❶ 小學數學課堂如何體現新課標
新的數學課程理念不再只是讓學生掌握數學的基礎知識、基本技能和方法,而更應該讓學生願意親近數學、應用數學,培養他們的創新意識和實踐能力。那麼,在新課改下的數學教學中,該如何體現這些新理念呢?下面,我結合自己的教學談幾點體會:
一、課堂學習自主化
數學課程標准提出:「有效的數學學習活動不單純地依賴模仿與記憶,動手操作、自主探索與合作交流是學生學習的重要方式。」因此,在數學知識的學習過程中,教師應盡量多給學生提供自主探索的時間和空間,使學生有較多的獨立獲取知識的機會,做到:學生能獨立思考的,教師不提示;學生能獨立操作的,教師不代替;學生能獨立解決的,教師不示範。
二、解題策略多樣化
數學學習活動要讓所有學生能積極參與討論,激盪學生的思維,促使學生創新思維的發展。在小學數學教學中,教師應尊重學生的想法,鼓勵學生獨立思考,提倡解題策略多樣化。
例如:在讓同學們計算250+470這道題時,先讓他們比一比,看哪一小組同學的演算法最多。面對挑戰,同學們個個不甘示弱,馬上進行小組討論,研究解題策略。不一會兒,他們一共探索出七種不同的演算法:
(1)25個十加47個十是72個十,也就是720
(2)250+400=650 650+70=720
(3)250+450=700 700+20=720
(4)200+400=600 50+70=120 600+120=720
(5)250+500=750 750-30=720
(6)300+470=770 770-50=720
(7)300+500=800 800-50-30=720
如果教師能經常堅持激勵學生用不同策略解題,可以使學生的創造性潛能得到充分的發掘,創新意識和創新能力得到較好的培養。
三、知識應用生活化
學習數學,不能僅僅停留在掌握知識的層面上,而是必須學會應用,只有如此,才能使所學的數學富有生命力,才能真正實現數學價值。這就要求我們必須注重從小培養學生的應用意識。培養學生應用意識的最有效的辦法應該是讓學生有機會親自實踐。因此,教學中,教師必須努力發掘有價值的專題活動和實習作業,讓學生在現實中尋求解決方案。
例如,在學習了「長方形的面積」後,我布置了這樣一道課外實踐作業:請同學們都來做爸爸媽媽的好幫手:(1)量出自己家中客廳的長和寬;(2)算出面積是多少平方米;(3)量出一塊地磚的邊長;(4)求出所需地磚的塊數;(5)算出購買地磚需多少元。
這種富有生活情趣的數學問題的設計,激起了學生積極的學習熱情,學生在解答上述問題的過程中,既可以鞏固長方形面積的有關知識,幫助學生領悟數學知識的應用過程,又讓學生體驗到了數學在生活中的價值,更增強了學生數學的興趣與信心。
總之,在新的課程課標理念下的數學教學中,應該真正體現學生是學習的真正主人,讓他們主動學習、積極探索、大膽創新、勇於實踐,使他們的「雙基」 、創新意識和實踐能力均得到均衡的發展。
❷ 小學數學新課標的主要內容有哪些
2014小學數學新課標內容
一、前言
《全日制義務教育數學課程標准(修定稿)》(以下簡稱《標准》)是針對我國義務教育階段的數學教育制定的。根據《義務教育法》.《基礎教育課程改革綱要(試行)》的要求,《標准》以全面推進素質教育,培養學生的創新精神和實踐能力為宗旨,明確數學課程的性質和地位,闡述數學課程的基本理念和設計思路,提出數學課程目標與內容標准,並對課程實施(教學.評價.教材編寫)提出建議。
《標准》提出的數學課程理念和目標對義務教育階段的數學課程與教學具有指導作用,教學內容的選擇和教學活動的組織應當遵循這些基本理念和目標。《標准》規定的課程目標和內容標準是義務教育階段的每一個學生應當達到的基本要求。《標准》是教材編寫.教學.評估.和考試命題的依據。在實施過程中,應當遵照《標准》的要求,充分考慮學生發展和在學習過程中表現出的個性差異,因材施教。為使教師更好地理解和把握有關的目標和內容,以利於教學活動的設計和組織,《標准》提供了一些有針對性的案例,供教師在實施過程中參考。
二、設計理念
數學是研究數量關系和空間形式的科學。數學與人類的活動息息相關,特別是隨著計算機技術的飛速發展,數學更加廣泛應用於社會生產和日常生活的各個方面。數學作為對客觀現象抽象概括而逐漸形成的科學語言與工具,不僅是自然科學和技術科學的基礎,而且在社會科學與人文科學中發揮著越來越大的作用。數學是人類文化的重要組成部分,數學素養是現代社會每一個公民所必備的基本素養。數學教育作為促進學生全面發展教育的重要組成部分,一方面要使學生掌握現代生活和學習中所需要的數學知識與技能,一方面要充分發揮數學在培養人的科學推理和創新思維方面的功能。
