❶ 小學數學教學案例分析
課題:探索三角形全等的條件
一、教學設計:
1 學習方式:
對於全等三角形的研究,實際是平面幾何中對封閉的兩個圖形關系研究的第一步。它是兩個三角形間最簡單,最常見的關系。它不僅是學習後面知識的基礎,並且是證明線段相等、角相等以及兩線互相垂直、平行的重要依據。因此必須熟練地掌握全等三角形的判定方法,並且靈活的應用。為了使學生更好地掌握這一部分內容,遵循啟發式教學原則,用設問形式創設問題情景,設計一系列實踐活動,引導學生操作、觀察、探索、交流、發現、思維,使學生經歷從現實世界抽象出幾何模型和運用所學內容,解決實際問題的過程,真正把學生放到主體位置。
2 學習任務分析:
充分利用教科書提供的素材和活動,鼓勵學生經歷觀察、操作、推理、想像等活動,發展學生的空間觀念,體會分析問題、解決問題的方法,積累數學活動經驗。培養學生有條理的思考,表達和交流的能力,並且在以直觀操作的基礎上,將直觀與簡單推理相結合,注意學生推理意識的建立和對推理過程的理解,能運用自己的方式有條理的表達推理過程,為以後的證明打下基礎。
3 學生的認知起點分析:
學生通過前面的學習已了解了圖形的全等的概念及特徵,掌握了全等圖形的對應邊、對應角的關系,這為探究三角形全等的條件做好了知識上的准備。另外,學生也具備了利用已知條件作三角形的基本作圖能力,這使學生能主動參與本節課的操作、探究成為可能。
4 教學目標:
(1) 學生在教師引導下,積極主動地經歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數學結論的過程。
(2) 掌握三角形全等的「邊邊邊」、「邊角邊」、「角邊角」、「角角邊」的判定方法,了解三角形的穩定性,能用三角形的全等解決一些實際問題。
(3) 培養學生的空間觀念,推理能力,發展有條理地表達能力,積累數學活動經驗。
5 教學的重點與難點:
重點:三角形全等條件的探索過程是本節課的重點。
從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經歷了知識的形成過程,體會了一種分析問題的方法,積累了數學活動經驗,這將有利於學生更好的理解數學,應用數學。
難點:三角形全等條件的探索過程,特別是創設出問題後,學生面對開放性問題,要做出全面、正確得分析,並對各種情況進行討論,對初一學生有一定的難度。
根據初一學生年齡、生理及心理特徵,還不具備獨立系統地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發揮教師的主導作用,適時 點撥、引導,盡可能調動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,並使個性思維得以發展。。
6 教學過程
教學步驟 教師活動 學生活動 教學媒體(資源)和教學方式
復習過渡
引入新知
創設情景
提出問題
建立模型
探索發現
歸納總結
得出新知
鞏固運用
及其推廣
反思小結
提煉規律
電腦顯示,帶領學生復習全等三角定義及其性質。
電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊分別對應相等,三個角分別對應相等,那麽,反之這六個元素分別對應,這樣的兩個三角形一定全等.但是,是否一定需要六個條件呢?條件能否盡可能少嗎?
對學生分類中出現的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發展學生個性思維。
按照三角形「邊、角」 元素進行分類,師生共同歸納得出:
1 一個條件:一角,一邊
2 兩個條件:兩角; 兩邊;一角一邊
3 三個條件:三角; 三邊;兩角一邊;兩邊一角
按以上分類順序動腦、動手操
作,驗證。
教師收集學生的作品,加以比
較,得出結論:
只給出一個或兩個條件時,
都不能保證所畫出的三角形
一定全等。
下面將研究三個條件下三角形
全等的判定。
(1)已知三角形的三個角分別
為40°、60°、80°,畫出這
個三角形,並與同伴比較是否
全等。
學生得出結論後,再舉例體會
一下。
舉例說明:如老師上課用的三
角尺與同學用的三角板三個角
分別對應 相等,但一個大一個
小,很顯然不全等;再如同是
等邊三角形,邊長不等,兩個
三角形也不全等。等等。
(2)已知三角形三條邊分別是
4cm,5cm,7cm,畫出這個三角
形,並與同伴比較是否全等。
板演:三邊對應相等的兩個
三角形全等,簡寫為「邊
邊邊」或「SSS」。
由上面的結論可知,只要三角形三邊的長度確定了,這個三角形的形狀和大小就確定了。
實物演示:
由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質叫三角形的穩定性。
舉例說明該性質在生活中的應用
類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩定性
圖形的穩定性與不穩定性在生活中都有其作用,讓學生舉例說明。
題組練習:
P140 2 ( 學生舉反例說明)
3 ( 對有能力的學生要求把實際問題抽象成數學問題,根據自己的理解寫出推理過程。對一般學生要求口頭表達理由,並能說明每一步的根據。)
教師帶領,回顧反思本節課對知識的研究探索過程,小結方法及結論,提煉數學思想,掌握數學規律。
在教師引導下回憶前面知識,為探究新知識作好准備。
議一議:
學生分小組進行討論交流。受教師啟發,從最少條件開始考慮,一個條件;兩個條件;三個條件…經過學生逐步分析,各種情況漸漸明朗,進行交流予以匯總,歸納。
想一想:
對只給一個條件畫三角形,畫出的三角形一定全等嗎?
