等等。
數是由數字和數位組成。
0的意義
0既可以表示「沒有」,也可以作為某些數量的界限。如溫度等。0是一個完全有確定意義的數。
0是一個數。
0是一個偶數。
0是任何自然數(0除外)的倍數。
0有佔位的作用。
0不能作除數。
0是中性數。
十進制
十進制計數法是世界各國常用的一種記數方法。特點是相鄰兩個單位之間的進率都是十。10個較低的單位等於1個相鄰的較高單位。常說「滿十進一」,這種以「十」為基數的進位制,叫做十進制。
加法
把兩個數合並成一個數的運算,叫做加法,其中兩個數都叫「加數」,結果叫「和」。
減法
已知兩個加數的和與其中一個加數,求另一個加數的運算,叫做減法。減法是加法的逆運算。其中「和」叫「被減數」,已知的加數叫「減數」,求出的另一個加數叫「差」。
乘法
求n個相同加數的和的簡便運算,叫做乘法。其中相同的這個數及n個這樣的數都叫「因數」,結果叫「積」。
除法
已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。除法是乘法的逆運算。其中「積」叫做「被除數」,已知的一個因數叫做「除數」,求出來的另一個因數叫做「商」。
加、減法的運算定律
加法交換律:兩個數相加,交換兩個加數的位置,和不變,叫做加法交換律。
加法結合律:三個數相加,先把前二個數相加,再加第三個數,或者,先把後二個數相加,再加上第一個數,其和不變。這叫做加法結合律。
在減法中,被減數、減數同時加上或者減去一個數,差不變。
在減法中,被減數增加多少或者減少多少,減數不變,差隨著增加或者減少多少。反之,減數增加多少或者減少多少,被減數不變,差隨著減少或者增加多少。
在減法中,被減數減去若干個減數,可以把這些減數先加,差不變。
乘、除法運算定律
乘法的交換律:兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法的交換律。
乘法的結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數,或者,先把後兩個數相乘,再和第一個數相乘,積不變。這叫做乘法結合律。
乘法分配律:兩個數的和(或差)與一個數相乘,等於把這兩個數分別與這個數相乘,再把兩個積相加(或相減)。這叫做乘法分配律。
乘法的其他運算定律
一個因數擴大若干倍,必須把另一個因數縮小相同的倍數,其積不變。
除法的運算定律---商不變性質
兩個數相除,被除數和除數同時擴大或者縮小相同的一個數(0除外),商的大小不變。
乘法的意義
一道乘法算式一般有下面幾個意義:
一、求幾個相同加數的和是多少?例如:27×13,表示求13個27的和是多少?也可以表示求27的13倍是多少?
二、求一個數的若干倍是多少?例如:27×0.3或者 的意義:求27的十分之三是多少?
除法的意義
一道除法算式,一般有下面幾個意義:
1、一個數里有幾個除數。簡稱「包含除法」。 例如,24÷3表示24裡麵包含有幾個3。
2、一個數是另一個數的多少倍。例如:24÷3,表示24是3的多少倍?
3、把一個數平均分成若干份,每份是多少?簡稱「等分除法」。
例如:24÷3,表示把24平均分成3份,每份是多少?
4、已知一個數的幾分之幾是多少,求這個數。
例如: ,表示:已知一個數的三分之一是24,求這個數。
整除與除盡
整除:
甲數除以乙數(甲、乙為自然數),商是整數,余數為零。就說甲數能被乙數整除。
除盡:甲數除以乙數(乙數不為零),商是有限數。就說甲數能被乙數除盡。
整除可以說是除盡,但除盡就不能說一定叫整除。
例如:1÷5=0.2,叫除盡,但不叫整除。因為商是小數。
又如:10÷3=3……1,既不叫整除,(因為余數不為零)也不叫除盡。
約數和倍數
當甲數能被乙數整除時,就說甲數是乙數的倍數,乙數是甲數的約數。這兩個概念都是相對而存在。一個自然數,不存在是否倍數與約數。例如:「3是約數」,就是一個錯誤說法。只能是對3、6、9、……等數而言,是其中某個數的約數。
奇數與偶數
凡是能被2整除的數叫偶數,反之,不能被2整除的數叫奇數。
質數(素數)與合數
一個數的約數只有1和它本身的數叫做質數,也叫素數。反之,一個數的約數除了1和它本身以外,還有其他的約數,這個數就叫合數。
1是否質數
由於1的約數只有1個,所以1既不是質數,也不是合數。
公約數
幾個數公有的約數,叫做公約數。
它的個數是有限的,既有最大的,也有最小的。
互質數
兩個數的公約數只有1,而沒有其他公約數的,這兩個數就叫互質數。
質數與互質數
這兩個概念沒有什麼聯系。兩個質數,不能肯定就是互質數。只有兩個不相同的質數,才能肯定是互質數。另外,兩個合數既可能是互質數,也可能不是互質數,但不能說兩個合數一定不是互質數。
質因數
把一個合數分解成幾個質數相乘的形式,這樣的質數叫做質因數。
分解質因數
把一個合數分解成幾個質數相同的形式,就叫做分解質因數。
公倍數
幾個數公有的倍數,叫做公倍數。它的個數是無限的,只有最小的,沒有最大的。
最大公約數
幾個數公有的約數中,最大的一個就叫做這幾個數的最大公約數。
最小公倍數
幾個數公有的無限個倍數中,最小的一個,就叫做這幾個數的最小公倍數。
能被2整除的判斷方法
一個數能否被2整除,只要看這個數的末尾是否有0、2、4、6、8這五個數的其中一個即可。
能被5整除的判斷方法
一個數能否被5整除,只要看這個數的末尾是否有0、5這兩個數的其中一個即可。
能被3整除的判斷方法
一個數能否被3整除,只要看這個數的各個數位上的數字和能否被3整除。
分數單位
分子為1,分母不為零的真分數,就叫這個分數的分數單位。例如: 的分數單位是 ,它有7個這樣的分數單位。又如 的分數單位是 ,它有13個這樣的分數單位(將帶分數化成假分數)。
分數化有限小數的判斷方法
一個分數能否化成有限小數,主要看分母(這里的分數一定是最簡分數)是不是只有質因數「2或5」。摻雜任何其他質因數,都不能化成有限小數,反之,就一定能化成有限小數。例如: 、 、 等都能化成有限小數。 、 、 都不能化成有限小數。
分數沒有基本單位
不同的分數,有不同的分數單位。沒有一個共同的標准量,就沒有基本單位。
分數的基本性質
一個分數的分子、分母同時乘上或除以相同的數(零除外),分數的大小不變,這叫分數的基本性質。
分數的通分、約分
通分:把幾個單位不同的分數,化成相同單位,且大小不變的分數,叫做通分。
約分:把一個分數化成同它相等的,分子、分母較小的分數,叫做約分。
百分數
表示一個數是另一個數的百分之幾的數,叫做百分數。百分數又叫百分率或百分比。百分數是特殊分數。特徵是分母為100,採用符號「%」(叫做百分號)來表示。分子可以是整數,也可以是小數。
百分率
兩個相同量的比的比值,用百分數和的形式表示時,這個比值叫做這兩個量的百分率,也叫百分比。通常的「××率」就是百分數。如「出勤率」等。
准確數與近似數(近似值)
與實際情況完全符合的數,叫做准確數。
與實際情況接近而有一定誤差的數,叫做近似數(或叫近似值)。
名數與不名數
量數與計量單位名稱合起來叫做名數。例如:7米、18千克、9時25分等都叫名數。
沒有帶單位名稱的數,叫做不名數。如2、4、6、8等,都叫不名數。
單名數與復名數
只含有一個計量單位名稱的名數叫做單名數。例如7米、18千克等都叫做單名數。
含有兩個或者兩個以上的同類計量單位名稱的名數,叫做復名數。例如:2米3分米5厘米,8小時33分,8噸8千克等都叫復名數。
高級單位與低級單位
計量單位較大的叫做高級單位,計量單位較小的叫做低級單位。高、低級單位是相對的,沒有單個的高、低級單位的名數。
公歷年的平年、閏年
平年:把公歷年份除以4(這里不是整百的公歷年份)有餘數時,就把這一年叫做平年,計365天。其中二月份有28天。
閏年:把公歷年份除以4(這里不是整百的公歷年份)余數為零時,就把這一年叫做閏年,計366天。其中二月份有29天。如果年份是整百的,則除以400,再看余數。
時刻與時間
時刻表示一天內某一個特指的時候,例如上午8時30分開會,這里的「8時30分」這是時刻。時間表示兩個是期或兩個時刻的間隔。例如,做作業用去30分鍾,這里的「30分鍾」就是時間。
比和比值
比:兩個數相除,叫做兩個數的比。一般地當數a除以b(b≠0)就叫做a與b的比,記作a:b。也可以用分數形式表示為 。
比值:比的前項除以後項所得的商,叫做比值。
比和比值有本質的不同。如 既可看作是比,又可看作是比值。如果化成 ,則只能表示為比值。
比的化簡
把一個比化為最好簡整數比,叫做比的化簡。一般情況下,化簡以後的比,前後兩項為互質數。
比例
表示兩個比相等的式子叫做比例。
正比例
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。用字母表示: (一定)
反比例
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。用字母表示: (一定)
直線:沒有端點,可以向兩端無限延長。
射線:只有一個端點。可以向一端無限延長。
線段:有兩個端點。射線和線段都是直線的一部分。
兩點之間,線段最短。
垂線、垂足
兩條直線相交,有一個角是直角時,就說這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,其交點叫垂足。從直線外一點到直線所畫的線段中,垂線最短。
角:
銳角(小於900的角)、直角(等於900的角)、鈍角(大於900而小於1800的角)、平角(等於1800的角)、周角(等於3600的角)
平行線
在同一平面內的兩條不相交的直線,叫做平行線。
面積和地積
面積是用來表示一個物體的表面或者平面的大小。
地積就是土地的面積。
體積和容積(容量)
體積:用來表示物體所佔空間的大小,叫做體積。
容積:一個容器所能容納物體的體積,叫做容積或容量。