義務教育階段的數學課程具有公共基礎的地位,要著眼於學生的整體素質的提高,促進學生全面.持續.和諧發展。課程設計要滿足學生未來生活.工作和學習的需要,使學生掌握必需的數學基礎知識和基本技能,發展學生抽象思維和推理能力,培養應用意識和創新意識,在情感.態度與價值觀等方面都要得到發展;要符合數學科學本身的特點.體現數學科學的精神實質;要符合學生的認知規律和心理特徵.有利於激發學生的學習興趣;要在呈現作為知識與技能的數學結果的同時,重視學生已有的經驗,讓學生體驗從實際背景中抽象出數學問題.構建數學模型.得到結果.解決問題的過程。為此,制定了《標准》的基本理念與設計思路。
基本理念
數學課程應致力於實現義務教育階段的培養目標,體現基礎性.普及性和發展性。義務教育階段的數學課程要面向全體學生,適應學生個性發展的需要,使得:人人都能獲得良好的數學教育,不同的人在數學上得到不同的發展。課程內容既要反映社會的需要.數學學科的特徵,也要符合學生的認知規律。它不僅包括數學的結論,也應包括數學結論的形成過程和數學思想方法。課程內容要貼近學生的生活,有利於學生經驗.思考與探索。內容的組織要處理好過程與結果的關系,直觀與抽象的關系,生活化.情境化與知識系統性的關系。課程內容的呈現應注意層次化和多樣化,以滿足學生的不同學習需求。數學活動是師生共同參與.交往互動的過程。有效的數學教學活動是教師教與學生學的統一,學生是數學學習的主體,教師是數學學習的組織者與引導者。數學教學活動必須激發學生興趣,調動學生積極性,引發學生思考;要注重培養學生良好的學習習慣.掌握有效的學習方法。學生學習應當是一個生動活潑的.主動地和富有個性的過程,除接受學習外,動手實踐.自主探索與合作交流也是數學學習的重要方式,學生應當有足夠的時間和空間經歷觀察.實驗.猜測.驗證.推理.計算.證明等活動過程。教師教學應該以學生的認知發展水平和益友的經驗為基礎,面向全體學生,注重啟發式和因材施教,為學生提供充分的數學活動的機會。要處理好教師講授和學生自主學習的關系,通過有效的措施,啟發學生思考,引導學生自主探索,鼓勵學生合作交流,使學生真正理解和掌握基本的數學知識與技能.數學思想和方法,得到必要的數學思維訓練,獲得廣泛的數學活動經驗。學習評價的主要目的是為了全面了解學生數學學習的過程和結果,激勵學生的學習和改進教師的教學。應建立評價目標多元.評價方法多樣的評價體系。評價要關注學生學習的結果,也要關注學習的過程;要關注學生數學學習的水平,也要關注學生在數學活動中所表現出來的情感與態度,幫助學生認識自我,盡力信心。信息技術的發展對數學教育的價值.目標.內容以及教學方式產生了很大的影響。數學課程的設計與實施應根據實際情況合理地運用現代信息技術,要注意信息技術與課程內容的有機結合。要充分考慮計算器.計算機對數學學習內容和方式的影響以及所具有的優勢,大力開發並向學生提供豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的.探索性的數學活動中去。
三、設計思路
(一)關於學段
為了體現義務教育數學課程的整體性,《標准》統籌考慮了九年的課程內容。同時,根據兒童發展的生理和心理特徵,將九年的學習時間具體劃分為三個學段:第一學段(1-3年級).第二學段(4-6年級).第三學段(7-9年級)。設計思路
(二)關於目標《標准》提出義務教育階段數學課程的總體目標和分學段目標,並從知識技能.數學思考.問題解決.情感態度等四個方面具體闡述。《標准》用了「了解(認識).理解.掌握.運用」等認知目標動詞表述知識技能目標的不同水平。一句「基本理念」,數學學習必須注重過程,標《准》使用「經歷(感受).體驗(體會).探索」等認知過程動詞表述學習活動的不同程度。使用這些動詞進行表述是為了更准確地刻畫上述四個方面的具體目標。在《標准》中,這些動詞的具體含義如下。了解(了解認識):從具體事例中知道或舉例說明對象的有關特徵;根據對象的特徵,從具體情景中辨認或者舉例說明對象。理解:描述對象的特徵和由來,闡述此對象與相關對象之間的區別和聯系。掌握:在理解的基礎上,把對象用於新的情境。運用:用已掌握的對象,選擇或創造適當的方法。經歷(感受):在特定的數學活動中,獲得一些感性認識。體驗(體會):參與特定的數學活動,認識或驗證對象的特徵,獲得經驗():驗。探索:獨立或與他人合作參與特定的數學活動,發現對象的特徵及其與相關對象的區別和聯系,獲得理性認識。
(三)關於學習內容之一:數與代數
