Ⅰ 小學數學課堂如何滲透數學思想方法
數學思想方法是數學知識的精髓,是對數學本質的認識,是知識轉化為能力的橋梁,更是數學學習的一種指導思想和普遍的方法。讓學生"獲得適應未來社會生活和繼續學習所必須的數學基本知識以及基本的數學思想方法"是數學課程標准提出的總體目標之一。因此,為了學生的終身可持續發展,作為小學數學教師,我們不僅要重視顯性的數學知識教學,還必須要重視數學思想方法的滲透,不斷強化數學思想方法教學,提高數學教學質量。
《小學數學課程標准》中明確提出:在小學數學教學中有意識的地向學生傳授一些基本數學思想方法可以加深學生對數學概念、公式、定理、定律的理解,是提高學生數學能力和思維品質的重要手段。小學數學教材中蘊含了很多的數學思想方法,如符號化思想、分類思想、轉化思想、統計思想、劃歸思想等等,學生在學習過程中不單單是學習知識和反復操練,還有一直貫穿始終的數學思想方法。如果說數學教學中知識和技能是一條明顯,那麼蘊含在其中的數學思想方法就是一條暗線。因此,在小學數學教學中教師注意數學思想方法的滲透,要有目的、有選擇、適時地進行滲透,提高數學思想方法教學,讓學生掌握好數學思想方法,為學生的可持續發展打下良好的基礎。
一、小學數學教學中數學思想方法有效滲透的特點
數學思想方法是以數學知識為載體並對數學知識的進一步概括和提煉,因此它是一種隱性的知識,它需要學生在不斷解決問題的實踐中通過反復體驗去理解和掌握。小學數學教學中有效滲透數學思想方法的特點一般具有:
1.化隱性為顯性
在數學教學中數學思想方法隱於知識中,往往只是模糊的表現,在教學中即使直接向學生指出「XX思想」、「XX方法」,也未必能收到好的效果。
如,分數加減法(極限思想)
題1:計算下面各題,並找出得數的規律
題2:應用上面的規律,直接寫出下面算式的得數
分析:題目中隱藏著極限的思想,如果繼續寫下去得數會越來越接近「1」。然而由於學生是第一次接觸所以很難體會到其中的極限思想,即使教師向學生指出,他們也不一定就會明白。數學思想方法往往較深的隱藏與知識中,所以教師在教學的應有意識地將這些處於隱性的思想方法顯性化,讓學生更加清晰的感受到。
2.活動性
教學過程本身就是一個動態的過程,數學思想方法的滲透也應是動態的,需要教師精心設計教學活動,溝通教材與學生的認識,讓具有鮮明個性特徵的數學思想方法在動態的課堂教學活動中得以更好的呈現。
(1)操作活動
教育家蘇霍姆林斯基說過:「兒童的智慧在他們的指尖上。」因為通過動手操作可以促進學生的思維發展。因此小學數學教學可以結合小學生好動、好奇的特點,通過適度的操作活動調動學生多種感官參與認知活動,培養學生的學習能力,促進學生數學思想方法的學習。
如,《圓的面積》教學時,引導學生把圓平均分成8、16、32……等份,然後讓學生自己動手拼成一個我們認識的圖形。通過這樣一個活動性的過程讓學生充分體會到把圓平均分成的分數越多,所拼出的圖形就越接近長方形,從而讓學生進一步體會到極限思想。
(2)觀察活動
感知是人們認識事物本質的開端,是人們思維活動的窗戶,是對一個刺激做出理解並確定意義的過程。小學生思維仍以形象思維為主,並逐漸由形象思維向抽象思維過渡,在這個階段中觀察是學生發現問題、提出問題、學習新知識的重要途徑。在小學數學教學中組織學生進行有序的觀察可以讓學生更好掌握數學思想方法。
如,仍以《圓的面積》教學為例,在學生動手操作把圓平均分成8、16、32……等份以後,拼成一個近似的長方形時,引導學生進行有序的觀察比較,讓學生思考拼成的平行四邊形與我們已學過的哪個圖形越來越接近,再觀察這個拼成的圖形和原來的圓有什麼關系,然後逐步引導學生通過觀察得出圓面積的計算公式。
3、加強語言交流活動
愛因斯坦說過:「一個人智力的發展和它形成概念的方法,在很大程度上取決於語言的發展」。小學生由於年齡的小、經驗少,他們的語言區域較為狹窄,數學語言就更是缺乏了,而且每個學生的觀察角度也可能不同、思考的結果也有不同。因此小學數學教學中要多注意引導學生觀察和說,操作與說,聽與說相結合,通過這樣的教學更好地促進學生對數學思想方法的學習。
二、小學數學教學中思想方法的滲透策略
1、充分挖掘教材中的數學思想方法
由於數學思想方法是一種隱性的本質的知識內容,所以教師在進行教學前必須要深入的鑽研教材,充分挖掘教材中所蘊含的思想方法。教師不僅要認真備課,有意識地在教學中滲透數學思想方法,還要做到在平時教學中處處留心,這樣會發現很多蘊含在教學內容中的數學思想方法。
2、有目的、有意識地滲透有關數學思想方法
作為小學數學教師在進行數學思想方法教學時,首先我們必須要明確教材中所有的數學思想方法,其次是要對某些重要的思想方法進行分解、細化、讓其更具層次性,更加明朗化。這樣在教學中教師就可以在具體的教學內容中考慮如何介紹、滲透、突出數學思想方法,以及學生應該是了解、理解、掌握、還是靈活運用這些數學思想方法。
3、有計劃、有步驟地滲透數學思想方法
學生的學習時一個循序漸進的過程。因此,在進行教學設計的時候一定要尊重學生的認知規律,要有計劃、有步驟地滲透數學思想方法。
(1)反復滲透
首先學生對數學思想方法的理解和掌握是從個別到一般、從具體到抽象、從感性到理性、從低級到高級的認識過程,再者和表層知識相比數學思想方法的抽象概括性更強,因此學生這個認識的過程具有反復性特點。這就是說在小學數學教學中我們不能急功近利,而應遵循反復性原則,一步一步、長期不懈的反復滲透。
如,一年級時就滲透了符號化思想,讓學生學會了用原點表示事物的數量,用「()」表示未知數,畫「○」的方法進行統計等等,經過如此的反復滲透,不僅可以強化學生對數學思想方法的理解,更促使學生把數學知識有機聯系起來。
(2)循序漸進