Ⅱ 小學數學概念教學中應注意的幾個問題

01
最小的一位數是0還是1?
這個問題在很長一段時間存在爭論。先來看看《九年義務教育六年制小學數學第八冊教師教學用書》第98頁「關於幾位數」的敘述:「通常在自然數里,含有幾個數位的數,叫做幾位數。例如「2」是含有一個數位的數,叫做一位數;「30」是含有兩個數位的數,叫做兩位數;「405」是含有三個數位的數,叫做三位數……但是要注意:一般不說0是幾位數。
再來聽聽專家的說明:在自然數的理論中,對「幾位數」是這樣定義的,「只用一個有效數字表示的數,叫做一位數;只用兩個數字(其中左邊第一個數字為有效數字)表示的數,叫做兩位數……所以,在一個數中,數字的個數是幾(其中最左邊第一個數字為有效數字),這個數就叫幾位數。
於此,所謂最大的幾位數,最小的幾位數,通常是在非零自然數的范圍研究。所以一位數共有九個,即:1、2、3、4、5、6、7、8、9。
0不是最小的一位數。
02
為什麼0也是自然數?
課標教材對「0也是自然數」的規定,顛覆了人們對自然數的傳統認識。
於此,中央教科所教材編寫組主編陳昌鑄如是說:國際上對自然數的定義一直都有不同的說法,以法國為代表的多數國家都認為自然數從0開始,我國教材以前一直都是遵循前蘇聯的說法,認為0不是自然數。2000年教育部主持召開教材改編會議時,已明確提出將0歸為自然數。這次改版也是與國際慣例接軌。
從教學實踐層面來說,將「0」規定為「自然數」也有著積極的現實意義。
「0」作為自然數的「好處」

