『壹』 小學數學1到6年級全部重點
小學生數學復習考試全圖
這些知識歸結了小學全部數學重點。這些知識可能在每次考試中以不同形式(填空、選擇、判斷、連線、解答應用題等)出現,也是學生將來進入初中、高中的基礎,所以一定要牢固掌握。
一、 小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條:
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條:
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則:
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序去處;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法:
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;末位不管有幾個0都不讀。
(五)四位數寫法:
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條:
1、相同數位對齊;
2、從個位減起;
3、位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則:
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則:
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則:
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則:
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,再試除前三位數;
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則:
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。
(十二)多位數的讀法法則:
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。
(十三)小數大小的比較:
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則:
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數簡潔的計演算法則:
計算小數乘法,先按照簡潔的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則:
除數是整數的小數除法,按照整數除法的法則卻除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則:
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足),然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟:
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟:
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;檢驗、寫出答案。
(二十)同分母分數加減的法則:
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則:
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則:
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則:
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則:
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則:
一個數除以,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法:
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、 小學教學口訣定義歸類
1、 什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、 什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、 加法各部分之間的關系:
一個加數=和-另一個加數
4、 減法各部分之間的關系:
差數=被減數-差,被減數=差數+差
5、 乘法各部分之間的關系:
一個因數=積÷另一個因數
6、 除法各部分之間的關系:
除數=被除數÷商,被除數=商×除數
7、 角:
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角叫直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角叫銳角。
(7)什麼是鈍角?
大於90°而小於180°的角叫做鈍角。
(8)什麼是周角?
一條射線繞它的閃電戰旋轉一周所在的角叫周角,一個周角是360°。
8、
(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、 三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
在等腰三角形里,相等的兩個邊叫等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫做等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?
什麼叫三角形的底?從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形的內角和是180°。
10、 四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平行四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平行的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平行的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、 什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、 什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。
這種求近似數的方法,叫做四捨五入法。
13、 加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、 什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、 什麼是被減數?
什麼是減數?什麼叫差?在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、 加法各部分之間的關系:
和=加數+加數,加數=和-另一加數
17、 減法各部分之間的關系:
差=被減數-減數,減數=被減數-差,被減數=減數+差
18、 乘法:
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、 除法:
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中已知的一個因數叫除數。
(4)什麼是商?
在除法中求出的未知因數叫商。
20、 乘法各部分之間的關系:
積=因數×因數,一個因數=積÷另一個因數。
21、(1)除法各部分之間的關系:
商=被除數÷除數,除數=被除數÷商,被除數=商×除數。
(2)有餘數的除法各部分之間的關系:
被除數=商×除數+余數。
22、 什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、 什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、 什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、 什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、 什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、 什麼是而有限小數?
小數部分的位數是有限的小數叫有限小數。
28、 什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、 什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、 什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、 什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、 什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、 什麼是方程?
含有未知數的等式叫方程。
34、 什麼是解方程?
求方程解的過程叫解方程。
35、 什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數。b就叫a的約數(或a的因數)。
36、 什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、 什麼是偶數?
能被2整除的數叫偶數。
38、 什麼是奇數?
不能被2整除的數叫奇數。
39、 什麼樣的數能被5整除?
個位上是「0」或是「5」的數能被5整除。
40、 什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、 什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、 什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、 什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、 什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、 什麼是公約數?
什麼叫最大公約數?幾個數公有的約數叫公約數,其中最大的一個叫最大公約數。
46、 什麼是互質數?
公約數只有1的兩個數叫互質數。
47、 什麼是公倍數?
什麼叫最小公倍數?幾個數公有的倍數叫這幾個數的公倍數,其中最小的一個叫這幾個數的最小公倍數。
48、 分數:
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、 怎麼比較分數大小?
(1)分母相同兩個分數,
分子大的分數比較大。
(2)分子相同的兩個分數,
分母小的分數較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、 比:
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、 長方體和正方體:
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體的體積?
物體所佔空間的大小叫做物體的體積。
52、 圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心,並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是弧?