數學思想方法學習如同數學學習過程一樣,是一個認知過程,經歷從感性到理性,從領會到形成,從鞏固到應用發展的過程,所以在教學中教師可以按照「教師引導――逐步滲透――適時總結,等待頓悟」這一方法,結合教學內容設計教學過程,貫徹循序漸進的原則,由表及裡、循序漸進、逐步滲透、結合不同階段教學內容的知識,有意識的反復滲數學思想方法,螺旋式地再現數學思想方法,切實提高學生的數學素養。
如,數形結合這一數學思想方法,一年級學習「10以內加減法」的時候就會遇到這一思想方法,而到了三年級學習「和倍應用題」時則以線段圖的方式出現數形結合,以便學生可以更快、更好的理解題意和解決問題,等到了高年級的時候再求圖形的面積、體積以及解答復雜的數學問題時,就會經常的用到這一數學思想方法,而且對提高學生的問題解決能力和思維能力都有很好的促進作用。教學中只有經過循序漸進的滲透才能更加讓數學思想方法清晰化,這對學生日後的學習有著非常重要的影響。
三、結束語
如果把數學知識比喻成金子,那麼數學思想方法就是「點金術」。數學知識可以記憶一時,而數學思想方法則會永遠發揮作用,讓我們終身受益,而這才是數學力量的真正所在。因此,我們要從小學起就注重數學思想方法的滲透,為學生的的可持續發展打下良好的基礎。
Ⅱ 如何在小學數學教學中引導學生學習數學思想方法
最好與故事結合在一起
Ⅲ 如何在小學數學教學中滲透數學思想方法課題研究總結
1、在小學數學教學中滲透數學思想方法的途徑
(1)備課:研讀教材、明確目標、設計預案,挖掘數學思想方法
「凡事預則立,不預則廢」。如果課前教師對教材內容的教學適合滲透哪些思想方法一無所知,那麼課堂教學就不可能有的放矢。受篇幅的限制,教材內容較多顯示的是數學結論,對數學結論裡面所隱含的數學思想方法以及數學思維活動的過程,並沒有在教材里明顯地體現。因此教師在備課時,不應只見直接寫在教材上的數學基礎知識與技能,而是要進一步鑽研教材,創造性地使用教材,挖掘隱含在教材中的數學思想方法,並在教學目標中明確寫出滲透哪些數學思想方法,並設計數學活動落實在教學預設的各個環節中,實現數學思想方法有機地融合在數學知識的形成過程中,使教材呈現的知識技能這條明線與隱含的思想方法的暗線同時延展。為此,教師在研讀教材時,要多問自己幾個為什麼,將教材的編排思想內化為自己的教學思想,如:怎樣讓學生經歷知識的產生與發展的過程?怎麼樣才能喚起學生進行深層次的數學思考?如何激發學生主動探究新知識的積極性?如何依據教材適時地滲透數學思想方法等等,教師只有做到胸有成竹,方能有的放矢。
(2)上課:創設情境、建立模型、解釋應用,滲透數學思想方法
數學是知識與思想方法的有機結合,沒有不包含數學思想方法的數學知識,也沒有游離於數學知識之外的數學思想方法。這就要求教師在課堂教學中,在揭示數學知識的形成過程中滲透數學思想方法,在教給學生數學知識的同時,也獲得數學思想方法上的點化。教師積極地在課堂中滲透數學思想方法,體現了教師在教學中的大智慧,也為學生的學習開辟了一個廣闊的新天地。不同的教學內容,不同的課型,可據其不同特點,恰當地滲透數學思想方法。以下面三種課型為例。
①新授課:探索知識的發生與形成,滲透數學思想方法
數學知識發生、形成、發展的過程也是其思想方法產生、應用的過程。在此過程中,向學生提供豐富的、典型的、正確的直觀背景材料,採取「問題情境—建立模型—解釋、應用與拓展」的模式,通過實際問題的研究,了解數學知識產生的背景,再現數學形成的過程,揭示知識發展的前景,滲透數學思想,發展學生的思維能力,使學生在掌握數學知識技能的同時,即學會數學概念、公式、定理、法則等的過程中,深入到數學的「靈魂深處」,真正領略數學的精髓——數學思想方法。比如在質數、合數的概念教學中讓學生用小正方形拼長 方形,把質數、合數的概念潛藏在圖形操作(如右圖),明白「質數個」小正方形只能拼成一個長方形,而「合數個」小正方形至少能拼成兩個不同形狀的長方形(含正方形),滲透數形結合的思想,再通過給這些數分類,引入質數、合數的概念,滲透分類思想。又如在《三角形分類》一課中,教師給學生提供了三角形學具先放手讓學生在小組合作中嘗試對三角形進行分類,學生從關注三角形的角與邊的特徵入手,藉助學具看一看、比一比、量一量、分一分、想一想,尋找特徵、抽象共性,在比較中將具有相同特徵的三角形歸為一類,在分類中抽象出圖形的共同特徵。這樣的教學,學生經歷了三角形分類的過程,滲透了分類、集合的思想,豐富了分類活動的經驗,形成分類的基本策略,發展了歸納能力。
②練習課:經歷知識的鞏固與應用,滲透數學思想方法
數學知識的鞏固,技能的形成,智力的開發,能力的培養等需要適量的練習才能實現。練習課的練習不同於新授課的練習,新授課中的練習主要是為了鞏固剛學過的新知,習題側重於知識方面;而練習課中的練習則是為了在形成技能的基礎上向能力轉化,提高學生運用知識解決實際問題的能力,發展學生的思維能力。因此教師要有數學思想方法教學意識,在練習課的教學中不僅要有具體知識、技能訓練的要求,而且要有明確的數學思想方法的教學要求。例如在《6的乘法口訣》練習課中,學生在完成想一想、算一算的練習中,先讓學生計算,再通過交流自己的演算法,以「7×6+6」為例,藉助圖片用課件演示來理解式子的意義,運用數形結合啟發將式子轉化為8×6來計算,滲透變換的思想,懂得兩個式子形式雖不同,表示的意義以及結果是相同的。又如讓學生算一算每個圖中各有多少個格子,之後教師要啟發學生怎樣將圖形轉化成同第一個圖形那樣的圖形,可以直接用口訣計算?學生通過實際操作,動手剪一剪、拼一拼,轉化成長方形後分別用6×3、4×3來計算,從而感受到轉化思想的魅力。