眾所周知,數學中的集合被分為有限集合和無限集合兩類。有限集合是含有有限個元素的集合,像某班學生的集合。無限集合是含有的元素個數是非有限的集合,如分數的集合。因為自然數具有「基數」的性質,因此用自然數來描述有限集合中元素的個數是很自然的。
但在有限集合中,有一個最主要也是最基本的集合,叫空集{},元素個數為0。如果不把0作為自然數,那麼空集的元素的個數就無法用自然數來表示了。如果把「0」作為一個自然數,那麼自然數就可以完成刻畫「有限集合元素個數」的任務了。於此,從「自然數的基數性」這個角度,我們看到了把「0」作為自然數的好處。
把「0」作為自然數,不會影響自然數的 「運算功能」
「0」加入傳統的自然數集合,所有的「運算規則」依舊保持,如新自然數集合{0,1,2,…,n,…}中的任何兩個自然數都可以進行加法和乘法運算,而運算結果仍然是自然數。同時,加法、乘法運算的結合律和交換律,以及乘法的分配律也不會受到影響。
所以,「0」加盟到自然數集合實屬理所當然,而不僅僅是人為的「規定」。它讓我們更好地理解自然數和它的功能,同時也讓我們意識到教學時不僅要知道和記住數學的「定義」和「規定」,還應該思考「規定」背後的數學涵義。
03
什麼是有效數字一無效數字?
有效數字是對一個數的近似值的精確程度而提出的。同一個近似數如果在取捨時,保留的有效數字多,就比保留的有效數字少更精確。
一般說,一個近似數四捨五入到哪一位,就說這個近似數精確到哪一位。這時,從左邊第一個非零的數字起,到那一位上的所有數字都叫做這個數的有效數字。
如近似數0.00309有三個有效數字:3、0、9;0.520也有三個有效字:5、2、0。
而0.00309中左邊的三個零,0.520中左邊的一個零,都叫做無效數字。
04
加法與減法、乘法與除法是否互為逆運算?
「加法與減法互為逆運算、乘法與除法互為逆運算」這似乎成了許多老師的口頭禪,這其實是一種誤解。例如:
加法「2+3=5」,其逆算為「5-2=3」,「5-3=2」。
故此,加法的逆運算只有減法;
減法「5-2=3」,其逆算有 「5-3=2」, 「2+3=5」。
故此,減法的逆運算有減法和加法兩種運算。
綜上可知,只能說減法是加法的逆運算,而不能說加法與減法互為逆運算。
同理,也只能說除法是乘法的逆運算,而不能說乘法與除法互為逆運算。
05
為什麼不寫「倍」?
在學習「求一個數是另一個數的幾倍」應用題時,很多小朋友會自然提出這樣的疑問,如:「飼養小組養了12隻小雞,3隻小鴨,小雞的只數是小鴨的幾倍?」為什麼「12÷3=4」的後面不寫「倍」呢?
我們首先應該肯定學生的質疑(學生有較強的解題規范意識)。但同時又該對學生說明:在解答應用題時,得數後面一般要寫上的是數的單位名稱
如:12隻的「只」;8克的「克」。一個數只有帶上單位名稱,才能准確地表示出一個物體的多少、大小、長短、輕重等等。但是,「倍」不是單位名稱,它表示兩個數量之間的一種關系。例如,上面的計算結果「4」,表示12裡面有4個3,就是12隻小雞是3隻小鴨的4倍。
所以,在算式里不寫「倍」,以免「倍」與單位名稱發生混淆。
06
「倍」和「倍數」的區別
在第一學段我們學習了「倍的初步認識」,認識了概念「倍」,而在第二學段,我們又學習到「倍數」這個概念。那麼,「倍」和「倍數」這兩個詞到底是不是一回事呢?這兩個詞之間有什麼區別呢?
「倍」指的是數量關系,它建立在乘除法概念的基礎上。例如:男生有10人,女生有30人,因為「10×3=30」或者「30÷10=3」,我們就說,女生人數(30)是男生人數(10)的3倍,也可以說,男生人數(10)的3倍等於女生人數(30)。勿寧說,「倍」其實表示的是兩個數的商(這個商可以是整數、小數、分數等各種表現形式)。
「倍數」指的是數與數之間的聯系,它建立在整除概念的基礎上。例如,30能被6整除,30就是6的倍數。可見,「倍數」是不能獨立存在的(具有特定的指向性),而且對數的形式有特別的要求(必須為整數)。
同時我們又看到,30也是6的5倍,因為6×5=30,「6×5」表示6的5倍。所以從這個角度來說,「倍」的涵義應寬泛於「倍數」,後者可以視為前者在特定情形下的一種表現。
07
「時」和「小時」有什麼不同?怎樣使用「時」和「小時」?
首先應該明確的是,〔小〕時並非國際時間單位。在1984年國務院發布的《關於我國統一法定計量單位的命令》中,把秒作為時間的基本單位,把非國際單位制的時間單位天(日)、〔小〕時、分作為輔助單位。
(註:〔〕里的字,在不致混淆的情況下,可以省略)。
這樣,在我國范圍內使用的法定時間單位就有:天(日)、〔小〕時、分、秒。
由此,「時」既可以表示時間,又可以表示時刻。由於「時間」和「時刻」這兩個不同的概念容易產生混淆,在實際應用時間單位「時」時,現行教材作了如下處理:
7.1當列式計算出時間的長短時,在得數的括弧里寫上時間的單位「時」。例如:超市營業時間:21-9=12(時)。(此處可省略「小」字)
7.2在用語言表述時間的長短時,為避免「時間」和「時刻」這兩個概念產生混淆,則在「時」的前面加上一個「小」字。例如:超市營業時間12小時。
7.3 在用語言表示時刻時,一律不得出現「小時」字樣。例如:公園每天早上7時30分開園(而非7小時30分)。