在圓上兩點之間的部分叫弧。
(8)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、 什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、 比例:
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、 圓柱:
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、 小學數學量的計算單位及進率歸類
(1)長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃,
1平方千米=1000000平方米
1公頃=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)質量單位及進率:噸、千克、公斤、克
1噸=1000千克,
1千克=1公斤,
1千克=1000克
(5)時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年,
1年=12個月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,閏年2月29天),
1天=24小時,
1小時=60分,
1分=60秒
四、 常用計算公式表
(1)長方形面積=長×寬,計算公式:S=a×b
(2)正方形面積=邊長×邊長,計算公式:S=a×a
(3)長方形周長=(長+寬)×2,計算公式:C=(a+b)×2
(4)正方形周長=邊長×4,計算公式:C=4a
(5)平行四邊形面積=底×高,計算公式:S=ah
(6)三角形面積=底×高÷2,計算公式:S=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式:S=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式:V=abh
(9)圓的面積=圓周率×半徑平方,計算公式:S=πr2
(10)正方體體積=棱長×棱長×棱長,計算公式:V=a3
(11)長方體和正方體的體積都可以寫成:底面積×高,計算公式:V=sh
(12)圓柱的體積=底面積×高,計算公式:V=sh
(13)圓錐的體積=底面積×高÷3,計算公式:V=s×h÷3
等底等高的圓柱體積是圓錐體積的3倍。
『貳』 小學1一6年級數學簡便運算公式
體積和表面積
三角形的面積=底×高÷2. 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a2
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度.
長方體的表面積=(長×寬+長×高+寬×高 ) ×2 公式:S=(a×b+a×c+b×c)×2
正方體的表面積=棱長×棱長×6 公式: S=6a2
長方體的體積=長×寬×高 公式:V = abh
長方體(或正方體)的體積=底面積×高 公式:V = abh
正方體的體積=棱長×棱長×棱長 公式:V = a3
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高.公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積. 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高.公式:V=Sh
圓錐的體積=1/3底面×積高.公式:V=1/3Sh
算術
1、加法交換律:兩數相加交換加數的位置,和不變.
2、加法結合律:a + b = b + a
3、乘法交換律:a × b = b × a
4、乘法結合律:a × b × c = a ×(b × c)
5、乘法分配律:a × b + a × c = a × b + c
6、除法的性質:a ÷ b ÷ c = a ÷(b × c)
7、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變. O除以任何不是O的數都得O. 簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾.
8、有餘數的除法: 被除數=商×除數+余數
方程、代數與等式
等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式. 等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立.
方程式:含有未知數的等式叫方程式.
一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式.學會一元一次方程式的例法及計算.即例出代有χ的算式並計算.
代數: 代數就是用字母代替數.
代數式:用字母表示的式子叫做代數式.如:3x =ab+c
分數
分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數.
分數大小的比較:同分母的分數相比較,分子大的大,分子小的小.異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小.
分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變.異分母的分數相加減,先通分,然後再加減.
分數乘整數,用分數的分子和整數相乘的積作分子,分母不變.
分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母.
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變.異分母的分數相加減,先通分,然後再加減.
倒數的概念:1.如果兩個數乘積是1,我們稱一個是另一個的倒數.這兩個數互為倒數.1的倒數是1,0沒有倒數.
分數除以整數(0除外),等於分數乘以這個整數的倒數.
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小
分數的除法則:除以一個數(0除外),等於乘這個數的倒數.
真分數:分子比分母小的分數叫做真分數.
假分數:分子比分母大或者分子和分母相等的分數叫做假分數.假分數大於或等於1.
帶分數:把假分數寫成整數和真分數的形式,叫做帶分數.
分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變.
數量關系計算公式
單價×數量=總價 2、單產量×數量=總產量
速度×時間=路程 4、工效×時間=工作總量
加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
長度單位:
1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
面積單位:
1平方千米=100公頃 1公頃=10000平方米
1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
1畝=666.666平方米.
體積單位
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1升=1立方分米=1000毫升 1毫升=1立方厘米
重量單位
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
比
什麼叫比:兩個數相除就叫做兩個數的比.如:2÷5或3:6或1/3 比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變.
什麼叫比例:表示兩個比相等的式子叫做比例.如3:6=9:18
比例的基本性質:在比例里,兩外項之積等於兩內項之積.
解比例:求比例中的未知項,叫做解比例.如3:χ=9:18
正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系.如:y/x=k( k一定)或kx=y
反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系. 如:x×y = k( k一定)或k / x = y
百分數
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數.百分數也叫做百分率或百分比.
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號.其實,把小數化成百分數,只要把這個小數乘以100%就行了.把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位.