「咱們要教給孩子們什麼?」「數學的學習主要是學習思想和方法以及解題的策略」,因此我們要在練習的過程中不斷地總結和探索,從中尋找共性,呈現給孩子最有價值、最本質的東西——數學思想方法。
③復習課:學會知識的整理與復習,強化數學思想方法
復習有別於新知識的教學。它是在學生基本掌握了一定的數學知識體系、具備了一定的解題經驗,學生基本認識了某些數學思想方法的基礎上的復習數學。數學思想方法總是隱含在數學知識中,它與具體的數學知識結合成一個有機整體,但它卻無法像數學知識那樣編為章節來教學,而是滲透於全部的小學數學知識中。不同章節的數學知識往往蘊含著不同的數學思想方法,有時在一章或一單元的教學中,又涉及很多的數學思想方法。因此教師在上復習課前,教師要能總體把握教材中隱含的思想方法,明確前後知識間的聯系,做到「瞻前顧後」,並把數學思想方法的滲透落實到教學計劃中。復習時,除了幫助學生掌握好知識與技能,形成良好的認知結構外,還必須加強數學思想方法的滲透,適時地對某種數學思想方法進行揭示、概括和強化,對它的名稱、內容及其運用等予以點撥,使學生從數學思想方法的高度把握知識的本質和內在的規律,逐步體會數學思想方法的價值。如在復習多邊形的面積推導時,教師可引導學生思考:平行四邊形、三角形、梯形的面積計算公式各是怎樣推導的?有什麼共同點?讓學生提煉概括:學習平行四邊形面積計算時,我們應用割補法把它轉化成學過的長方形來推導;學習三角形和梯形的面積計算時,我們用兩個完全相同的圖形來拼合或把一個圖形割補轉化成學過的圖形來推導……經過系列概括提煉,學生得出其中重要的思想方法——轉化思想。學生一旦掌握了數學思想方法,不僅能使學生的知識結構更完善,還特別有助於今後的學習和運用。因為掌握了數學的思想方法,學生面對新的問題時將懂得怎樣去思考,真正實現質的「躍」。
(3)作業:掌握知識、形成技能、發展智力,應用數學思想方法
精心設計作業也是滲透數學思想方法的一條途徑。把作業設計好,設計一些蘊含數學思想方法的題目,採取有效的練習方式,既鞏固了知識技能,又有機地滲透了數學思想方法,一舉兩得。為此教師布置作業要有講究,在學生作業後,要不失時機地恰當地點評,讓學生不僅鞏固所學知識、習得解題技能,更重要的是能悟出其中的數學規律、數學思想方法。再如一位六年級老師布置了下面這道課後思考題。
在作業講評中,教師不僅要給出答案,更重要的是啟發學生思考:你是怎樣算的?是怎麼想的?其中運用了什麼思想方法? 結合上圖引導學生概括出其中的思想與方法:類比思想、數學建模思想、極限的思想、數形結合的思想。
(4)課外:培養興趣、增長見識、培養能力,提升數學思想方法
學校開展數學課外活動是課內教學的重要補充。根據學生的學習水平在年段里開設有關數學思想方法內容的講座,如果平時教學中的數學思想方法的點滴滲透是「美味點心」的話,那麼專題講座對學生來說就是「豐盛大餐」了,學生比較系統地了解了常見的數學思想方法以及應用,拓展學生的眼界;數學思想方法的滲透和數學課外實踐活動相結合可以使二者相得益彰,定期開展數學實踐活動可以發展學生的動手實踐能力和創新意識,發展學生應用數學思想方法解決問題的能力;定期開展數學智力競賽,不但激發優生學習數學的積極性,也考察學生掌握數學思想方法的情況;學生編數學小報、出板報等活動,可以增長學生見識,了解較多相關知識。形式多樣的數學課外活動,使數學思想方法潛移默化,引導學生在學與用中提升了對數學思想方法的認識。
Ⅳ 小學全部數學思想方法
符號思想
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學的內容,這就是符號思想。符號思想是將所有的數據實例集為一體,把復雜的語言文字敘述用簡潔明了的字母公式表示出來,便於記憶,便於運用。把客觀存在的事物和現象及它們相互之間的關系抽象概括為數學符號和公式,有一個從具體到表象再抽象符號化的過程。
用符號來體現的數學語言是世界性語言,是一個人數學素養的綜合反映。
在數學中各種量的關系,量的變化以及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式來表達大量的信息,如乘法分配律(a+b)×c=a×c+b×c;又如在「有餘數的除法」教學中,最後出現一道思考題:「六一」聯歡會上,小明按照3個紅氣球、2個黃氣球、1個藍氣球的順序把氣球串起來裝飾教室。你能知道第24個氣球是什麼顏色的嗎?解決這個問題可以用書寫簡便的字母a、b、c分別表示紅、黃、藍氣球,則按照題意可以轉化成如下符號形式:aaabbc aaabbc aaabbc……從而可以直觀地找出氣球的排列規律並推出第24個氣球是藍色的。這是符號思想的具體體現。
化歸思想
化歸思想是數學中最普遍使用的一種思想方法,其基本思想是:把甲問題的求解,化歸為乙問題的求解,然後通過乙問題的解反向去獲得甲問題的解。一般是指不可逆向的「變換」。它的基本形式有:化難為易,化生為熟,化繁為簡,化整為零,化曲為直等。如求組合圖形的面積時先把組合圖形割補成學過的簡單圖形,然後計算出各部分面積的和或差,均能使學生體會化歸法的本質。
分解思想
分解思想就是先把原問題分解為若干便於解決的子問題,分解出若干便於求解的范圍,分解出若干便於層層推進的解題步驟,然後逐個加以解決並達到最後順利解決原問題的目的的一種思想方法。如在五年級《解決問題的策略》教學中「倒退著想」的解題策略就體現了這種思想。
轉換思想
轉換思想是一種解決數學問題的重要策略,是由一種形式變換成另一種形式的思想方法,這里的變換是可逆的雙向變換。在解決數學問題時,轉換是一種非常有用的策略。 對問題進行轉換時,既可轉換已知條件,也可轉換問題的結論;轉換可以是等價的,也可以是不等價的,用轉換思想來解決數學問題,轉換僅是第一步,第二步要對轉換後的問題進行求解,第三步要將轉換後問題的解答反演成問題的解答。如果採用等價關系作轉換,可直接求出解而省略反演這一步。