在各個教學段中,《標准》安排了四個方面的內容:「數與代數」,「圖形與幾何」,「統計與概率」,「綜合與實踐」。數與代數「數與代數」的主要內容有:數的認識,數的表示,數的大小,數的運算,數量的估計;字母表示數,代數式及其運算;方程.方程組.不等式.函數等。
在「數與代數」的教學中,應幫助學生建立數感和符號意識,發展運算能力,樹立模型思想。
數感主要是指關於數與數量表示.數量大小比較.數量和運算結果的估計等方面的直觀感覺。建立「數感」有助於學生理解現實生活中數的意義,理解或表述具體情景中的數量關系。
符號意識主要是指能夠理解並且運用符號表示數.數量關系和變化規律;知道使用符號可以進行一般性的運算和推理。建立「符號意識」有助於學生理解符號的使用是數學表達和進行數學思考的重要形式。
運算是「數與代數」的重要內容,運算是基於法則進行的,通常運算滿足一定的運算律。學習這些內容有助於理解運算律,培養運算能力。
模型也是「數與代數」的重要內容,方程.方程組.不等式.函數等都是基本的數學模型。從現實生活或者具體情境中抽象出數學問題,是建立模型的出發點;用符號表示數量關系和變化規律,是建立模型的過程;求出模型的結果並討論結果的意義,是求解模型的過程。這些內容有助於培養學生的學習興趣和應用意識,體會數學建模的過程,樹立模型思想。
關於學習內容之二:圖形與幾何
圖形與幾何「圖形與幾何」主要內容有:空間和平面的基本徒刑,圖形的性質和分類;平面圖形基本性質的證明;圖形的平移.旋轉.軸對稱.相似和投影;運用坐標描述圖形的位置和圖形的運動。
在「圖形與幾何」的學習中,應幫助學生建立空間觀念。空間觀念是指根據物體特徵抽象出幾何圖形,根據幾何圖形想像出所描述的實際物體;能夠想像出空間物體的方位和相互之間的位置關系;根據語言描述或通過想像畫出圖形等。
直觀與推理是「圖形與幾何」學習中的兩個重要方面。幾何直觀是指利用圖形描述幾何或者其他數學問題.探索解決問題的思路.預測結果。在許多情況下,藉助幾何直觀可以把復雜的數學問題變得簡明.形象。幾何直觀不僅在「圖形與幾何」的學習中發揮著不可替代的作用,並且貫穿在整個數學學習中。
推理是數學的基本思維方式,是人們學習和生活中經常使用的思維方式,也因此,與直觀一樣,推理也貫穿在整個數學學習中。推力一般包括合情推理和演繹推理。合情推理是從已有的事實出發,憑借經驗和直覺,通過歸納和類比等推測某些結果,是由特殊到一般的過程。演繹推理是從已有的事實(包括定義.公理.定理等)出發,按照規定的法則(包括邏輯和運算)驗證結論,是由一般到特殊的過程。在解決問題的過程中,合情推力有助於探索解決問題的思路.發現結論;演繹推理用於驗證結論的正確性。
關於學習內容之三:統計與概率
統計與概率「統計與概率」主要內容有:收集.整理和描述數據,包括簡單抽樣.記錄調查數據.描繪統計圖表等;處理數據,包括計算平均數.中位數.眾數.極差.方差等;從數據中提取信息並進行簡單的判斷。簡單隨機事件及其發生的概率。
在「統計與概率」中,幫助學生逐漸建立起數據分析的觀念是重要的。數據分析包括:了解在現實生活中有許多問題應當先做調查研究.收集數據,通過分析作出判斷,體會數據中是蘊涵著信息的;體驗數據是隨機的和有規律的,一方面對於同樣的事情每次收集到的數據可能會是不同的,另一方面只要有足夠的數據就可能從中發現規律;了解對於同樣的數據可以有多種分析的方法,需要根據問題的背景選擇合適的方法。在概率的學習中,所涉及的隨機現象都基於簡單事件:所有可能發生的結果是有限的.每個結果發生的可能性是相同的。「統計與概率」的內容與現實生活聯系密切,必須結合具體案例組織教學。
關於學習內容之四:綜合與實踐
綜合與實踐「綜合與實踐」是以一類問題為載體,學生主動參與的學習活動,是幫助學生積累數學活動經驗的重要途徑。針對問題情景,學生藉助所學的知識和生活經驗,獨立思考或與他人合作,經歷發現問題和提出問題.分析問題和解決問題的全過程,感悟數學各部分內容之間.數學與生活實際之間及其他學科的聯系,激發學生學習數學的興趣,加深學生對所學數學內容的理解。
這種類型的課程對於培養學生的抽象能力和邏輯思維能力.對於培養學生的創新意識和應用能力是有益處的,還有利於培養學生的合作精神。合理地設計課程內容以及教學方法是達到教學目標的關鍵,既要考慮學生的直接經驗.能夠啟發學生思考,也要考慮問題的數學實質.培養學生的數學素養。這種類型的課程對教師是一種挑戰,教師應努力把握住問題的本質,能夠引導學生思考,同時,教師又應努力幫助學生整理清楚自己的思路,指導學生以不同的形式展示自己的成果或報告自己的工作。這種類型的課程應當貫徹「少而精」的原則,保證每學期至少一次。它可以在課堂上完成,也可以將課內外相結合。