把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數.其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了.
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數.
要學會把小數化成分數和把分數化成小數的化發.
倍數與約數
最大公約數:幾個數公有的約數,叫做這幾個數的公約數.公因數有有限個.其中最大的一個叫做這幾個數的最大公約數.
最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數.公倍數有無限個.其中最小的一個叫做這幾個數的最小公倍數.
互質數: 公約數只有1的兩個數,叫做互質數.相臨的兩個數一定互質.兩個連續奇數一定互質.1和任何數互質.
通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分.(通分用最小公倍數)
約分:把一個分數的分子、分母同時除以公約數,分數值不變,這個過程叫約分.
最簡分數:分子、分母是互質數的分數,叫做最簡分數.分數計算到最後,得數必須化成最簡分數.
質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數).
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數.1不是質數,也不是合數.
質因數:如果一個質數是某個數的因數,那麼這個質數就是這個數的質因數.
分解質因數:把一個合數用質因數相成的方式表示出來叫做分解質因數.
倍數特徵:
2的倍數的特徵:各位是0,2,4,6,8.
3(或9)的倍數的特徵:各個數位上的數之和是3(或9)的倍數.
5的倍數的特徵:各位是0,5.
4(或25)的倍數的特徵:末2位是4(或25)的倍數.
8(或125)的倍數的特徵:末3位是8(或125)的倍數.
7(11或13)的倍數的特徵:末3位與其餘各位之差(大-小)是7(11或13)的倍數.
17(或59)的倍數的特徵:末3位與其餘各位3倍之差(大-小)是17(或59)的倍數.
19(或53)的倍數的特徵:末3位與其餘各位7倍之差(大-小)是19(或53)的倍數.
23(或29)的倍數的特徵:末4位與其餘各位5倍之差(大-小)是23(或29)的倍數.
倍數關系的兩個數,最大公約數為較小數,最小公倍數為較大數.
互質關系的兩個數,最大公約數為1,最小公倍數為乘積.
兩個數分別除以他們的最大公約數,所得商互質.
兩個數的與最小公倍數的乘積等於這兩個數的乘積.
兩個數的公約數一定是這兩個數最大公約數的約數.
1既不是質數也不是合數.
用6去除大於3的質數,結果一定是1或5.
奇數與偶數
偶數:個位是0,2,4,6,8的數.
奇數:個位不是0,2,4,6,8的數.
偶數±偶數=偶數 奇數±奇數=奇數 奇數±偶數=奇數
偶數個偶數相加是偶數,奇數個奇數相加是奇數.
偶數×偶數=偶數 奇數×奇數=奇數 奇數×偶數=偶數
相臨兩個自然數之和為奇數,相臨自然數之積為偶數.
如果乘式中有一個數為偶數,那麼乘積一定是偶數.
奇數≠偶數
整除
如果c|a, c|b,那麼c|(a±b)
如果,那麼b|a, c|a
如果b|a, c|a,且(b,c)=1, 那麼bc|a
如果c|b, b|a, 那麼c|a
小數
自然數:用來表示物體個數的整數,叫做自然數.0也是自然數.
純小數:個位是0的小數.
帶小數:各位大於0的小數.