08
「改寫」和「省略」是一樣的嗎?
從形式上看,此例將「改寫」與「省略」兩種對數的變化置於了同一個要求之下(即改寫成用「億」作單位的數)。我們真希望編者不是有意而為之,因為「改寫」與「省略」其本質是完全不同的。表現在:
8.1目的不同
「改寫」的目的是方便對大數的讀寫,而「省略」則是取數的近似值。
8.2方法不同
此處的「改寫」是去掉「億」位後面的0,再寫上一個「億」字,而「省略」除了要找准「億」位,還要考慮被省略的尾數的最高位是幾,然後用四捨五入法求出近似數。
8.3符號不同
「改寫」只改變了數的表現形式,大小並未改變,所以用「=」號連接;而「省略」既改變了數的形式,又改變的數的大小,所以用「≈」連接。
09
「路程」就是「距離」嗎?
這兩個詞在許多老師的教學語言中是替代使用的,其實不然。
「路程」是指從一個地點到另一個地點所經過路線的長度;而「距離」則指連接兩個地點而成的直線段的長度。
「路程」所經過的路線可以是曲形線,也可以是直形線,還可能是折形線。
一般情況下,兩個地點之間的「路程」要大於它們之間的「距離」,只有當兩個地點之間的路線為直線時,路程和距離才相等。
雖然老師們都知道這個等式是成立的,但我們的學生卻沒有相應的知識儲備,怎樣繞開」極限」尋找能為小學生所理解和接受的證明途徑。
10
最大的分數單位是1/2還是1/1?
先看看分數單位的含義:把單位「1」平均分成若干份,表示這樣一份的數。
顯然,在分數意義中,關鍵是「分」,沒有「分」,就沒有「份」。
因為把單位「1」平均分成的最少份數是2份(如果是1份,也就無所謂「分」),由此得到的分數單位是1/2,所以1/2是最大的分數單位。
盡管就廣義的分數來說,1/1也可視作分數,但它已不是我們通常意義上認識的與整數對立的那種分數(在平均分的基礎上所產生),故此,最大的分數單位應以1/2為宜。
11
像 0/3、0.2/3、3/0.2這樣的數是不是分數?
分數的定義明確告訴我們:把單位「1」平均分成若干份,表示這樣一份或幾份的數,叫分數。其中,分成的份數叫做分數的分母,要表示的份數叫做分子。
由此可知,分數的分子和分母都應該是非零自然數。從這個意義來說,以上這幾個數徒具分數的形式,而不具分數的實質,因此都不應該視為分數。
進而,在考查學生對「分數」涵義的理解時,應著眼於通常意義上的分數,將上述這些變異形式納入思考的范圍,其本身對訓練學生的思維並無多大實際意義,而且會令諸如「分數都大於0」等命題的真與假陷入尷尬。
12
比6多1/2的數應該是「6+1/2」還是「6+(1+1/2)」
要弄清這個問題,先得弄清「6」的性質。顯然,此處的「6」其實質是一個「數」,而非一個「量」,求「比6多1/2的數」應屬於「求比一個數多幾的數」的范疇,問題中的「多幾」都是確定的具體數,這里的「幾」既可以是整數,也可以是小數或分數。所以,這里的「1/2」是指在6的基礎上「多1/2」這個「1/2」數的本身,而非「6的1/2」。
所以,「比6多1/2的數」應該是「6+1/2」。
當然,如果題目確定為「比6多它的1/2的數」,那答案則屬於後者。
13
計算出勤率可不可以不乘100%?
先來看看新人教版、北師大版和蘇教版三個不同版本的教材對類似問題的理解。
同一課程標准下,不同的教材給出了不同的理解,這給執教者帶來了困惑:到底可不可以不乘100%呢?筆者以為,求「××率」其結果必定為百分率。以出勤率為例,就是求實際出勤人數占應出勤人數的百分之幾。
如果公式只寫成:出勤率=實際出勤人數/應出勤人數,我們說這只是分數形式(也即是求實際出勤人數占應出勤人數的「幾分之幾」),並不是百分數。
因此,在公式後面乘上「100%」,既可以使計算數值大小不變,又能保證結果形式滿足百分數的要求。因此,計算出勤率、發芽率、出粉率、合格率……的公式中,都應乘「100%」。
同時建議各版本教材的編委統一思想,以免給一線教師造成認識上的混亂。
14
小於90度的角都是銳角嗎?
根據課標教材定義:小於90度的角叫做銳角。答案似乎是肯定的,但由此又產生一個新的問題:0度的角是什麼角,也是銳角嗎?
事實是,銳角定義有一個隱含的前提,就是小學數學中所討論的角都是正角。習慣上,我們把射線按逆時針方向旋轉而得到的角叫做正角,射線按順時針方向旋轉而得到的角叫做負角,當一條射線沒有做任何旋轉時,就把它看成零角。如果將角的概念推廣到任意大小的角,就應分為正角、負角、和零角。
由此,嚴格意義上的銳角定義應是:大於0度而小於90度的角叫做銳角。
15
足球比賽記分牌上的「3︰2」是數學中的「比」嗎?
我們至少可以從兩個方面來理解它們的差別。
第一,球類比賽中的「3︰2」表示的是比賽雙方的得分情況,是「差」比,即表示相差關系,一方得3分,另一方得2分,雙方相差1分;數學中的「3︰2」表示的是「3÷2」,是「倍」比,商為1.5。有鑒於此,球類比賽中的「比」(其實是比分),其後數可以為0的,而數學中的「比」,其後數(相當於除數)是不可以為0的。
第二,數學中的「比」是可以化簡的,如「4︰2=2︰1」;同樣的「4︰2」放在球類比賽中,卻不可以化簡,如果化簡就不能反映雙方在比賽中的實際得分了。