如計算:2.8÷113÷17÷0.7,直接計算比較麻煩,而分數的乘除運算比小數方便,故可將原問題轉換為:28/10×3/4×7/1×10/7,這樣,利用約分就能很快獲得本題的解
分類思想
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按因數的個數分素數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理的分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構
歸納思想
數學歸納法是一種數學證明方法,典型地用於確定一個表達式在所有自然數范圍內是成立的或者用於確定一個其他的形式在一個無窮序列是成立的。有一種用於數理邏輯和計算機科學廣義的形式的觀點指出能被求出值的表達式是等價表達式,這就是著名的結構歸納法
類比思想
數學上的類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想,它能夠解決一些表面上看似復雜困難的問題。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟得自然和簡潔,從而可以激發起學生的創造力,正如數學家波利亞所說:「我們應該討論一般化和特殊化和類比的這些過程本身,它們是獲得發現的偉大源泉。」
如由加法交換律a+b=b+a的學習遷移到乘法分配律a×b=b×a的學習
又如長方形的面積公式為長×寬=a×b,通過類比,三角形的面積公式也可以理解為長(底)×寬(高)÷2=a×b(h)÷2。類似的,圓柱體體積公式為底面積×高,那麼錐體的體積可以理解為底面積×高÷3
假設思想
假設思想是一種常用的推測性的數學思考方法.利用這種思想可以解一些填空題、判斷題和應用題.有些題目數量關系比較隱蔽,難以建立數量之間的聯系,或數量關系抽象,無從下手.可先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使得要解決的問題更形象、具體,從而豐富解題思路。
比較思想
人類對一切事物的認識,都是建築在比較的基礎上,或同中辨異,或異中求同。俄國教育家烏申斯基說過:「比較是一切理解和一切思維的基礎。」小學生學習數學知識,也同樣需要通過對數學材料的比較,理解新知的本質意義,掌握知識間的聯系和區別。
在教學分數應用題中,教師要善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題的途徑。
極限思想
事物是從量變到質變,極限方法的實質正是通過量變的無限過程達到質變。
教學「圓的面積和周長」中,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式,還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
戰國時代的《莊子·天下》篇中的「一尺之棰,日取其半,萬世不竭。」充滿了極限思想。古代傑出的數學家劉徽的「割圓術」就是利用極限思想來求得圓的周長的,他首先作圓內接正多邊形,當多邊形的邊數越多時,多邊形的周長就越接近於圓的周長。劉徽總結出:「割之彌細,所失彌少。割之又割以至於不可割,則與圓合體無所失矣。」正是用這種極限的思想,劉徽求出了π,即「徽率」。
現行小學教材中有許多處注意了極限思想的滲透:在「自然數」、「奇數」、「偶數」這些概念教學時,教師可讓學生體會自然數是數不完的,奇數、偶數的個數有無限多個,讓學生初步體會「無限」思想。在循環小數這一部分內容,在教學 1 ÷ 3 = 0。333…是一循環小數,它的小數點後面的數字是寫不完的,是無限的。在直線、射線、平行線的教學時,可讓學生體會線的兩端是可以無限延長的。
演繹思想:
演繹也是理智的活動,但是和直觀不同,它們不是理智的單純活動,必須先假定了某些真理(或定義)之後,然後再憑借這些定義推出一些結論。譬如:我們知道了三角形的定義和定理之後,可以推出一個三角形內角的總和等於兩直角之和。所以直觀的功用是在於提供科學和哲學的最新原則。而演繹則是應用這些原則來建立一些定理和命題。演繹並不要求像直觀所擁有的那種直接呈現出來的證明,它的確實性在某種程度上寧可說是記憶賦予它的。它通過一系列的間接論證就能得出結論,這就像我們握著一根長鏈條的第一節就可以認識它的最後一節一樣。
這就是說,直觀是發明的基本原則,演繹是導致最基本的結論。不過也有哲學家認為演繹是有缺陷的,因為由同一個 原則往往會演繹出不同的結論,所以應當有另一個方法來糾正它。這個糾正的方法就是經驗,即所謂的訴諸事實。總之,直觀就是找到最簡單、最無可懷疑、最無須辯護的人類知識元素,即發現最簡單和最可靠的觀念或原理。然後對它們進行演繹推理,導出全部確實可靠的解決方案。
例如數學定理證明就是一種演繹推理
模型思想
是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是生活中實際問題轉化為數學問題模型的一種思想方法。
培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