循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數.如3. 141414
不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數.如3. 141592654
無限循環小數:一個小數,從小數部分到無限位數,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限循環小數.如3. 141414……
無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數.如3. 141592654……
利潤
利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
利率:利息與本金的比值叫做利率.一年的利息與本金的比值叫做年利率.一月的利息與本金的比值叫做月利率
『叄』 小學數學1—6年級全部重點
人教版小學四年級下冊數學復習資料
一、四則運算
1.四則運算的運算順序:在沒有括弧的算式里,如果只有加、減法或者只有乘、除法,都要按從左到右的順序計算;既有乘、除法又有加、減法時,要先算乘、除法,後算加、減法;有括弧的,要先算括弧裡面的。
2.有關0的運算:一個數加上0,還得原數;被減數等於減數,差是0;一個數減去0,還得原數;一個數和0相乘,仍得0;0除以一個非0的數還得0;0不能作除數,0可以作被除數, 0可以作減數和差,0可以作加數,0還可以作乘數。
二、運算定律和簡便運算
1.加法交換律:兩個加數交換位置,和不變。用字母表示: a + b= b + a。
2.加法結合律:三個數相加,先把前兩個數相加,或者先把後兩個相加,和不變。用字母表示:((a + b ) + c= a + (b + c )。
3.乘法交換律:交換兩個因數的位置,積不變。用字母表示:a×b= b×a。
4.乘法結合律:三個數相乘,先乘前兩個數,或者先乘後兩個數,積不變。用字母表示:(a×b )×c= a×(b×c )。
5.乘法分配律:兩個數的和與一個數相乘,可以先把它們與這個數分別相乘,再相加。用字母表示:(a + b ) ×c= a×c + b×c或a×(b + c )= a×b + a×c。
6.減法的性質:一個數連續減去兩個數,可以用這個數減去兩個減數的和。用字母表示:a - b – c= a - (b + c )。②在連減運算中,任意交換減數的位置,差不變。用字母表示:a-b-c=a- c - b。
7.除法的性質:①一個數連續除以兩個數,可以用這個數除以兩個除數的積。用字母表示:a÷b÷c= a÷(b×c )。②在連除運算中,任意交換除數的位置,商不變。用字母表示:a÷b÷c= a÷c÷b
三、小數的意義和性質
1.小數的意義:分母是10、100、1000 ……的分數可以用小數表示。小數的計數單位是十分之一,百分之一,千分之一…… 分別寫作0.1、0.01、0.001…… 每相鄰兩個計數單位之間的進率都是10。
2.小數的讀法:先讀整數部分,按整數的讀法讀;再讀小數點,小數點讀作「點」;最後讀小數部分,依次讀出每一位上的數字。
3.小數的寫法:先寫整數部分,按整數的寫法寫,如果整數部分是零,就直接寫「0」;再在各位的又下角點上小數點;最後依次寫出小數部分每一位上的數字。
4.小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
5.小數點移動引起小數大小變化的規律:①小數點向右移動一位,小數就擴大到原數的10倍;小數點向右移動定兩位小數,小數就擴大到原數的100倍;小數點向右移動三位小數,小數就擴大到原數的1000倍……小數點向右移動一位,小數就擴大到原數的10倍;小數點向右移動定兩位小數,小數就擴大(到原數的100倍;小數點向右移動三位小數,小數就擴大到原數的1000倍……
②小數點向左移動一位,小數就縮小到原數的 ;小數點向左移動兩位小數,小數就縮小到原數的 ;小數點向左移動三位小數,小數就縮小到原數的 ……
6.低級單位的單名數改寫成高級單位的單名數的方法:用這個數除以兩個單位間的進率,如果兩個單位間的進率是10、100、1000……可以直接把小數點向左移動相應的數位(低級單位的數÷進率=高級單位) 。
復名數改寫成小數的方法:復名數中高級到位的數不動,作為小數的整數部分,把復名數中低級單位的數改寫成高級單位的數,作為小數部分。
7.高級單位的單名數改寫成低級單位的單名數的方法:用這個數乘以兩個單位間的進率,如果兩個單位間的進率是10、100、1000……可以直接把小數點向右移動相應的數位(高級單位的數×進率=低級單位的數)。