畫一畫:
按照下面給出的兩個條件做出三角形:
(1) 三角形的兩個角分別是:30°,50°
(2) 三角形的兩條邊分別是:4cm,6cm
(3) 三角形的一個角為 30,一條邊為3cm
剪一剪:
把所畫的三角形分別剪下來。
比一比:
同一條件下作出的三角形與其他同學作的比一比,是否全等。
學生重復上面的操作過程,畫一畫,剪一剪,比一比。
學生總結出:三個內角對應相等的兩個三角形不一定全等
學生舉例說明
學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結論。
鼓勵學生自己舉出實例,體驗數學在生活中的應用.
學生那出准備好的硬紙條,進行實驗,得出結論:
四邊形、五邊形不具穩定性。
學生練習
學生在教師引導下回顧反思,歸納整理。
z+z平台演示
z+z平台演示,教師加以分析。
學生分組討論,師生互動合作。
經過對各種情況得分析,歸納,總結,對學生滲透分類討論的數學思想。
結論很顯然只需學生想像即可,z+z平台輔助直觀演示。
學生動手操作,通過實踐、自主探索、交流,獲得新知。
舉例時,電腦輔助演示讓學生感受反例的作用。
z+z平台播放三角形穩定性及四邊形不穩定性在生活中的應用.
z+z平台顯示題組練習
檢測學生對知識的掌握情況及應用能力。
再次滲透分類的數學思想,體會分析問題的方法,積累數學活動的經驗。
7教學反思
(1) 本節課的設計體現了以教師為主導、學生為主體,以知識為載體、以培養學生的思維能力為重點的教學思想。教師以探究任務引導學生自學自悟的方式,提供了學生自主合作探究的舞台,營造了思維馳騁的空間,在經歷知識的發現過程中,培養了學生分類、探究、合作、歸納的能力。
(2) 在課堂教學設計中,盡量為學生提供「做中學」的時空,不放過任何一個發展學生智力的契機,讓學生在「做」的過程中,藉助已有的知識和方法主動探索新知識,擴大認知結構,發展能力,完善人格,從而使課堂教學真正落實到學生的發展上。
(3) 「樂思方有思泉涌」,在課堂教學中,時時注意營造積極的思維狀態,關注學生的思維發展過程,創設民主、寬松、和諧的課堂氣氛,讓學生暢所欲言,這樣學生的創造火花才會不斷閃現,個性才的以發展。
❷ 小學數學案例分析
像這樣的么?
1、[案例描述]《帶分數乘法》教學片斷:
⒈學生根據應用題「草坪長5米,寬2米,求草坪的面積。」列出算式:5×2
⒉算式一出現,教師就立即組織四人小組交流演算法。
其中一個組,在小組交流時,由於三位同學還沒有想出方法,整個合作過程只好由一位同學講了三種方法:①(5+)×(2+) ②5.8×2.5 ③×,其他同學拍手叫好而告終。
請你根據上述教學片斷進行反思(主要從合作交流與獨立思考的層面分析)。
答:以上現象是教師在使用小組合作時經常出現的一種問題。就是沒有處理好小組合作和獨立思考的關系。教師要處理好合作學習與獨立思考的關系強調合作學習不是不要獨立思考。獨立思考應是合作學習的前提基礎,合作學習應是獨立思考的補充和發揮。多數學習能通過獨立思考解決的問題,就沒必要組織合作學習。而合作學習的深度和廣度應遠遠超過獨立學習的結果。當然,宜獨宜合,應和教學情景、學生實際結合,擇善而用,才能日臻完美。我們在設計學生合作學習時,能否認真的思考以下三個問題:學生在合作交流前,你讓學生經歷過獨立思考嗎?學生在合作交流時,他們有充分的時空嗎?學生在合作交流時,有否進行明確的角色分工呢?