Ⅲ 自然數的定義在小學幾年級

自然數的定義在小學四年級

四年級數學第一單元《認識更大的數》就講到了自然數的定義:

表示物體個數的1、2、3、4、5、6、7、8、9、10、11...都是自然數,一個物體也沒有,用0表示,0也是自然數。最小的自然數是0,沒有最大的自然數,自然數的個數是無限的。

自然數就是我們常說的正整數和0。整數包括自然數,所以自然數一定是整數,且一定是非負整數。

但相減和 相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不總是成立的。用以計量事物的件數或表示事物次序的數 。 即用數碼0,1,2,3,4,……所表示的數 。表示物體個數的數叫自然數,自然數由0開始(包括0), 一個接一個,組成一個無窮集體。

自然數集有加法和乘法運算,兩個自然數相加或相乘的結果仍為自然數,也可以作減法或除法,但相減和相除的結果未必都是自然數,所以減法和除法運算在自然數集中並不是總能成立的。

(3)小學數學自然數的概念擴展閱讀:

自然數的應用:

1、自然數列在「數列」,有著最廣泛的運用,因為所有的數列中,各項的序號都組成自然數列。

任何數列的通項公式都可以看作:數列各項的數與它的序號之間固定的數量關系。

2、求n條射線可以組成多少個角時,應用了自然數列的前n項和公式

第1條射線和其它射線組成n-1個角,第2條射線跟餘下的其它射線組成n-2個角,依此類推得到式子

1+2+3+4+……+n-1=n(n-1)/2

3、求直線上有n個點,組成多少條線段時,也應該了自然數列的前n項和公式

第1個點和其它點組成n-1條線段,第2個點跟餘下的其它點組成n-2條線段,依此類推同樣可以得到式子

1+2+3+4+……+n-1=n(n-1)/2

Ⅳ 小學數學自然數的概念

自然數用以計量事物的件數或表示事物次序的數。即用數碼0,1,2,3,4,……所專表示的數屬。表示物體個數的數叫自然數,自然數由0開始,一個接一個,組成一個無窮的集體。自然數有有序性,無限性。分為偶數和奇數,合數和質數等。

線段(segment),技術制圖中的一般規定術語,是指一個或一個以上不同線素組成一段連續的或不連續的圖線,如實線的線段或由「長劃、短間隔、點、短間隔、點、短間隔」組成的雙點長劃線的線段。

直線由無數個點構成。直線是面的組成成分,並繼而組成體。沒有端點,向兩端無限延長,長度無法度量。直線是軸對稱圖形。

射線(ray)是指由線段的一端無限延長所形成的直的線,射線有且僅有一個端點,無法測量長度(它無限長)。

(4)小學數學自然數的概念擴展閱讀:

自然數在日常生活中起了很大的作用,人們廣泛使用自然數。自然數是人類歷史上最早出現的數,自然數在計數和測量中有著廣泛的應用。人們還常常用自然數來給事物標號或排序,如城市的公共汽車路線,門牌號碼,郵政編碼等。