8.求小數近似數的方法:求小數的近似數用「四捨五入」法。保留整數,表示精確到個位;保留一位小數,表示精確到十分位;保留兩位小數,表示精確到百分位……
9.把不是整萬或整億的數改寫成以「萬」或「億」作單位的數:只需在「萬」位或「億」位的右下角點上小數點,在數的後面寫「萬」字或「億」字。如果小數末尾有0要去掉,改寫後還可以根據要求保留小數。
四、小數的加法和減法
1.列豎式計算小數的加、減法時應注意:⑴小數點要對齊,也就是相同數位要對齊;⑵得數末尾有0,要把0去掉。
2.小數的加減混合運算的運算順序:同整數加減混合運算的運算順序相同。在沒有括弧的算式里,如果只有加法和減法,就按從左到右的順序計算;算式里有括弧的,要先算括弧裡面的。
3.小數的加、減法的漸變運算:整數的運算定律在小數運算中同樣適用。簡算時如果需要加括弧,一定要注意變號規則:如果括弧前面是加號,括弧里不變;如果括弧前面是減號,括弧里要變號。
五、植樹問題
1.關於一條線段兩端都植樹的問題:間隔數=路線長度÷棵距 棵數=間隔數+1
2.關於一條線段兩端都不植樹的問題:間隔數=路線長度÷棵距 棵數=間隔數-1
3.關於一條線段只有一段植樹的問題(封閉曲線):棵數=間隔數
4.棋盤類型題:最外層總數=最外層每邊數×4-4
六、位置與方向
1.確定物體位置的條件:方向和距離,兩個條件缺一不可。
2.在平面圖上標出物體位置的方法:先確定方向,再確定距離,最後畫出物體的具體位置,並標明名稱。確定方向時,選擇物體所在方向離得較勁(夾腳較小的方位),距離必須以選定的單位長度為基準來確定。
3.物體位置的相對性:敘述物體的位置具有相對性。物體的位置與觀測點有關,觀測點不同,物體位置的敘述就不同。
4.描述路線圖的方法:按行駛(走)路線,確定觀測點及行走的方向和路程描述。
七、三角形
1.三角形的定義:由三條線段圍成的圖形(每相鄰兩條線段的端點相連)叫做三角形。
2.三角形各部分的名稱:角(3個),頂點(3個),邊(3條)
3.三角形的高和底:從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條垂線所在的邊叫做三角形的底。畫高時,用虛線。
4.三角形的特性:三角形具有穩定性。
5.三角形三邊的關系:三角形任意兩邊之和大於第三邊。
6.三角形的分類:
銳角三角形
⑴按角分類 直角三角形
鈍角三角形
①銳角三角形:三個角都是銳角的三角形叫做銳角三角形。
②直角三角形:有一個角是直角的三角形叫做直角三角形。
③鈍角三角形:有一個角是鈍角的三角形叫做鈍角三角形。
不等邊三角形
⑵按邊分類
等腰三角形(等邊三角形)
①不等邊三角形:三條邊都不相等的三角形叫做不等邊三角形。
②等腰三角形:有兩條邊相等的三角形叫做等腰三角形。相等的兩條邊叫做腰。其餘的一條邊叫做底。兩腰的夾腳叫做頂角。腰與底邊的夾腳叫做底角,兩個底角相等。
特點:兩腰長度相等,兩個底角度數相等。
等腰直角三角形:在直角三角形中,如果兩條直角邊相等,那麼這個直角三角形叫做等腰直角三角形。
③等邊三角形:三條邊都相等的三角形叫做等邊三角形。等邊三角形是特殊的等腰三角形。
特點:三條邊都相等;三個角都相等,每個角都是60°。等邊三角形也是銳角三角形。
7.三角形的內角和:三角形的內角和是180°。
8.三角形的拼組:兩個完全相同的三角形可以拼成一個平行四邊形;兩個完全相同的直角三角形可以拼成一個長方形;兩個完全一樣的等腰直角三角形可以拼成一個正方形;三個完全相同的三角形可以拼成一個梯形。
八、統計
1.折線統計圖及其特點:用一個單位長度表示一定的數量,根據數量的多少描出各點,然後把各點用線段順次鏈接起來,所得的統計圖就是折線統計圖。它的特點是既可以反應數量的多少,又能清晰地反應出數量的增減變化情況。
2.繪制折線統計圖的方法:⑴用縱軸表示一種量,用橫軸表示另一種量;⑵根據數據的大小確定一個單位長度;⑶根據所給數據,過橫軸、縱軸作相應點的垂線,兩垂線交點即為所描的點;⑷用線段順次連接各點,在各點旁邊註明數據;⑸標注名稱。
3.折線統計圖的應用:可以根據折線統計圖發現問題、解決問題,並進行簡單的預測。
九、進率:
1元=10角 1角=10分 1年=12月 1天=24小時 1小時=60分鍾
1分鍾=60秒 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
1公頃=10000平方千米 1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米 1升=1000毫升1噸=1000千克 1千克=1000克
十、小數的數位順序表
整 數 部 分 小數點 小 數 部 分
數
位
…
萬位 千位 百位 十位 個位
.