❸ 小學數學教學方法典型案例分析 速求啊
長方體和正方體是學生十分熟悉的立體圖形,在生活中經常要求解它們的表面積,例如:計算做一個長方體形狀的魚缸需要多少材料。雖然學生已經學會了如何計算長方體的表面積,但是由於學生缺少生活實踐經驗,導致計算出來的結果不符合實際要求:多加了一個上面的面積。一個看似很簡單的問題,學生似懂非懂:魚缸的外形是什麼樣的?長方體嗎?計算所需材料的面積是否就是計算這個長方體的表面積?魚缸沒有哪一個面,所以實際上是計算哪幾個面的總面積?如何計算這些面的面積?《長方體和正方體表面積》,在教學中根據學生的實際情況、教材內容和教育資源引導學生對於以上幾個問題進行探索、發現,在認識矛盾沖突是如何產生的以及如何解決問題的驅使下開展探究活動,讓學生去解決魚缸製作的問題來開展教學。當學生經歷了探索發現的過程,就學會了如何用所學的知識運用到生活中去實踐,並且培養了學生分析問題、解決問題以及表述能力。同時學生在學習中體會到了探究、發現問題和靈活地解決實際問題的樂趣,充分體現了學生在教學中的主體學習的地位。
二、教學目標:
1.使學生理解和掌握正方體的表面積的計算方法,能夠正確計算正方體的表面積。
2.使學生能夠根據實際情況計算長方體和正方體里幾個面的總面積,進一步培養學生的探索意識和空間觀念,提高解決簡單實際問題的能力。
三、教學活動過程:
一、引導學生學習正方體表面積的計算方法
1.回憶
上節課我們學習了長方體表面積的概念以及如何計算長方體的表面積,那麼誰來說一說什麼叫做表面積以及如何計算長方體的表面積?
(拿起一個正方體的模型,手摸著面)提問:正方體的面有什麼特點?正方體的表面積 是指什麼?正方體里每個面的面積怎樣算?所以可以怎樣計算正方體的表面積?
3.歸納引入新課:
正方體的6個相同的正方形面的總面積就是正方體的表面積。正方體的表面積怎樣求呢?這就是這節課的主要內容(板書課題)
4.教學例2
提問:題目條件是什麼,讓我們求什麼?求至少要多少平方厘米硬紙板就是求正方體的什麼?你會算嗎?
(課堂實錄:有同學提出可以用長方體的表面積計算公式,因為長方體是一種特殊的正方體,所以可以這么做。有小部份同學同意這個觀點,但是通過計算後認為方法太繁,可以用簡便方法。)
(點評:良好的開端是成功的一半,一堂課是否有好的開頭是上好一堂課的關鍵。針對小學生的心理特點,上課一開始,我首先利用長方體和正方體的模型進行導入,先請學生思考用什麼方法計算正方體的表面積,接著根據以前所學的知識進行推導,從而引出新的計算方法,使得學生愉快主動地進入學習情境,強化了有意注意,激發學生的求知慾望,對新的知識進行探索。通過教學的導入,明確了教學的目標,確定了研究方向,這時再引導學生學習就事半功倍了。)
師:小結:正方體的6個面是面積相等的正方形,所以求它的表面積只要用棱長乘棱長求出一個面的面積,再乘6。
二、魚缸的製作問題
說明:我們已經學會了計算長方體和正方體的表面積。在實際生產和生活過程中,有時不需要計算6個面的餓總面積,只需要計算某幾個面的總面積。這就要根據實際情況思考要求哪幾個面的面積和,並思考每一個面的面積怎樣算。如例3。
1.幫助學生回憶魚缸的形狀(長方體,但是沒有上面)
2.如何計算所需材料的面積?(就是求這個長方體的表面積,但是要減去上面的面積)
3.教學例3
(出示長方體模型,把它看成魚缸的模型)
(1)魚缸缺少哪個面的玻璃?(上面)
(2)要求需要多少平方分米玻璃,要算幾個面的面積和?哪幾 對面有相同的梁個?哪個面只有一個?如何計算每一個面的面積?(5個面,沒有上面,左面=寬*高前面=長*高 底面=長*寬)
(3)指名學生板演,集體訂正。
(點評:在教學中採用學生生活中較熟悉的物體「魚缸」啟發學生如何計算製作一個魚缸所需材料的面積,也就是計算長方體某幾個面的面積之和。這個事例在生活中較普遍,再加上利用一些模具進行教學,使得學生在學習中能夠更好地聯系實際情況進行學習。以上這一系列的活動表現了完整的探究過程,都體現讓學生經歷整個教學的探究過程。)
(4)改變題目要求,使得長方體的寬和高長度相等,觀察模型,你發現了什麼現象?怎樣計算比較簡便?