參考資料來源:

網路-自然數

網路-線段

網路-直線

網路-射線

Ⅳ 小學數學概念教學中涉及哪些概念

在數學學習中有很多重要的東西,包括概念、定理、性質、問題等,其中概念是一個非常重要的學習數學的載體,因此概念教學應該是我們數學教學中一個非常重要的基點,很多東西都是圍繞著一個核心概念展開的,因此必須重視概念教學,之所以把概念教學放在一個非常顯著的地位來強調,一個重要的原因就是在我們所接觸的中學數學教學中,對於概念教學有不重視的傾向,很多的課是把概念用很短的時間交代一下,定義交代完後接著變成解題了,(把概念課變成了解題課了,造成對於概念理解的不足,造成走入用做題來學習數學的誤區)

那麼在中學數學教學中應當採取哪些方式來進行概念教學呢?首先要弄清楚目前教學的現狀,在中學數學教學實際中,學生常常對第一個問題解決不好,思維受到障礙,特別是在中考、高考過程中,對綜合問題的解決不夠好,而問題的產生往往是對基礎的概念理解不好造成的。

對於概念教學的不重視來自於兩個方面,一方面老師不夠重視,另一方面學生也不重視,而實際上一個新的概念的形成是從原來的知識領域又進入到一個新的知識領域,從而建立一個新的知識領域的過程,對新概念的理解常常是因為學生對新領域知識不夠重視,導致後來學生不好的學習後果,然後再回去彌補,而這個時候的彌補,又感覺沒有多少味道,從而造成誤解的一直持續。這個問題必須引起教師的高度重視,否則教改學生的永遠是夾生飯,不光不能促進學生的發展,還很有可能引起一系列的連鎖反應,制約學生的發展。

而數學思想和數學最深刻的內涵實際上是通過數學概念反映出來的,但是從學生的表現來看,無論是考試、作業都是以習題的形式來完成的,結果造成對概念不重視(這是因為訓練形式的原因造成的,能否改變訓練和評價的形式是一個很大、也很重要的課題),而單純依靠大量的做題來彌補對概念理解的不足,造成學習效率不高,老師和學生都很疲勞,這是一個得不償失的過程,而相反,如果一個概念比較清楚的話,就能夠對題目或問題有一個清楚的認識,現實的情況是,概念用幾分鍾的時間呈現,然後靠大量的題來彌補。

概念教學中存在的幾個問題:

1.概念很多,有一些我們認為是重要的概念,有一些我們認為是不重要的概念,衡量的標準是什麼?其實很大程度上是教師人為造成的,教師以自己的喜好或者考察的重點上確定的,而不是從知識的完整和知識體系的完備考慮的,更談不上考慮學生的實際了。

2.有一些概念不那麼重要,一個重要的理念就是要學會識別在我們的**常教學中什麼是重要的概念。所謂重要的概念就是圍繞著核心的概念、能反映數學本質的概念,如何判斷那一個概念是重要的,是教師必須考慮的第一個問題,出現一次或偶爾出現的概念肯定不那麼重要,在學習中經常或不斷出現的那一定是重要的概念,比如函數、單調性等概念以及對運算的理解。

對於一個老師來說,對於概念課,他首先要整體上把握概念在整個數學上的地位或在某一個領域中的地位,比如單調性,首先從圖像上它刻畫了函數的變化,反映了函數的極值問題,對應著反函數的問題(在這個問題中,只有在連續的情況下才能保持定義域和值域之間的一一對應關系),再比如,求函數零點的唯一性問題、解不等式也可以利用單調性來處理),對老師而言,雖然這堂課不是講這個內容,但是一定要在心理上有一個整體的把握,這樣才能比較好地處理這堂課的內容。學習函數的單調性,在高中階段是一掌握函數圖形的形狀為主,單調上升、單調下降,基本上就把函數的形狀確定了,極值問題也是由單調性確定的,以後學習的問題都是對這一問題的延伸,凡是重要的數學概念,一定要思考它在整個高中數學課程中的扮演一個什麼角色,以及與其他的要學習的數學內容的內在聯系,才能在一節課中有一個重要的定位,從整體到局部,再從局部到整體,來開展備課活動,備課才是有效的。但一定要把握好一個度,要清楚需要講到什麼程度,要有一個全盤的考慮,要考慮前引後聯,防止一步到位,要明確第一堂課做什麼,後面做什麼.如果是單調性的起始課,要建立單調性的概念,幫助學生理解處理單調性函數的基本程序,還有足夠的時間和載體來考慮證明的問題,定位的問題實在重要概念教學中需要考慮的重要問題,要弄清楚在這一節課中要以什麼樣的定位為主。

要求老師做到比較深入地研究學生了學生關於單調性的認知過程,將學生的認知過程分為幾個階段:概念的形成、概念的理解和概念的拓展,根據學生的認知特點,設計了問題串,通過這些問題,逐步引導學生按照自己的認知習慣、認知規律來建立比較合理、簡單的概念的認識,從具體的函數出發,從學生的認知水平和具體的東西出發,給學生營造一個直觀上是容易的印象,逐漸把它落實到文本上,在這個過程中把概念中蘊含的豐富的數學思想展現出來,從熟悉的問題中去挖掘、用好它,然後再去學習新東西,不僅僅是為了得到新概念,更重要的是體現了一種思想方法,層次感就出來了,是一種歸納式的思維,這非常重要,數學高度抽象,但是歸納的結果。