十分位 百分位 千分位 萬分為
…
計數單位
…
萬
千
百
十 一
個 十分之一 百分之一 千分之一 萬分之一
…
『肆』 小學1到6年級數學知識重點
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
北師:
小學數學四年級前四個單元知識點總結
1、路程速度時間公式:s=vt v=s÷t t=s÷v
2、正方形周長公式:C=4a
3、正方形面積公式:S=a2
4、長方形周長公式:C=2(a+b)
5、長方形面積公式:S=ab
6、加法交換律:a+b=b+a
7、加法結合律:a+b+c=a+(b+c)
8、乘法交換律:a·b=b·a
9、乘法結合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分類,從小到大是:銳角、直角、鈍角、平角、周角
12、銳角是小於90度的角,直角是90度,鈍角是大於90度而小於平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分類:銳角三角形,直角三角形,鈍角三角形
14、三個角都是銳角是銳角的三角形叫銳角三角形;有一個角是直角的三角形叫直角三角形;有一個角是鈍角的三角形叫鈍角三角形。
15、三角形按邊分類有:不等邊三角形,等腰三角形,等邊三角形
16、從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
17、小數的計數單位是十分之一,百分之一,千分之一--------記作0.1,0.01,0.001-----
18、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有穩定性
22、三角形任意兩邊之和大於第三邊
23、三角形的內角和是180度
24、學會畫角
25、會比較小數的大小
26、單位換算
長度單位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
質量單位:1千克=1000克 1噸=1000千克=1000000克
錢的換算:1元=10角=100分 1角=10分
時間單位:1時=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小時
一三五七八十臘,三十一天永不差。四六九十一三十,平年二月二十八,閏年二月二十九。
面積單位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公頃=10000平方米 1平方千米=100公頃=1000000平方米
周長公式:長方形周長=(長+寬)×2 C=2(a+b)
正方形周長=邊長×4 C=4a
圓的周長=圓周率×直徑 C=πd C =2πr
半圓的周長=圓周長的一半+直徑 πr+d
面積公式:長方形面積=長×寬 S=ab
正方形面積=邊長×邊長 S=a2
平行四邊形面積=底×高 S=ah
三角形面積=底×高÷2 S=ah÷2
梯形面積=(上底+下底)×高÷2 S=(a+b)h÷2
圓的面積=圓周率×半徑的平方 S=πr2
圓柱的側面積=底面周長×高 S=Ch
表面積公式:長方體表面積=(長×寬+長×高+寬×高)×2
S=(ab+ah+bh)×2
正方體表面積=邊長×邊長×6 S=6a2
圓柱體側面積=底面周長×高 S=C h
圓柱體表面積=側面積+底面積×2 S=S側+2 S底
體積公式:長方體體積=長×寬×高 V=abh
正方體體積=棱長×棱長×棱長 V=a3
圓柱體體積=底面積×高 V=Sh
(將近似長方體平放得到:圓柱體體積=側面積的一半×半徑 V=Ch÷2×r=2πr÷2×r=πr×r)
圓錐體體積=底面積×高÷3 V=Sh÷3或1/3Sh
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
『伍』 小學數學1-6年級試卷及答案
人教版四年級上冊數學期末試卷
(70分鍾完卷)
親愛的同學:
等級:
你好!為了解一學期的學習情況,以利於今後更快地進步,相信你能輕松、認真地作答。
一、學海無涯任我行(20分)。
1.第五次人口普查結果公布:中國總人口1295330000人,改寫成以「萬」為單位的數是(
)人,省略「億」後面尾數約是(
)人。
2、一個八位數,最高位上是8,十萬位上是5,萬位是6,百位上是2,其他數位都是0。這個數寫作(
),讀作(
)。
3、在○里填上「>」,「<」或「=」。
54070800000○5470800000
48萬○480001
900000000○9億
1000000○999999
4、線段有(
)個端點,射線有(
)端點
5、3時整,時針與分針夾角是(
)度,7時整,時針與分針夾角是(
)。
6、把銳角、平角、鈍角、直角、周角按下列順序排列。
(
)>(
)>(
)>(
)>(
)
7、6930÷21,可以把除數看作(
)去試商比較簡便,商是(
)位數。
8、A÷21=20……(
),在括弧里最大能填(
),這個被除數最大是(
)。
9、下面各數你是怎樣估算的?