學生1:長方體的寬和高相等時,它的左面和右面是兩個完全相同的正方形。
學生2:長方體的寬和高相等時,它的前、後、上、下四個面是完全相同的長方形。
學生3:這個長方體沒有上面,所以只要算5個面的面積,它的前面、後面、下面這三個面完全相同
說明:寬和高長度相等時,長方體的前面、後面、下面這三個面完全相同(魚缸沒有上面),所以只要算出一個面的面積乘以3就可以了,在加上左面和右面的面積,就是魚缸所需材料的面積數量。
(點評:數學是很嚴謹的,所以在學生敘述的時候要規范學生的語言,我在教學的時候還注重評價,運用語言和體態及時給予適當的鼓勵和指導,促進學生的學習和發展。第三位同學回答地最完善,所以我表揚了他在敘述數學問題時所具有的嚴謹性,同時要求全班同學在這方面要向他學習。)
書P42頁練習二的第一、二題。
(點評:要計算長方體某幾個面的面積之和,關鍵是要知道如何計算長方體每一個面的面積,這些練習可以幫助學生進行鞏固,而且通過指名學生口答練習,可以及時了解學生的掌握情況,有利於以後教學的實施)
《長方體和正方體的表面積》的教學反思:
一、積極參與,發現問題
在教學中要確立學生的主體地位,那麼在教學中必定要注重學生經歷學生研究的過程。在活動中,一方面要鞏固學生所學的知識,另一方面要使得學生通過活動,根據所學的知識發現問題,讓學生自己提出問題,猜測結果,同時教師進行適當引導。在整個活動過程中,要讓每一個同學都參與這種研究學習的過程,通過本身的實踐活動去尋求問題的答案,形成科學的世界觀和價值觀,利用本身所掌握的知識提高科學探究的能力。在《長方體和正方體的表面積》一課的教學中,我首先幫助學生回憶上節課的內容,提出相應的問題進行復習鞏固,同時提出新問題——正方體的表面積是如何求解的?然後讓學生根據所學的內容進行合理的猜測,並且舉例證明觀點是否正確,最後由我來歸納總結。設計探究問題:1.你能根據表面積的概念說一下什麼叫做正方體的表面積嗎?2.如何計算正方體的表面積?還進行全班討論,正方體表面積計算方法和長方體表面積計算方法的區別與聯系。通過這種研究性的探討以及對比的方式,教好地完成了教學任務。學生從本質上理解了表面積的概念而且學會了如何根據實際情況求解長方體某幾個面的面積之和,使得學生真正融入到課堂的教學中,體現本身的學習自主地位和主人翁感。
二、以事實為依據,解決問題
在製作魚缸的問題中,首先幫助學生回憶生活中的實物,然後出示簡易模型進行教學。先問學生魚缸有沒有蓋子,接著啟發學生猜想如何計算製作魚缸所需材料的面積數量,從而引出問題,將學生的注意力集中在如何求解長方體某幾個面的面積之和的問題上來,這就激發了學生的求知、探索慾望。通過教學引導發現問題後,利用事實為依據,和學生一起解決問題。讓學生經歷一系列的探討研究過程,從不同角度發現問題。同時提出新的問題,讓學生帶著問題離開教室,對數學的學習保持一種新鮮感和神秘感。
三、鞏固知識,歸納要點
改變題目的要求,發現新問題,全班討論。經過多位同學敘述,他們便發現某些同學的認識是片面的,所敘述的內容是不完整的,所以結論不完全正確。要想得到全面正確的結論,就要用充分的事實來說話,資料這樣才能得到正確的結論。針對某些典型的錯誤觀點可以進行討論,推翻,說出問題的結果和原來預測的不同點(區別),然後和學生一起總結,加深印象。同時正確評估學生的觀點,通過練習,鞏固新舊知識,思考與討論問題的答案,大膽的進行猜測,做好記錄,最後歸納要點或者規律。新課程強調:教師是科學學習活動的組織者、引領者和親密的夥伴。我遵循這些理念開展以引導、合作、探究的學習方式進行教學,探究氣氛也更活躍,學生的科學探究能力有了一定提高。