問題是數學的心臟,要重視培養學生的問題意識,上課前老師帶著學生老師的安排去讀書,通過認真閱讀教材,理解和發現問題、提出問題,上課時師生交流,師生共同解決問題,在這個過程中,培養了學生學習的能力。但是教師在進行問題設計時,必須分清楚哪些是主要問題,哪些是次要問題,哪些是比較集中的問題,哪些是比較分散的問題,哪些是共性的問題,哪些是個別的問題?在單調性的概念中,「任意」和「區間」就是本質的東西,任意說明的是其特徵,區間限定的是研究范圍,它是定義域的一個子集,這些都是必須高度重視的重要問題,但有一些是次要的,比如,學生會提出問題,為什麼有的是開區間,有的是閉區間?實際上這就是一個次要問題,開閉對單調性是沒有影響的,它只涉及一個嚴格單調和非嚴格單調的問題,對研究函數的整體性質沒有多大影響,因此不應當在此處進行過多的爭論。因此,如何把握問題,是老師必須引起關注的問題。

通過學生主動參與,可以充分了解學生的思維習慣對於培養學生數學學習方法和學習意識、學習能力極其重要,這是一個教師的思維走進學生思維的重要途徑。它體現的是一種全新的教育理念或者稱為學習理念,展現的是以學生為主體的思想,是一種承認差異基礎上的尊重。

在對學生提出的問題在回答的過程中,教師不應當以裁判的角色參與,不應當以一種權威的方式告知學生結果是什麼,而應當讓學生充分展示自己的思維,教師幫助學生診斷,找出症結,同時也給其他學生一個更深思考的機會和空間,因為,學生的思維往往是相通的,很多時候,老師往往以自己的思維習慣左右學生的思維習慣,是一種「我認為他應該能……」的想當然的行為,這就是為什麼有的問題老師講解十遍二十遍學生仍然不會,而同學只要講一遍就明白的重要原因。教師的作用更多的是引和導。在學生思考的過程中,不要急於進行,應當學會等待,在等待中發現教育素材,便於教師展示教育智慧。這有利於培養學生的思維意識和學習意識,培養學生的實踐和創新能力,使學生在探究的過程中獲得發展。合作學習的關鍵是教師的設計,教師教學設計的好壞直接影響教學的效果,因此必須弄清楚教學任務、教學目標、合作方式、需要解決的問題、可能遇到的問題等都是老師必須事先考慮的問題,老師要注意在合作學習的過程中必須發揮統帥作用,不能任由學生信馬由韁、自由馳騁,而應當控制在既定方針之下,這樣的合作才是有效的合作。

Ⅵ 小學階段的所有概念(數學)

代數知識:
整數:
質數
一個數除了1和它本身,不再有其它的約數(因數),這個數叫做質數(質數也叫做素數)。
合數
一個數除了1和它本身,還有別的約數,這個數叫做合數
注意:1隻有一個約數,就是它本身,1既不是質數,也不是合數。
最小的質數是2,也是質數中唯一的一個偶數(偶數解釋見下),其餘的質數均為奇數(奇數解釋見下)。
3、偶數
偶數就是可以被2整除的自然數(包括0)也叫做雙數。偶數通常用「2k」表示。
4、奇數
奇數就是不能被2整除的自然數,也叫做單數。奇數通常用2k+1表示

註:偶數除了2以外都是合數。偶數:能被2整除的數。(也包括0)
奇數:不能被2整除的數。
自然數:表示物體的數量的數,最小的自然數是「0」
自然數也是整數。0是正整數與負整數的分界線。
合數:除了「1」和它本身以外還有別的約數的數。最小的合數「4」。
質數:只有「1」和它本身兩個約數的數。最小的質數是「2」。
「1」既不是合數也不是質數
互質數:只有公約數「1」的兩個數。
公約數:兩個數公有的約數。
公倍數:兩個數公有的倍數。
質因數:把一個合數分解成幾個質數相乘的形式,這幾個質數叫作這個合數的質因數。
分解質因數:把一個合數分解成幾個質數相乘的形式,這個過程叫做分解質因數。
能被2整除數的特徵:個位上的數字是0,2,4,6,8
能被3整除數的特徵:各位上的數字之和是3的倍數
能被5整除數的特徵:個位上的數字是0,5
能被9整除數的特徵:各位上的數字之和是9的倍數.
能被4或25整除數的特徵:末兩位上的數是4或25的倍數.
能被8或125整除數的特徵:末三位數是8或125的倍數.

小數:
小數的基本性質:在小數末尾添上」0」或去掉」0」,小數的大小不變.
有限小數:小數部分的位數是有限的。
無限小數:小數部分的為數是無限的。` 無限循環小數:小數部分的數位有規律的.
無限不循環小數:小數部分沒規律(又叫無理數)
純循環小數:從小數部分第一位開始循環`
混循環小數:不是從小數部分第一位開始循環
循環節:從小數部分的某一位起.開是依次不斷重復一個或幾個數字.這些數字叫做循環節.