①一瓶飲料重485克,大約是(
)克。
②某足球場可以容納觀眾20498人,大約是(
)人。
10、下圖中∠1=30°, ∠2=(
)
二、火眼金睛辨真偽—— 對的在()里打「√」,錯的打「×」(5分)
1、一個五位數,「四捨五入」後約等於6萬,這個數最大是5999。(
)
2、一條射線長5米。
(
)
3、角的大小與邊長無關。(
)
4、個位、十位、百位、千位、萬位……都是計數單位。(
)
5、每兩個計數單位之間的進率是10。(
)
三、左挑右選出真知——選擇正確答案的序號填在( )里。(5分)
1、下面各數,讀數時只讀一個零的是(
)。
①603080
②6030800
③6003800
2、用一個放大100倍的放大鏡看一個30º的角,看到的角的度數是(
)。
①300º
②30º
③3000º
3、若A×40=360,則A×4=(
)。
①3600
②36
③360
4、在使用計算器運算中,如果發現輸入的數據不正確可以使用(
)鍵清除錯誤。
①
②
③
5小明給客人沏茶,接水1分鍾,燒水6分鍾,洗茶杯2分鍾,拿茶葉1分鍾,沏茶1分鍾。小明合理安排以上事情,最少要(
)幾分鍾使客人盡快喝茶。
①7分鍾
② 8分鍾
③ 9分鍾
四、精打細算百分百(30分)
1、 直接寫出結果。(6分)
390+11=
240÷60=
620-180=
90×70=
120×7=
4500÷15=
430+80=
560×0=
125×8=
900÷6=
140×60=
7200÷90=
2、 估算寫出結果。(6分)
416÷70≈
645÷79≈
43×12≈
638÷90≈
98×102≈
507×48≈
3、 筆算下面各題(18分)
134×16
372÷31
208×34
625÷25
540×18
1508÷29
五、動畫世界我翱翔——按要求操作(7分)
⑴ 在下邊空白處把梯形畫完整(大小自定),並作出梯形的高。(3分)
⑵ 畫一條線段,把這個梯形分成一個三角形和一個平行四邊形。(2分)
⑶ 量出∠1的度數並標明。(2分)
1
六. 精心整理細答問(1小題2分,2小題①②各1分,③④ 各2分,共8分)
光明小學四年二班四個小組的同學閱讀課外書數目如下:
組 別 合 計 一 二 三 四
閱讀本數 40 60 50 70
1.請把統計表補充完整,並製成條形統計圖。(2分)
70 地 地 地 地 地 地 地 地 地
60
50
40
30
20
10
0
2.根據統計圖表可知:
① 第一組比第四組少讀(
)本;
② 第二組和第三組共讀(
)本;
③ 四年二班平均每組讀(
)本。
④ 你還想提出什麼問題?
六、走進生活顯身手。(每小題5分,共計25分)
1、 一束鮮花30元,買5束送一束。王阿姨一次買5束,每束便宜多少元?
2、 汽車上山的速度為每小時36千米,行了5小時到達山頂,下山時按原路返回只用了4小時。汽車下山時平均每小時行多少千米?
3、 實驗小學要為三、四年級的學生每人買一本價格為12元的作文輔導書。已知三年級有145人,四年級有155人,兩個年級一共需要多少元?
4、 學校開展節約用水活動,前3個月共節約用水435噸。照這樣計算,學校一年能節約用水多少噸?
5、同學們要做120朵花,每人做5朵,每個小組有12人,要幾組同學來做?
同學們,題目都做好了嗎?是不是再檢查一遍呢?相信你一定能交一份滿意的答卷!
『陸』 小學人教版數學1-6年級所有的概念 ,公式。
小學人教版數學1-6年級所有的概念 ,公式。
推薦內容
小學人教版數學1-6年級所有的概念 ,公式。
小學人教版數學1-6年級所有的概念 ,公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑 ?=πr 11、長方體的表面積=(長×寬+長×高+寬×高)×2 12、長方體的體積 =長×寬×高 V =abh 13、正方體的表面積=棱長×棱長×6 S =6a 14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a 15、圓柱的側面積=底面圓的周長×高 S=ch 16、圓柱的表面積=上下底面面積+側面積 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圓柱的體積=底面積×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圓錐的體積=底面積×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、長方體(正方體、圓柱體)的體積=底面積×高 V=Sh 4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高
『柒』 小學數學1-6年級試卷及答案
人教版四年級上冊數學期末試卷
(70分鍾完卷)
親愛的同學: 等級:
你好!為了解一學期的學習情況,以利於今後更快地進步,相信你能輕松、認真地作答。
一、學海無涯任我行(20分)。
1.第五次人口普查結果公布:中國總人口1295330000人,改寫成以「萬」為單位的數是( )人,省略「億」後面尾數約是( )人。
2、一個八位數,最高位上是8,十萬位上是5,萬位是6,百位上是2,其他數位都是0。這個數寫作( ),讀作( )。
3、在○里填上「>」,「<」或「=」。
54070800000○5470800000 48萬○480001
900000000○9億 1000000○999999
4、線段有( )個端點,射線有( )端點
5、3時整,時針與分針夾角是( )度,7時整,時針與分針夾角是( )。
6、把銳角、平角、鈍角、直角、周角按下列順序排列。
( )>( )>( )>( )>( )
7、6930÷21,可以把除數看作( )去試商比較簡便,商是( )位數。
8、A÷21=20……( ),在括弧里最大能填( ),這個被除數最大是( )。
9、下面各數你是怎樣估算的?