數學模型方法不僅是處理純數學問題的一種經典方法,而且也是處理自然科學、社會科學、工程技術和社會生產中各種實際問題的一般數學方法。用數學方法解決某些實際問題,通常先把實際問題抽象成數學模型。所謂數學模型,是指從整體上描述現實原型的特性、關系及規律的一種數學方程式。按廣義的解釋,從一切數學概念、數學理論體系、各種數學公式、各種數學方程以及由公式系列構成的演算法系統都稱之為模型 。但按狹義的解釋,只有那些反應特定問題或特定的具體事物系統的數學關系結構,才叫數學模型。比如根據具體問題中的數量關系,建立數學模型,列出方程進行求解。
對應思想:
對應指的是一個系統中的某一項在性質、作用、位置上跟另一系統中的某一項相當。對應思想可理解為兩個集合元素之間的聯系的一種思想方法。在小學數學教學中滲透對應思想,有助於提高學生分析問題和解決問題的能力。
「對應」的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應一個抽象的數「1」,將兩隻眼睛、一對耳環、雙胞胎對應一個抽象的數「2」;隨著學習的深入,我們還將「對應」擴展到對應一種形式,對應一種關系,等等。
再如:數軸上的點與實數之間的一一對應,函數與其圖象之間的對應.另外,在「多和少」這一課中, 一個茶杯蓋與每一個茶杯對應,直觀看到「茶杯與茶杯蓋相比,一個對一個,一個也不多,一個也不少」,我們就說茶杯與茶杯蓋同樣多。使學生初步接觸一一對應的思想,初步感知兩個集合的各元素之間能一一對應,它們的數量就是「同樣多」. 「對應」的思想在今後的學習中將會發揮越來越大的作用。
集合思想:
把若干確定的有區別的(不論是具體的或抽象的)事物合並起來,看作一個整體,就稱為一個集合,其中各事物稱為該集合的元素.通俗地說就是:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合
集合思想的特徵:
(1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了. 就是說按照明確的判斷標准給定一個元素或者在這個集合里,或者不在,不能模稜兩可
(2)互異性:集合中的元素一定是不同的. 即集合中的元素沒有重復
(3)無序性:集合中的元素沒有固定的順序.
根據集合所含元素個屬不同,可把集合分為如下幾類:
(1)把不含任何元素的集合叫做空集。
(2)含有有限個元素的集合叫做有限集。
(3)含有無窮個元素的集合叫做無限集。
集合的表現形式:列舉法;框圖法;描述法。
比如:能被2整除的數為一個集合.
數形結合思想:
就是根據數學問題的條件和結論之間的內在聯系,既分析其代數含義又揭示其幾何意義,使問題的數量關系和空間形式巧妙、和諧地結合起來,通過數與形的相互轉化來解決數學問題的思想。其實質是將抽象的數學語言與直觀的圖像結合起來,關鍵是代數問題與圖形之間的相互轉化,它可以使代數問題幾何化,幾何問題代數化。數形結合的思想,包含「以形助數」和「以數輔形」兩個方面,其應用大致可以分為兩種情形:或者是藉助形的生動和直觀性來闡明數之間的聯系,如四年級數學下冊P60分數的基本性質就是藉助圖形的生動和直觀來闡明分數中分子和分母相互變化的關系;或者是藉助於數的精確性和規范嚴密性來闡明形的某些屬性。
在小學教學中,它主要表現在把抽象的數量關系,轉化為適當的幾何圖形,從圖開的直觀特徵發現數量之間存在的聯系,以達到化難來易、化繁為簡、化隱為顯的目的,使問題簡捷地得以解決。通常是將數量關系轉化為線段圖,這是基本的、自然的手段。如一年級認數時數軸與對應點之間的關系.
對於某些題,如線段圖不能清晰地顯示其數量關系,則可以通過對線段圖的分析、改造、設計、構造出能清晰顯示其數量關系的幾何圖形。如六年級數學下冊P72試一試,計算:1/2+1/4+1/8+1/16,可以通過正方形圖形來解決.
在數學教學中,由數想形,以形助數的數形結合思想,具有可以使問題直觀呈現的優點,有利於加深學生對知識的識記和理解;在解答數學題時,數形結合,有利於學生分析題中數量之間的關系,豐富表象,引發聯想,啟迪思維,拓寬思路,迅速找到解決問題的方法,從而提高分析問題和解決問題的能力。抓住數形結合思想教學,不僅能夠提高學生數形轉化能力,還可以提高學生遷移思維能力。
統計思想
在小學數學中增加統計與概率課程的意義在於形成合理解讀數據的能力、提高科學認識客觀世界的能力、發展在現實情境中解決實際問題的能力。統計與概率初步知識的構成主要有如下一些基本內容:第一,知道數據在描述、分析、預測以及解決一些日常生活中的現象與問題的價值;第二,學會一些簡單的數據收集、整理、分析、處理和利用的基本的能力;第三,會解讀和製作一些簡單的統計圖表;第四,認識一些隨機現象,並能運用適當的方法來預測這些隨機現象發生的可能性。
系統思想
系統思想是由若干想到關聯、想到作用的要素(或成分)構成具有特定功能的有機整體。系統思想的方法便是要求人們從系統要素相互關系的觀點,從系統與要素之間、要素與要素之間,以及系統與外部環境之間的相互關聯和相互作用中考察對象,以得出研究和解決問題的最佳方案。
系統是由相互聯系,相互依賴,相互制約和相互作用的若幹事物和過程所組成的一個具有整體功能和綜合行為的統一體;要素是構成系統的基本單位,系統內各要素之間是相互聯系,相互影響的有機整體,如果一個要素發生變化,其他要素也會相應變化。
例如:應用題教學中的「購物問題」。物品的「單價」、「數量」和「總價」這三個要素就組成了一個系統。數量不變,單價提高,總價變大;單價不變,數量增加,總價變大;單價不變,總價增加,數量變多。「單價、數量、總價」這三個要素之間具有下列關系:
單價×數量=總價;總價÷單價=數量;總價÷數量= 單價
把幾個概念通過聯系來整體把握,由具體到抽象,再由抽象到具體,發現其規律,更好地理解和掌握概念及其相互關系。這些要素不是孤立的、零散的,而是有聯系的,有影響的,在教學過程中要引導學生學會理解概念,找到聯系,發現規律,只有這樣才能更好地掌握所學知識,做到融會貫通,事半功倍。