關於實施建議
為了保證《標准》的順利實施,《標准》分別對教學活動.學習評價,以及教材編寫.課程資源的開發與利用等方面提出了實施建議;同時,為了更好地說明課程內容,《標准》在相關部分提供了一些案例。以上內容供有關人員參考.借鑒。
《課標》修改稿---總體目標(1)通過義務教育階段的數學學習,學生能夠:1.獲得適應社會生活和進一步發展所必須的數學的基本知識.基本技能.基本思想.基本活動經驗。2.體會數學知識之間.數學與其他學科之間.數學與生活之間的聯系,運用數學的思維方式進行思考,增強發現問題和提出問題的能力.分析問題和解決問題的能力。3.了解數學的價值,提高學習數學的興趣,增強學好數學的信心,養成良好的學習習慣,具有初步的創新意識和實事求是的科學態度。
《課標》修改稿---總體目標(2)知識與技能:*經歷數與代數的抽象運算與建模等過程,掌握數與代數的基礎知識和基本技能。*經歷圖形的抽象.分類.性質探討.運動.位置確定等過程,掌握圖形與幾何的基礎知識和基本技能。*經歷在實際問題中收集和處理數據.利用數據分析問題.獲得信息的過程,掌握統計與概率的基礎知識和基本技能。*參與綜合實踐活動,積累綜合運用數學知識.技能和方法解決簡單實際問題的數學活動經驗。
數學思考
*體會代數表示運算和幾何直觀等方面的作用,初步建立數感.符號意識和空間觀念,發展形象思維和抽象思維。*了解數據和隨機現象,體會統計方法的意義,發展數據分析和隨機觀念。*在參與觀察.實驗.猜想.證明.綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。*學會獨立思考,體會數學的基本思想和思維方式。
問題解決
*初步學會從數學的角度發現問題和提出問題,綜合運用數學知識和其他知識解決簡單的數學問題,發展應用意識和實踐能力。*獲得分析問題和解決問題的一些基本方法,體驗解決問題方法的多樣性,發展創新意識。
情感態度
*學會與他人合作.交流。*初步形成評價與反思的意識。*積極參與數學活動,對數學有好奇心和求知慾。*體驗獲得成功的樂趣,鍛煉克服困難的意志,建立學好數學的自信心。*體會數學的特點,了解數學的價值。*養成勇於質疑的習慣,形成實事求是的態度。
《課標》修改稿---總體目標(3)總體目標的四個方面,不是互相獨立和割裂的,而是一個密切聯系.相互交融的有機整體。課程組織和教學活動中,應同時兼顧四個方面的目標。這些目標的實現,使學生受到良好數學教育的標志,它對學生的全面.持續.和諧發展,有著重要的意義。數學思考.問題解決.情感態度的發展離不開知識技能的學習,知識技能的學習必須有利於其他三個目標的實現。
《課標》修改稿---學段目標
第一學段(1-3年級)
知識技能
1.經歷從日常生活中抽象出數的過程,理解常見的量;了解四則運算的意義,掌握必要的運算技能。了解估算。
2.經歷從實際物體中抽象出簡單幾何體和平面圖形的過程,了解一些簡單幾何體和常見的平面圖形;感受平移.旋轉.軸對稱,認識物體的相對位置。掌握初步的測量.識圖和畫圖的技能。
3.經歷數據的收集和整理的過程,了解簡單的數據處理方法。
數學思考
1.能夠理解身邊有關數字的信息,會用數(合適的量綱)描述現實生活中的簡單現象。發展數感。
2.再討論簡單物體性質的過程中,發展空間觀念。
3.在教師的指導下,能對簡單的調查數據歸類。
4.會思考問題,能表達自己的想法;在討論問題過程中,能夠初步辨別結論的共同點和不同點。
問題解決
1.能在教師的指導下,從日常生活中發現和提出簡單的數學問題。
2.獲得分析問題和解決問題的一些基本方法,知道同一問題可以有不同的解決方法。
3.體驗與他人合作交流.解決問題的過程。
4.初步學會整理解決問題的過程和結果。
情感態度
1.對身邊與數學有關的事務(現象)有好奇心,能夠參與數學活動。
2.在他人幫助下,體驗克服數學活動中的困難的過程。
3.了解數學可以描述生活中的一些現象,感受數學與生活有密切聯系。
4.在解決問題的過程中,養成詢問「為什麼」的習慣。
第二學段(4-6年級)
知識技能
1.體驗從具體情境中抽象出數的過程;理解分數.百分數的意義,了解負數,掌握必要的運算技能;理解估算的意義;掌握用方程表示簡單的數量關系.解簡單方程的方法。
2.探索一些圖形的形狀.大小和位置關系,了解一些幾何體和平面圖形的基本特徵;體驗圖形的簡單運動,了解確定物體位置的方法,掌握測量.識圖和畫圖的基本方法。
3.歷數據的收集.理和分析的過程,握一些簡單的數據處理技能;經整掌體驗事件發生的等可能性,掌握簡單的計算等可能性的方法。
數學思考