①一瓶飲料重485克,大約是( )克。
②某足球場可以容納觀眾20498人,大約是( )人。
10、下圖中∠1=30°, ∠2=( )
二、火眼金睛辨真偽—— 對的在()里打「√」,錯的打「×」(5分)
1、一個五位數,「四捨五入」後約等於6萬,這個數最大是5999。( )
2、一條射線長5米。 ( )
3、角的大小與邊長無關。( )
4、個位、十位、百位、千位、萬位……都是計數單位。( )
5、每兩個計數單位之間的進率是10。( )
三、左挑右選出真知——選擇正確答案的序號填在( )里。(5分)
1、下面各數,讀數時只讀一個零的是( )。
①603080 ②6030800 ③6003800
2、用一個放大100倍的放大鏡看一個30º的角,看到的角的度數是( )。
①300º ②30º ③3000º
3、若A×40=360,則A×4=( )。
①3600 ②36 ③360
4、在使用計算器運算中,如果發現輸入的數據不正確可以使用( )鍵清除錯誤。
① ② ③
5小明給客人沏茶,接水1分鍾,燒水6分鍾,洗茶杯2分鍾,拿茶葉1分鍾,沏茶1分鍾。小明合理安排以上事情,最少要( )幾分鍾使客人盡快喝茶。
①7分鍾 ② 8分鍾 ③ 9分鍾
四、精打細算百分百(30分)
1、 直接寫出結果。(6分)
390+11= 240÷60= 620-180= 90×70=
120×7= 4500÷15= 430+80= 560×0=
125×8= 900÷6= 140×60= 7200÷90=
2、 估算寫出結果。(6分)
416÷70≈ 645÷79≈ 43×12≈
638÷90≈ 98×102≈ 507×48≈
3、 筆算下面各題(18分)
134×16 372÷31 208×34
625÷25 540×18 1508÷29
五、動畫世界我翱翔——按要求操作(7分)
⑴ 在下邊空白處把梯形畫完整(大小自定),並作出梯形的高。(3分)
⑵ 畫一條線段,把這個梯形分成一個三角形和一個平行四邊形。(2分)
⑶ 量出∠1的度數並標明。(2分)
1
六. 精心整理細答問(1小題2分,2小題①②各1分,③④ 各2分,共8分)
光明小學四年二班四個小組的同學閱讀課外書數目如下:
組 別 合 計 一 二 三 四
閱讀本數 40 60 50 70
1.請把統計表補充完整,並製成條形統計圖。(2分)
70 地 地 地 地 地 地 地 地 地
60
50
40
30
20
10
0
2.根據統計圖表可知:
① 第一組比第四組少讀( )本;
② 第二組和第三組共讀( )本;
③ 四年二班平均每組讀( )本。
④ 你還想提出什麼問題?
六、走進生活顯身手。(每小題5分,共計25分)
1、 一束鮮花30元,買5束送一束。王阿姨一次買5束,每束便宜多少元?
2、 汽車上山的速度為每小時36千米,行了5小時到達山頂,下山時按原路返回只用了4小時。汽車下山時平均每小時行多少千米?
3、 實驗小學要為三、四年級的學生每人買一本價格為12元的作文輔導書。已知三年級有145人,四年級有155人,兩個年級一共需要多少元?
4、 學校開展節約用水活動,前3個月共節約用水435噸。照這樣計算,學校一年能節約用水多少噸?
5、同學們要做120朵花,每人做5朵,每個小組有12人,要幾組同學來做?
同學們,題目都做好了嗎?是不是再檢查一遍呢?相信你一定能交一份滿意的答卷!