四、教學需改進之處:
教師進一步做好「六認真」工作,提高教學能力,掌控好學生上課時的氣氛,幫助學生集中注意力,發現問題和解決典型問題,培養學生的敘述能力和運用能力,使得我們的教學工作能夠讓學生學以致用,全面發展,成為一個「十」字型人才。
❹ 小學數學教學案例分析
換成一個更形象的比喻小孩子更容易懂
比如:小強手裡有1個蘋果,老專師一開始給了小強2個蘋果,屬現在小強有3個蘋果了。過一會兒老師又給了他1個蘋果,最後小強一共有4個蘋果
如果老師先給小強1個蘋果,後面再給他2個蘋果,那結果呢
❺ 小學數學優秀案例《求一個數的幾倍是多少》教學設計與反思
《求一個數的幾倍是多少》是小學生初次接觸「倍」的概念的教學內容,目的是要求學生初步建立並理解「倍」的概念,初步建立「求一個數的幾倍是多少」的計算方法。
學情分析
1、教師的主觀分析:對於初次接觸「倍」的學生來說「倍」的概念是比較抽象的,難以理解。
2、學生認知發展分析:此內容是學生在學習了《7的乘法口決》後的一個學習內容,而學習理解「倍」的概念及「求一個數的幾倍是多少」的基礎就是乘法,為此應將乘法作為本節課學生學習的基礎來展開教學,以舊引新,化難為簡。
3、學生認知障礙點分析:本節內容是學生初次接觸「倍」這一新概念,在理解「倍」的時候思維遷移存在一定的難度。
綜上所述,本節課應充分利用學生原有的知識基礎結合直觀的方式構建新知,以學習活動為載體,通過探究學習的方式來解決問題,以突出重點,突破難點。在教學中多給學生感知的機會,讓學生親身經歷做的過程,體驗「倍」的意義及「求一個數的幾倍是多少」的方法,自然地探究出並接受新的知識,體驗數學即生活,感受數學的樂趣,數學的價值。
教學目標
知識與技能:理解掌握「倍」的意義及「求一個數的幾倍是多少」的計算方法。
過程與方法:設置情境,復習舊知,引出新知。通過擺一擺的活動,讓學生經歷探究新知的過程,引導學生理解掌握「倍」的意義及「求一個數的幾倍是多少」的計算方法。培養學生操作、觀察、推理、遷移的能力及語言表達能力。
情感態度價值觀:培養學生積極動腦的學習習慣和激發學生的學習興趣,培養合作探究能力,讓學生體驗數學即生活,感受數學的樂趣,數學的價值。
教學重點和難點
1、理解並建立「倍」的意義,
2、理解並掌握「求一個數的幾倍是多少」的計算方法。
❻ 小學數學教學案例
《比例的基本性質》第一課時
教學內容
教科書第43~44頁的例4以及相應的「試一試」,完成隨後的「練一練」和練習十的第1~4題。
教學目標:
1. 使學生認識比例的內項和外項,探索並掌握比例的基本性質。
2. 使學生在探索比例的基本性質的過程中,進一步體會數學知識的內在聯系,養成愛動腦、愛思考的的好習慣。
教學過程:
一.復習舊知。
什麼叫做比例?什麼樣的兩個比才能組成比例?
二.新授課。
1.出示例4 :把左邊的三角形按比例縮小得到右邊的三角形。
4㎝
2㎝
6㎝ 3㎝
你能根據圖中數據,寫出盡可能多的比例嗎?
各小組討論,然後匯報。教師根據學生回答,寫出幾組不同的比例。
2. 介紹比例中各部分的名稱。
教師介紹比例的「項」以及「前項」「後項」的含義。
3 : 6 = 2 : 4
外項
內項
提問:你能說出其它及各比例的內項和外項各是多少嗎?
3. 探索比例的基本性質。
引導學生認真觀察所寫出的不同的比例,放手讓學生在觀察中發現、思考。體會到組成比例的四個數中,6和2(或3和4)可以同時做內項也可以同時做外項;體會到兩個內項的積與兩個外項的積相等。
提問:通過觀察,你發現這些比例有什麼規律?