三、幾點說明
中國數學科學方法論研究交流中心主任周春荔教授在其習作中說:
習慣上人們常用數學思想來指稱某些具有重要意義、內容比較豐富、體系相當完整的數學成果。
數學思想和數學方法到底有什麼區別?一般來說,數學思想是人們對數學內容的本質認識,是對數學知識和數學方法的進一步抽象和概括,屬於對數學規律的理性認識的范疇,而數學方法則是解決數學問題的手段,具有「行為規則」的意義和一定的可操作性,同一個數學成果,當用它去解決別的問題時,就稱之為方法;當論及它在數學體系中的價值和意義時,則稱之為思想。
要將數學思想和數學方法嚴格區分開來是困難的,因此,人們常常對這兩者不加區分,而統稱為數學思想方法,這樣會顯得更為方便。
Ⅳ 小學數學中常用的思想方法有幾種
小學數學8大思維方法:
1.逆向思維方法
2.假設思維方法
3.消元思維方法
4.轉化思維方法
5.對應思維方法
6.聯想思維方法
7.發散思維方法
8.量不變思維方法
Ⅵ 小學數學思想方法有哪些
具體有:小學階段最常用的化歸的思想方法。利用化歸法轉化而得到的新問題與原問題相比較,為已解決的或較容易解決的。所以,化歸的方向應該是化隱為顯,化繁為簡、化難為易和化未知為已知。應當指出,化歸思想是把一個實際問題通過某種轉化、歸結為一個數學問題,把一個較復雜的問題轉化、歸結為一個較簡單的問題。這種化歸思想不同於一般所講的「轉化」、「轉換」。應該就這些吧。
Ⅶ 如何在小學數學教學過程中有效的滲透數學思想方法
如果說數學起源於人類生存的需要,或者起源於人類理智探索真理的需要,那麼數學思想方法就是伴隨著數學的產生而產生,伴隨著數學的發展而發展的,它不僅是數學的精髓,也是數學教學的靈魂,更是體現數學本質的重要方面和評價數學教學的主要依據。因此,在小學數學教學過程中,加強數學思想方法的滲透,會有利於教師深刻地認識數學內容,有利於增強學生的數學觀念和數學意識,形成學生良好的思維品質。下面從教學過程的角度關注數學思想方法,來交流自己一些不成熟、不全面的認識和看法。
1.在知識的呈現過程中,適時滲透數學思想方法
對於數學而言,知識的發生過程,實際上也就是思想方法的發生過程。因此,象概念的形成過程、結論的推導過程、方法的思考過程、問題的發現過程、規律的被揭示過程等等,都蘊含著向學生滲透數學思想方法、訓練思維的極好機會。對於學生來說,最常見的困難之源是:一項工作、一個發現、一個規律、……很少以創始人當初所用的形式出現,它們已經被濃縮了,隱去了曲折、復雜的思維過程,呈現出整理加工的嚴密、抽象、精煉的結論,而導致其誕生的那些思想方法卻往往隱為內在形式,成為數學結構系統的具有潛在價值的「內河流」。我們教學工作的一項重要任務,就是揭開數學這種嚴謹、抽象的面紗,將發現過程中的活生生的教學「反樸歸真」地交給學生,讓學生親自參與「知識再發現」的過程,經歷探索過程的磨礪,汲取更多的思維營養。例如,在教學圓的面積時,先引導學生回憶以往在推導平行四邊形、三角形、梯形等圖形面積計算時的方法,再把圓轉化成長方形,進而推導出圓的面積計算公式。我們從方法人手,將待解決的問題,通過某種途徑進行轉化,歸納成已解決或易解決的問題,最終使原問題得到解決。這樣的教學活動讓學生經歷了知識的形成過程,滲透了化歸、極限的數學思想,為後繼學習起到了非常重要的作用。
2.在解題思路的探索中,恰當滲透數學思想方法
課堂教學中,學生是學習的主人。在學習過程中,要引導學生積極主動地參與,親自去發現問題、解決問題、掌握方法,其實,對於數學思想方法的學習也不例外,在數學教學中,解題思路的探索過程是最基本的活動形式之一,數學問題的解答過程是對數學思想方法親身體驗和獲得的過程,也是通過運用對其加深認識和理解的過程。例如,在解決「雞兔同籠」問題時,學生初讀題目,有些無從下手。這時就需要教師引導學生用容易探究的小數量代替《孫子算經》原題中的大數量讓學生探究整理,滲透了轉化的思想方法;用列表法解決問題,滲透了函數的思想方法;用算術法解決問題,滲透了假設的思想方法;用方程法解決問題,滲透了代數的思想方法;在梳理方法時,利用課件出示簡筆畫,幫助學生理解各種演算法等,滲透了數形結合的思想方法,這樣將數學思想方法的滲透和知識教學緊密地結合,幫助學生掌握正確的解題方法,提高發散思維能力。
3.在實際問題的解決中,靈活滲透數學思想方法
解題是數學的心臟,學生不僅通過解題掌握和鞏固數學基礎知識,而且由於數學解題重在解題的整個過程,所以還能培養和發展學生的數學能力,而教師應對學生的解題活動加以指導,不能為了解題而解題,而忽視對思維過程的展示,要在解題過程中揭示後續解題活動中解決類似問題的通用思想方法。因此,加強數學應用意識,鼓勵學生運用數學思想方法去分析解決生活實際問題,引導學生抽象、概括、建立數學模型,探求問題解決的方法,使學生把實際問題抽象成數學問題,在應用數學知識解決實際問題的過程中進一步滲透和領悟數學思想方法。例如,客車和貨車同時從甲、乙兩鎮的中點向相反的方向行駛。3小時後客車到達甲鎮,而貨車離乙鎮還有30千米。已知貨車的速度是客車的3/4,求甲、乙兩鎮相距多少千米?分析:由題意知,客車3小時行完全程一半,貨車3小時行完全程的一半少30千米。如設甲乙兩鎮相距z千米,依據「貨車的速度是客車的3/4」,可得方程:多數學生都選用了這種方法。教學時不能停留在此,繼續引導學生變換一種方式思考:將已知條件「貨車的速度是客車的3/4」改變一種敘述方式「貨車與客車的速度比是3:4」,因行車時間相同,所以貨車與客車所行路程比是3:4,即貨車行3份,客車行了4份,貨車比客車少行1份少行30千米,因此易知客車行了4份行了120千米,貨車行了90千米,甲乙兩鎮相距240千米。這樣,通過轉化,使學生體會到分數應用題也可採用整數解法,即可採用比例應用題的方法進行解答,從而鞏固與提高學生解答分數應用題的能力,更重要的是讓學生感受到轉化的方法能變繁為簡、化難為易,有助於培養思維的靈活性,克服思維的呆板性。實際上,在數學解題中經常用到的還有諸如數形結合、化歸、符號化等思想方法,恰當運用這些思想方法不僅能提高解題效率,還能激發學生強烈的求知慾與創造精神。