1.能夠對生活中的數字信息作出合理的解釋,會用數(合適的量綱).字母和圖表描述生活中的簡單問題;初步形成數感,發展符號意識。
2.在探索簡單圖形的性質.運動現象的過程中,初步形成空間觀念。
3.能根據解決問題的需要,收集與表示數據,歸納出有用的信息
4.能進行有條理的思考,能清楚地表達思考的過程與結果;在與他人交流過程中,能夠進行簡單的辯論。
問題解決
1.能從社會生活中發現並提出簡單的數學問題。
2.能探索分析問題.解決問題的有效方法,了解解決問題方法的多樣性。
3.能藉助於數字計算器解決簡單的計算問題。
4.初步學會與他人合作解決問題,嘗試解釋自己的思考過程。
5.能初步判斷結果的合理性,經歷回顧與分析解決問題過程的活動。
情感態度
1.願意了解社會生活中與數學相關的信息,主動參與數學學習活動。
2.在他人的鼓勵和引導下,嘗試克服數學活動中遇到的困難,相信自己能夠學好數學。
3.在運用數學解決問題的過程中,體驗數學的價值。
4.初步養成樂於思考.實事求是.勇於質疑等良好品質。
第三學段(7-9年級)
知識技能
1.體驗從具體情境中抽象出數學符號的過程;理解有理數.實數.代數式.方程.不等式.函數。掌握必要的運算(包括估算)技能;探索具體問題中的數量關系和變化規律,掌握用代數.方程.不等式進行表述的方式。
2.探索並理解圖形的基本性質.位置關系和平移.旋轉.軸對稱等。掌握三角形.四邊形的基本性質(包括判定),掌握基本的證明方法。
3.體驗數據收集.處理.分析和推斷過程,理解抽樣方法;體驗用樣本估計總體的過程,理解頻率。理解計算簡單事件概率的方法。數學思考
1.能從具體情境中抽象出數量關系,並且能用代數式.方程.不等式.函數等表述,體會模型的思想。
2.在研究圖形運動現象.確定物體位置的過程中,進一步發展空間觀念,初步建立幾何直觀。
3.初步建立數據觀念,理解通過數據進行統計推斷的合理性。
4.步形成通過實例探索數學結論的思維方式。多種形式的數學活動中,初在發展合情推理與演繹推理的能力。
問題解決
1.嘗試在具體的情境中,從數學的角度發現問題和提出問題。
2.試從不同角度尋求分析問題和解決問題的方法,解不同方法的差異。嘗了
3.在與他人合作和交流過程中,能較好地理解他人的思考方法和結論。
4.在表述自己的想法時,能針對他人所提的問題進行反思。
情感態度
1.願意談論某些數學話題,能夠在數學學習活動中發揮一定的作用。
2.體驗獨立克服困難.解決數學過程的過程,有克服困難的勇氣,具備學好數學的信心。
3.在運用數學表達現實.解決問題的過程中,認識數學抽象.嚴謹和應用廣泛的特點,體會數學的價值。
4.勇於發表自己的觀點,質疑他人的觀點,養成良好的學習習慣。
❸ 小學數學新課標的主要內容有哪些
截止2018年目前小學數學新課標的主要內容如下:
義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生。
學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。
內容的呈現應採用不同的表達方式,以滿足多樣化的學習需求。有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。
由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。
為了體現義務教育階段數學課程的整體性,《全日制義務教育數學課程標准(實驗稿)》(以下簡稱《標准》)通盤考慮了九年的課程內容;同時,根據兒童發展的生理和心理特徵,將九年的學習時間具體劃分為三個學段:第一學段(1~3年級)、第二學段(4~6年級)、第三學段(7~9年級)。
❹ 小學數學新課標對學生思維能力培養的要求有哪些
在長期的數學教學實踐中,我總結了一些教學經驗。我認為一個優秀的教師是時刻將學生放在心裡的,對學生充滿熱情,將自己的學生當成自己的小孩一樣愛護。相信沒有教不會的學生,只有不願意學的學生。也許學生在學習的過程中會出現這樣那樣的問題,這時教師要理性對待學生,而不是胡亂去責備學生。在對學生的教育上應該給學生更多的鼓勵。對於如何才是有效的教學方式,結合我多年的教學實踐,我總結了以下幾個方面的經驗:
一、培養學生主動探究的習慣,尋求學生的思維差異