是不是所有的比例有這樣的規律呢?請同學們再寫出一些比例,驗證一下發現的規律是不是在這些比例中也同樣存在。
引導學生用字母表示發現的這一規律。
如果用字母表示比例的四個項,即a:b=c:d那麼這個規律可以表示成
。
出示比例的基本性質,並讓學生說一說。
【在比例里,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。】
如果把比例寫成分數形式(板書: =),請說一說外項和內項。
提問:在這個比例里交叉相乘的積有是什麼關系?
為什麼交叉相乘的積相等。(根據比例基本性質)
4.教學「試一試」。
先讓學生假設這兩個比能組成比例,並說出所組成的比例的外項和內項分別是幾,再分別計算外項的積和內項的積,根據比例的基本性質判斷是否正確。
三.鞏固練習。
做「練一練」。
先讓學生嘗試解答,再通過討論進一步明確,判斷四個數能否成比例的方法可以用這四個數寫成兩個比,根據比值是否相等作出相應的判斷;也可以把者四個數分成兩組,根據每組數中兩個數的乘積是否相等作出判斷。要引導學生通過交流發現,運用比例的基本性質進行判斷比較簡便。
四.達標檢測:
(1)應用比例的基本性質,判斷下面沒組的兩個比能否組成比例,能組成比例的寫出比例式。
6:9=9:12 0.6:0.2= :
: =6:4 0.6:0.2= :
(2)、下面各組的四個數能組成比例嗎?把組成的比例寫下來。
2、3、4、5 、 、 、
五.全課小結。
這節課你學會了什麼?有那些收獲和體會呢?
六.布置作業。
練習十第2、3、4題。
第二課時
教學內容:
教科書第45頁的例5以及相應的「試一試」,完成隨後的「練一練」,練習十的5~8題。和思考題。
教學目標:
1.使學生學會應用比例的基本性質解比例。
2.使學生在解比例的過程中,理解比例與方程的聯系和區別,體會數學知識之間的內在聯系。
教學過程
一. 復習舊知
1. 提問:什麼叫比例的基本性質?
2. 根據比例的基本性質把下面的比例改寫成積相等的式子。(口答)
4﹕3=2﹕1.5 =X﹕4=1﹕2
提問:根據積相等的式子,你能求出最後一題里的x 嗎?
3. 引入新課。
今天我們將繼續學習比例的基本性質。
二. 教學新課。
1. 出示例5.李明在電腦上把下面的照片按比例放大,放大後照片的長是13.5厘米,寬是多少厘米?
提問:題中「按比例放大」是什麼意思?
使學生明白了所謂的把照片「按比例放大」,就是把原圖形中的各部分線段都按相同的比例放大。也就是說,放大前後相關線段的厘米數是可以組成不同比例的。
請同學們試試看,可以組成哪些比例?
放大後的寬不知道,我們可以用什麼表示?
請同學們列出含有未知數的比例式。
你能運用比例的基本性質求出比例中的未知項嗎?
讓學生嘗試解答,提醒列比例前要先寫設語。
解:設放大後照片的寬是X厘米。
13.5:6=X:4
6X=13.5×4 第一步計算依據是什麼?
6X=54
X=
答:放大後照片的寬是厘米。
解答後教師說明:【像上面這樣求比例中的未知項,叫做解比例。】
2教學「試一試」。
要求學生獨立完成。完成後,追問學生解題時的思考過程。
三. 鞏固練習。
1. 做「練一練」
要求學生獨立完成。完成後適當的追問學生思考過程,突出比例基本性質在解比例過程中的作用。
2. 做「思考題」
先讓學生讀題,理解題意,然後重點引導學生弄清楚「兩個外項正好互為倒數」的含義,使學生明白:所謂「兩個外項正好互為倒數」,就是說「兩個外項的乘積是1」。而根據比例的基本性質,可以推知「兩個內項的積也是1」。所以另一個內項應該是的倒數.
四.達標檢測:
(1)填空
1)( )叫做解比例。
2)已知比例中的任何三項,根據比例的( )可求出另一個未知項。
3)一個比例的兩個內項分別是1.8和0.6,這個比例兩個外項的積是( )
4)把、0.5、20%、再配上一個數組成比例,這個數是()。
(2)、解比例
五.全課小結
這節課學習的內容是什麼?應用比例的基本性質怎樣解比例?
六. 布置作業。
課本練習十第6、7、8三題。
❼ 小學數學案例設計!
這種題在小學經常用到,學生容易混淆:先確定單位「1」,單位「1」的數作除數。專求每米重就用長度做除數,屬求每千克長就用重量做除數。講解後再做練習,如:小剛2/3小時走了5/6千米,他每小時走了多少千米?走一千米用多少小時?