總之,在教學過程中,加強數學思想方法的滲透,在知識的呈現過程中,讓學生感知數學思想方法,在解題思路的探索中,讓學生感受數學思想方法,在實際問題的解決中,讓學生體驗數學思想方法,這不僅會提高學生的數學素養,還會為他們進一步學習數學打下扎實的基礎。
Ⅷ 小學數學思想方法
小學數學思想方法有哪些
《課標》(修訂稿)把「雙基」改變「四基」,即改為關於數學的:基礎知識、基本技能、基本思想、基本活動經驗。
「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線,是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的,通過歸納來預測結果,然後通過演繹來驗證結果。在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。每一個具體的方法可能是重要的,但它們是個案,不具有一般性。作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。這里所說的思想,是大的思想,是希望學生領會之後能夠終生受益的那種思想方法。
史寧中教授認為:演繹推理的主要功能在於驗證結論,而不在於發現結論。我們缺少的是根據情況「預測結果」的能力;根據結果「探究成因」的能力。而這正是歸納推理的能力。
就方法而言,歸納推理十分龐雜,枚舉法、歸納法、類比法、統計推斷、因果分析,以及觀察實驗、比較分類、綜合分析等均可被包容。與演繹推理相反,歸納推理是一種「從特殊到一般的推理」。
藉助歸納推理可以培養學生「預測結果」和「探究成因」的能力,是演繹推理不可比擬的。從方法論的角度考慮,「雙基教育」缺少歸納能力的培養,對學生未來走向社會不利,對培養創新性人才不利。
一、什麼是小學數學思想方法
所謂的數學思想,是指人們對數學理論與內容的本質認識,是從某些具體數學認識過程中提煉出的一些觀點,它揭示了數學發展中普遍的規律,它直接支配著數學的實踐活動,這是對數學規律的理性認識。
所謂的數學方法,就是解決數學問題的方法,即解決數學具體問題時所採用的方式、途徑和手段,也可以說是解決數學問題的策略。
數學思想是宏觀的,它更具有普遍的指導意義。而數學方法是微觀的,它是解決數學問題的直接具體的手段。一般來說,前者給出了解決問題的方向,後者給出了解決問題的策略。但由於小學數學內容比較簡單,知識最為基礎,所以隱藏的思想和方法很難截然分開,更多的反映在聯系方面,其本質往往是一致的。如常用的分類思想和分類方法,集合思想和交集方法,在本質上都是相通的,所以小學數學通常把數學思想和方法看成一個整體概念,即小學數學思想方法。
二、小學數學思想方法有哪些?
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法
數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法:
小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法:
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
12、代換思想方法:
他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法:
它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法:
把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
15、變中抓不變的思想方法:
在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
16、數學模型思想方法:
所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
17、整體思想方法:
對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
Ⅸ 淺談小學數學教學中如何滲透思想方法
數學課程標准總體目標的第一條就明確提出:「讓學生獲得適應未來社會生活和進一步發展所必需的重要數學知識(包括數學事實、數學活動經驗)以及基本的數學思想方法和必要的應用技能。」美國教育心理家布魯納也指出:掌握基本的數學思想方法,能使數學更易於理解和更利於記憶,領會基本數學思想和方法是通向遷移大道的「光明之路」。在人的一生中,最有用的不僅是數學知識,更重要的是數學的思想方法和數學的意識,因此數學的思想方法是數學的靈魂和精髓。掌握科學的數學思想方法對提升學生的思維品質,對數學學科的後繼學習,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。在小學數學教學中,教師有計劃、有意識地滲透一些數學思想方法,是實施素質教育,發展學生能力,提高數學能力,減輕學生課業負擔的重要舉措,在課程數學改革中有舉足輕重的位置。那麼,在小學數學教學中,究竟應如何滲透數學思想方法呢?