小學數學教學最主要的目的就是培養學生的數學思維能力。鑒於此,數學教師在數學教學的過程中不應該僅僅重視學生的數學成績,還需要重視學生自主探究能力的培養。學生的自主探究精神在某種層面上講要比數學成績重要許多,因為這種自主探究的思維能力將陪伴學生的一生,讓學生終生受益。很多老師對待學生都有一種恨鐵不成鋼的心理,想盡各種方法來提升學生的成績,其中讓學生死記硬背是很多老師常用的方式。由於數學是一門比較偏理科性的學科,學生單靠死記硬背根本無法將數學學好,因為他們根本就不會靈活運用,跟數學對知識靈活運用的要求相違背。所以教師要改變傳統的教學思想,讓學生多積極參與思考,然後教師在這個時候應該起著引導作用,讓學生自主探究與學習,培養學生充分思考問題的能力。對於爭議性的問題要開展積極的探究與討論,逐步積累學生的知識,構建、重組新的知識結構。
二、興趣是最好的老師,教師要積極培養學生的學習興趣
由於數學是一門比較理性的學科,學生是跟數字打交道,相對於其他學科而言就顯得枯燥無味。而且一旦學生前面的數學基礎沒有打好,後面學起來就越來越吃力,就會使學生對學習數學的抗拒心理越來越嚴重。如果這個時候教師只是一味地批評學生,結果反而會向更加糟糕的方向發展,學生反而會更加抗拒,對數學學習更加失去了興趣,於是學生就會陷入一種越學越怕學、越學越難學的境地。這種情況在實際的教學活動中是很常見的,這就要求教師去改變這種狀況。興趣是最好的老師,所以教師首先要做的就是培養學生的學習興趣。舉個例子,教師可以把日常生活中的案例融入到數學教學活動中,將鮮活的現實例子與枯燥的數學結合起來。在現在的教學活動中,教學工具多種多樣要充分利用多媒體技術,將多媒體運用於教學中去,將教學、圖片教學和數學教學相互結合起來,讓學生喜歡上數學。
三、教師要提升自己的教學素質,加強自己在教學方面的研究
小學數學教師的工作重心就是教學,但是很多教師在教學過程中並沒有把教學工作真正地做好,教學研究是每個教師應該一生探討的問題。所以每一個教師在教學的過程中不能只滿足於現狀,還是需要不斷地探究與學習,去提高自己的專業素養。這要求教師的數學研究工作中下功夫。教師要做好教學研究工作,可以從以下幾點下功夫:
在上新課之前,教師要精心詳細地備課。教材是一堂課的中心,教師只有在充分吃透教材的基礎上,才能向學生傳授新的知識。而備課可以使教師對教材有充分的了解,能夠讓教師在上課的過程中少出差錯,給學生傳授正確的知識,所以教師要充分備課,不打無准備之「仗」。
2.教師要加強對課堂教學方法的研究。課堂是教師傳授知識的一個非常重要的途徑,教師需要去總結自己長期以來的教學經驗,同時借鑒其他教師的教學經驗,來形成比較有邏輯性的教學方法。根據自己以往總結的經驗方法,教師要去提高自己課堂教學的質量,摒棄傳統的教學觀念,再積極迎合新課程標準的要求,將新的教學理念與課堂教學結合起來,不斷創新和突破,提高課堂教學的質量。
3.加強學校與學校之間的教學練習,共同探究教學方法。教學是一項開放性的活動,它具有共享性。如果學教知識單靠自己來探究教學方式,拒絕與別的學校的合作探究,是不可能讓教學得到進步的。學校應該加強校內外教學研究的合作交流,教師之間共同探討教學心得體會,實現教學資源的共享,這樣可以使雙方共同進步,提升教學的質量。
4.加強在數學作業方面的研究。數學是一個比較特殊的學科,它需要學生長期的動手練習才能夠得到提高,一旦學生不去多做習題,學生的數學成績很難得到提升。作業是學生學習數學的一種行之有效的方法,作業質量的好壞對學生的練習也有重大的影響,所以教師在作業方面也要加強研究,提高作業的質量。不能僅僅批改完作業就覺得萬事大吉,要去分析作業的可行性,及作業能夠帶來的意義,讓作業真正成為幫助學生提高數學成績的一個重要手段,而不是成為學生學習的一個負擔。
四、構建全新的激勵機制,促進學生的全面發展
傳統的教學方式通常是利用學生的成績來對學生進行評價,這種評價方式雖然比較簡單易行,但是它太過於簡單,不能對學生進行綜合性的評價。要充分地評價學生,就需要構建一個新的激勵機制,對學生進行全面的評價,讓學生在各方面都得到發展,這樣才符合當前素質教育的要求,培養全面發展的人。
❺ 小學數學新課程標准有什麼特點
數與代數
數與代數現行大綱這部分內容主要側重有關數、代數式、方程、函數的運算,《標准》對此作了較大地改革:
1.重視數與符號意義以及對數的感受,體會數字用來表示和交流的作用.通過探索豐富的問題情景發展運算的含義,在保持基本筆算訓練的前提下,強調能夠根據題目條件尋求合理、簡捷的運算途徑和運算方法,加強估算,引進計算器,鼓勵演算法多樣化.
2.對於應用問題:選材強調現實性、趣味性和可探索性;題材呈現形式多樣化(表格、圖形、漫畫、對話、文字等);強調對信息材料的選擇與判斷(信息多餘、信息不足……);解決的策略多樣化;問題答案可以不唯一;淡化人為編制的應用題類型及其解題分析.