分數
分數的意義:把單位」1」平均分成若干份,取其中的一份或幾份的數叫做分數.
分數的基本性質:分數的分子和分母同時乘或除以一個數(0除外).分數的大小不變.

真分數<1. 假分數≥1
將一個分數的分子與分母同時同時除以他們的最大公因數,這個過程叫約分.而得到的這個分數叫最簡分數.
最簡分數:分母與分子互質的時候.這個分數就叫最簡分數.
將幾個異分母的分數利用分數的基本性質將分母變成一樣.這個過程叫通分.在分數大小的比較中會廣泛遇到通分.

幾何知識:
一個封閉式圖形,將他的周圍圍上1圈,這個圈的長度是他的周長.
一個物體所佔平面的大小叫做這個物體的面積.
一個物體所佔空間的大小叫做這個物體的體積.
一個物體所能容納別的物體的體積叫做這個物體的容積
一個物體表面的面積叫表面積
三角形的內角和是180度.四邊形的內角和是360度.N邊形的內角和是(邊長-2)×180度.
外角:1條邊的反向延長線與相鄰的一條邊所夾的角叫做外角.三角形的外角是不相鄰的兩個內角之和,
任何封閉式的圖形的外角和都是360度
線:
直線:沒有端點,沒有長度,無限延長
射線:有一個端點,沒有長度,無限延長
線段:有兩個端點,有長度.
由一個點引出的兩條射線,這兩條射線所夾的這個部分叫做角,而那個點叫做頂點.角分為幾種角:銳角(大於0度小於90度),直角(等於90度),鈍角(大於90度小於180度),平角(等於180度),周角(等於360度)
由1點做一條線段的垂線,這個點叫做垂足.
當兩條直線永遠不相交時,就說明這兩條直線互相平行.
平面圖形:
三角形:
三角形中最大的角是鈍角的話這個三角形叫鈍角三角形.
三角形中最大的角是直角的話這個三角形叫直角三角形
三角形中最大的角是銳角的話這個三角形叫銳角三角形
從頂點做與他對邊的垂線段.這個垂線段的長度叫做這個三角形的高.1個三角形有三條高.
當三角形有兩條邊的長度相等時,這個三角形叫等腰三角形,等腰三角形長度相等的兩個邊叫做腰,而剩下的叫底.當三角形3條邊相等時,這個三角形叫等邊三角形,等邊三角形是特殊的等腰三角形.他的3個角都是60度.
四邊形:
一個四邊形的四個角都是直角.且任意不相鄰的兩條邊互相平行時,這個四邊形叫長方形.當四條邊都相等時,且每個角是90度時,這是個正方形.正方形是特殊的長方形.
當四邊形的任意兩條邊互相平行時,這個圖形是平行四邊形(長方形是特殊的平行四邊形).平行四邊形有無數條高.當4條邊長度相等時.這個圖形叫菱形(菱形是特殊的平行四邊形).
只有一組對邊互相平行時,這個圖形叫梯形.梯形上面那條邊叫上底.下面那條邊叫下底.而梯形的左右兩條邊叫梯形的腰.
當左右兩條邊的長度相等時.這個梯形叫等腰梯形.
圓的周長與直徑的比值始終是定植.人們把他叫做圓周率.圓周率一般用字母π表示.π≈3.14.
立體圖形:
長方體與正方體有6個面,12條菱,8個頂點
另外還有圓柱圓錐圓台.這里我就不介紹了,畢竟是個很深奧的話題.以後中學就要重點學習立體幾何了.

Ⅶ 小學數學什麼叫自然數

自然數不是一個嚴格的數學概念,有歧義.通常是指"由數數產生的數".有的人專或教科書認為,自然數就屬是正整數,現在的課程改革以前就是這樣規定的.而現在的教科書就規定自然數包括:零和正整數.
但是正整數,零和負整數,則是沒有歧義的,嚴格的數學概念.
要說解決辦法,只能是:服從教科書,自然數是指"零和正整數".
希望今後寫教科書的人,不要挑起混亂了.要知道人在數數的時候,沒有從0開始數的.除開特意要從0開始.
簡單來說就是大於、等於0的整數

Ⅷ 小學數學中我們學過的自然數最小的數是誰它表示什麼意義

在很久以前的人教版數學書中,最小的自然數是「1」。
但是課改以回後我們的教科書中規定,答最小的自然數是「0」。現在一直在延續,「0」是最小的自然數。
「0」的意義:
小學課本里說,用「0」來表示一個也沒有。
中學課本里說,「0」不僅僅表示一個也沒有,它還是正數和負數的分界線。
謝謝採納!需要解釋可以追問。

Ⅸ 小學數學什麼叫自然數

自然數不是一個嚴格的數學概念,有歧義.通常是指"由數數產生的數".有的人或教科專書認為,自然數就是屬正整數,現在的課程改革以前就是這樣規定的.而現在的教科書就規定自然數包括:零和正整數.
但是正整數,零和負整數,則是沒有歧義的,嚴格的數學概念.
要說解決辦法,只能是:服從教科書,自然數是指"零和正整數".
希望今後寫教科書的人,不要挑起混亂了.要知道人在數數的時候,沒有從0開始數的.除開特意要從0開始.
簡單來說就是大於、等於0的整數

閱讀全文

與小學數學自然數的概念相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99