一、轉變觀念,重視挖掘數學思想方法。
數學概念、法則、公式、性質等知識都明顯地寫在教材中,是有「形」的,而數學思想方法卻隱含在數學知識體系裡,是無「形」的,並且不成體系地散見於教材各章節中。教師講不講,講多講少,隨意性較大,常常因教學時間緊而將它作為一個「軟任務」擠掉。對於學生的要求是能領會多少算多少。因此,作為教師首先要更新觀念,從思想上不斷提高對滲透數學思想方法重要性的認識,把掌握數學知識和滲透數學思想方法同時納入教學目的,把數學思想方法教學的要求融入備課環節。其次要深入鑽研教材,努力挖掘教材中可以進行數學思想方法滲透的各種因素,對於每一章每一節,都要考慮如何結合具體內容進行數學思想方法滲透,滲透哪些數學思想方法,怎麼滲透,滲透到什麼程度,應有一個總體設計,提出不同階段的具體教學要求。在小學數學教學中,教師不能僅僅滿足於學生獲得正確知識的結論,而應該著力於引導學生對知識形成過程的理解。讓學生逐步領會蘊涵其中的數學思想方法。也就是說,對於數學教學重視過程與重視結果同樣重要。教師要站在數學思想方面的高度,對其教學內容,用恰當的語言進行深入淺出的分析,把隱蔽在知識內容背後的思想方法提示出來。例如,圓的認識概念教學,可以按下列程序進行:(1)由實物抽象為幾何圖形,建立圓的表象;(2)在表象的基礎上,指出圓的半徑、直徑及其特點,使學生對圓有一個更深層次的認識;(3)利用圓的各種表象,分析其本質特徵,抽象概括為用文字語言表達的圓的概念;(4)使圓的有關概念符號化。顯然,這一數學過程,既符合學生由感知到表象再到概念的認知規律,又能讓學生從中體會到教師是如何應用數學思想法,對有聯系的材料進行對比的,對空間形式進行抽象概括的,對教學概念進行形式化的。
二、 相機而動,及時引入數學思想方法。
為了更好地在小學數學教學中滲透數學思想方法,教師不僅要對教材進行研究,潛心挖掘,而且還要講究思想滲透的手段和方法。小學階段,數學思想方法的滲透一般常用直觀法、問題法、反復法和剖析法。所謂直觀法就是以圖表形式將數學思想方法直觀化、形象化。直觀法的觀點是能將高度抽象的數學思想方法變成學生容易感知具體材料,特別是生動有趣的圖畫給學生留下鮮明的印象。問題法是指學生在教師的啟發下,在探究問題答案的過程中,通過回顧、思考、總結,逐步領會數學問題的規律性,進而加深對解題方法、技巧的認識。反復法是指通過同一類情景的多次出現,讓學生持續接受某一數學思想方法的熏陶。剖析法是解剖典型的範例,從方法論的角度用兒童能理解的數學語言去描述數學現象,解釋數學規律。在教學過程中,教師應掌握方法,不失時機的向學生滲透數學思想方法。教師可以通過以下途徑滲透:(1)在知識的形成過程中滲透。如概念的形成過程,結論的推導過程等,都是向學生滲透數學思想和方法,訓練思維,培養能力的極好機會。(2)在問題的解決過程中滲透。如:教學「倒過來推想」 這一課時,在解決問題的過程中,用圖表、摘錄條件等方法讓學生逐步領會「倒過來推想」這種策略的奧妙所在。(3)在復習小結中滲透。在章節小結、復習的數學教學中,我們要注意從縱橫兩個方面,總結復習數學思想與方法,使師生都能體驗到領悟數學思想,運用數學方法,提高訓練效果,減輕師生負擔,走出題海誤區的輕松愉悅之感。如教學完「圓的認識」這一單元之後,可及時幫助學生依靠圓的面積的推導過程回憶多邊形面積公式的推導方法,使學生能清楚地意識到:「轉化」是解決問題的有效方法。(4)在數學講座等教學活動中滲透。數學講座是一種課外教學活動形式,它不僅為廣大學生所喜愛,而且是數學教師普遍選用的數學活動方式。特別是在數學講座等活動中適當滲透數學思想和方法,給數學教學帶來了生機,使過去那死水般的應試題海教學一改容顏,煥發了青春,充滿了活力。
三、千錘百煉——自覺運用數學思想方法。
數學思想方法的教學,不僅是為了指導學生有效地運
Ⅹ 小學數學思想方法的意義
個人覺得:「數學是思維的體操」,數學思想對思維品質的提升舉足輕重,我們說數學是一種思維工具,實質上就是指它的思想。
從思維科學論的角度看,數學教學過程實際上是數學思維活動的過程,在這一過程中,學生在教師的啟發引導下,圍繞數學問題展開數學思維,學生的思維活動主要體現在數學思想方法的領悟上,進而獲取數學知識、培養數學能力。從學生發展的角度說,數學是促進學生思維發展的重要途經。數學思想方法的學習過程,就是培養數學思維品質、提高自身數學素養的重要過程,數學思想的教學是提高數學思維能力的核心環節,是培養學生數學意識,形成優良思維品質的關鍵。事實表明,數學上的發現、發明主要是方法上的創新,在數學教學中,不能滿足於單純的知識灌輸,而是要再現數學的發現過程,揭示蘊含於知識中的數學思想方法,只有讓學生通過深入體會、思考,才能領悟到其中的奧妙,發展學生的思維能力,促進良好思維素質的形成。
實踐表明:小學數學教育的現代化,主要不是內容的現代化,而是數學思想及教育手段的現代化,加強數學思想的教學是基礎數學教育現代化的關鍵。特別是對能力培養這一問題的探討與摸索,以及社會對數學價值的要求,使我們更進一步地認識到數學思想的重要性,掌握科學的數學思想方法對數學學科的後續學習,對提升學生的思維品質,對其它學科的學習,乃至對學生的終身發展都具有十分重要的意義。因此,小學教學的教學過程中,數學思想的滲透是至關重要的。
哲學角度的理解。從數學哲學的角度講,數學科學中最有生命力統攝力的是數學觀和數學方法論,即數學思想方法;從數學教育哲學的角度講,決定一生數學修養的高低,最為重要的標志是看他能否用數學的思想方法去解決數學問題以至日常生活問題。
數學課程標准》的期待。《數學課程標准》(新稿)不僅把「數學思考」作為總體目標之一提出,同時,還將「雙基」擴展為「四基」,即基礎知識、基本技能、基本數學思想、基本活動經驗。由此可見,數學思想方法教學變得越來越重要
數學教育專家的觀點。日本數學家米山國藏指出:「無論是對於科學工作者、技術人員,還是數學教育工作者,最重要的就是數學的精神、思想和方法,而數學知識只是第二位」。
希望能幫到你