3.使學生初步體會數學可以發現、描述、分析客觀世界中多種多樣的模式,把握事物的變化和事物間的關系;初步發展學生的符號意識,學會用符號表達現實問題中的一些基本關系,會初步進行符號運算.
4.體會方程和函數是刻劃現實世界,有效地表示、處理、交流和傳遞信息的強有力工具,是探究事物好發展規律,預測事物發展的重要手段,重視對簡單現實頭問題的建模過程,學會選擇有效的符號運算程序和方法解決問題,重視近似解法特別是圖象解法.
第一學段
1.增加「能進行簡單的四則混合運算(兩步).
2.適當加強基礎.
3.加強綜合能力的培養.
第二學段
1.增加「結合現實情景感受大數的意義,並進行估算;發展學生的數感;加強與現實的聯系.」
2.增加了「了解公倍數和最小公倍數,了解公因數和最大公因數.」
3.刪除「會口算百以內一位數乘、除兩位數」(?教師討論)
4.將「理解等式的性質,會用等式的性質解簡單的方程」改為「能理解簡單的方程.」
圖形與幾何
(原稱空間與圖形:變「空間與圖形」為「圖形與幾何」;重提幾何直觀、推理能力、運算能力、邏輯思維能力,用詞更加規范,體現了課標的嚴肅)
現行大綱這部分內容,小學主要側重長度、面積、體積的計算,初中主要是運用邏輯證明和擴大公理化的方法呈現有關平面圖形的性質,這使得學生不能將所學的幾何知識與現實生活聯系起來,也沒有體現現代幾何的發展,還往往造成不少學生因此對幾何、至整個數學學習失去了興趣和信心.為此,《標准》在重新審視幾何教學目標的基礎上,提出幾何學習最重要的目標是使學生更好地理解自己所生存的世界,形成空間觀念.並對傳統的幾何內容進行了較大幅度的改革:
1.設置了「空間與圖形」領域,將幾何學習的視野拓寬到學生生活的空間,強調空間和圖形知識的現實背景,從第一學段開始使學生接觸豐富的幾何世界.
2.通過觀察、描述、製作、從不同的角度觀察物體、認識方向、製作模型等活動,發展學生的空間觀念和和圖形設計與推理的能力.
3.突出用觀察、操作、變換、坐標、推理等多方式了解現實空間和處理幾何問題,體會更多的刻劃現實生活中的應用.
《標准》中還指出,邏輯證明的要求並不局限於幾何內容,而應該體現在數學學習各個領域,包括代數和統計與概率等;對於幾何證明的教學來說,它的目的不應當是追求證明的技巧、證明的速度和題目的難度,而應服從於使學生養成「說明有據」的態度、尊重客觀事實的精神和質疑的習慣,形成證明的意識,理解證明的必要性和意義,體會證明的思想,掌握證明的基本方法等等.因此,《標准》中在強調探索圖形性質的基礎之上,要求證明基本圖形(三角形、四邊形)的基本性質,降低了對論證過程形式化和證明技巧的要求,刪節去了繁難的幾何證明題,旨在通過這些讓學生體驗邏輯證明的意義、過程,掌握基本的證明方法,同時,向學生介紹歐幾里得和《幾何原本》,使學生體會它們對於人類歷史和思想發展中的重要作用.綜上所述,《標准》大大地加強和改善了目前的幾何教學.
<標准>的」圖形與幾何」第一學段仍分為四部分,具體表示有所變動,(1)圖形的認識,(2)測量,(3)圖形的運動,(4)圖形與位置,
在探索、發現、確認、證明圖形性質過程中,體現兩種推理(合情推理與演繹推理)相輔相成的關系.
體現增強學生「發現和提出問題、分析和解決問題」的能力要求.
「圖形的運動」強調了圖形的運動是研究圖形性質的一種有效方法.
運動也是一種基本的數學思想.
第一學段
(1)將能在方格紙上畫出簡單圖形沿水平方向、垂直方向平移後的圖形」放在第二學段.
(2)將」能在方格紙上畫出簡單圖形的軸對稱圖形放在第二學段.」
第二學段
(1)刪除「兩點確定一條直線」和「兩條直線確定一個點」
(2)增加「通過操作,了解圓的周長與直徑的比為定值.
統計與概率
現行大綱中只在小學高年級和初三代數中設立一章介紹有關統計初步的內容,幾乎沒有涉及概率內容,同時仍然採取「定義——公式——例題——習題」的體系呈現弦計初步知識,使得學生很難得體會這部分內容與現實的聯系,統計與概率對決策的作用.因此,《標准》中大大增加了「統計與概率」的內容,在三個學段根據學生的認知特點,分別設置了相應的內容,結合實際問題,體現了統計與概率的基本思想:1、反映數據統計的全過程:收集和整理數據、表示數據、分析數據、作出決策、進行交流.2、體全隨機觀念和用樣本估計總體的初步思想,將概率統計方法作為制定決策的有力手段.3、根據數據作出推理和合理的論證,並初步學會用概率統計語言進行交流.
統計
鼓勵學生運用自己的方式呈現整理數據的結果.
⑴(第一學段)不要求學生學習「正規」的統計圖(一格代表一個單位的條形統計圖)以及平均數(放在第二學段).
這種變化有三個原因:
① 更加突出了學生對數據分析的體驗,鼓勵學生用自己的方式去分析數據.
② 早期經驗的多樣化可以為以後學習:「正規」的統計圖表和統計量奠定比較牢固的基礎.
③ 使得統計內容在第一、二學段的要求層次更加明確.
⑵ 加強分析圖表的能力里的培養.
提升「讀圖能力」的培養.
⑶ 加強調查等活動的體驗.(主要是小調查)
在收集數據方法方面,考慮到學生年齡特徵,要求學生了解測量、調查等的簡單方法,不要求學生從報刊、雜志、電視等去收集資料.
⑷ 第二學段與《標准》相比,在統計方面,只要求學生體會平均數的意義,不要求學生學習中位數、眾數(這些內容放在第三學段)平均數易受極端數的影響(最大數與最小數的影響).
⑸ 另外,刪去「體會數據可能產生的誤導」這一要求.
概率(可能性,重視「隨機現象」)
在第一學段,去掉了<標准>對此內容的要求:第二學段只要求學生體會隨機現象,並能對隨機現象發生的可能性大小做定性的描述.
綜合與實踐
「綜合與實踐」是一類以問題為載體,學生主動參與的學習活動.,是幫助學生積累數學活動經驗,培養學生應用意識與創新意識的重要途徑.
針對問題的情景,學生綜合所學的知識,和生活經驗,獨立思考或與他人合作經歷發現問題和提出問題,分析問題和解決問題的全過程,感悟數學各部分內容之間\數學與生活實際之間\數學與其他學科之間的聯系,加深對所教數學內容的理解.
《標准》增設「聯系與綜合」部分的目的是讓學生在各個知識領域的學習過程中,有意識地體會數學與他們的生活經驗、現實社會和其他學科的聯系,以及數學在人類文明發展與進步過程中的作用;體會數學知識內在的聯系.同時,採用過「綜合實踐活動」這種新的學習形式,通過學生的自主探索與合作交流,使他們獲得綜合運用數學知識和方法解決實際問題、探索數學規律的能力,逐步發展對數學的整體認識.
新的數學課程新技術對數學課程提出了新的要求,指出了新技術包括數學課程的目的、數學學習的內容以及教與學的方式等方面產生了巨大影響.因此,《標准》提出在第二學段引入計算器,並鼓勵把計算器和計算機作為研究、解決問題的強有力的工具.這樣可以免除學生做大量繁雜、重復的運算,從而在探索性、創造性的數學活動中投入更多的精力,解決更為廣泛的現實問題.
同時,在課程實施建議中強調,有條件的地區應盡可能在教學過程中使用現代教育技術,增加數學課程的技術含量,充分利用現代教育技術在增加師生互動、形象化表示數學內容、有效處理復雜的數學運算等方面的優勢,去改進學生的數學學習方式、增進學生對數學的理解,最終提高數學教學的質量.
對綜合與實踐的理解-------實踐性﹑綜合性﹑探索性
「綜合與實踐」應當保證每個學期至少有一次,它可以在課堂上完成,也可以在課外或課內外相結合完成.
「綜合與實踐」的核心是發現和提出問題,分析和解決問題,不同學段有不同的特點.
第一學段:內容安排強調時實踐性和趣味性.
第二學段:
通過應用、探索和反思,加深對所學知識的理解,通過探索、引發學生學習的興趣和培養思考的習慣,通過交流,發展理解他人、團結互助的合作精神.
啟示:
啟示一:堅持數學課程的三維整體目標
把促進學生的全面發展體現在新的教學課程標准中,形成了包括知識與技能、思維與能力、情感與態度 三個基本方面的目標.
啟示二:以發展學生的數學思維作為課程與教學的重點之一
在教師指導下自主學習和探究問題,初步學會大知識的學習和解決問題過程中進行自我評判和調控.
讓學生對知識進行系統的整理.
初步學會對已有知識經驗質疑和對問題進行多方面的分析,能進行發散性思維,能提出自己的見解(演算法多樣化、思考問題的策略化).
初步掌握觀察、操作、比較、分析、類比、歸納多種數學的思考方法和利用圖表整理數據,獲取信息的方法.
具有抓住現實生活的本質,進行數學抽象與概括的經歷與經驗.
懂得從特殊到一般,從一般到特殊以及轉化的思維策略.
啟示三:把解決問題置於數學課程的核心地位
在標準的修改稿中,不僅體現了解決問題的基本理念,而且在實施過程中形成自己的特色(經歷探索、實踐的過程).
啟示四:要把促進創新和落實基礎知識統一起來
數學學習中創新活動主要集中在發現問題、提出問題、分析問題和解決問題的過程中.
在上述活動中,學生已有的知識基礎佔有重要作用.