⑴ 小學數學難題大全
小學數學公式大全一、小學數學幾何形體周長 面積 體積計算公式長方形的周長=(長+寬)×2 C=(a+b)×2 正方形的周長=邊長×4 C=4a 長方形的面積=長×寬 S=ab 正方形的面積=邊長×邊長 S=a.a= a 三角形的面積=底×高÷2 S=ah÷2 平行四邊形的面積=底×高 S=ah 梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 圓的面積=圓周率×半徑×半徑三角形的面積=底×高÷2。 公式 S= a×h÷2 正方形的面積=邊長×邊長 公式 S= a×a 長方形的面積=長×寬 公式 S= a×b 平行四邊形的面積=底×高 公式 S= a×h 梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。長方體的體積=長×寬×高 公式:V=abh 長方體(或正方體)的體積=底面積×高 公式:V=abh 正方體的體積=棱長×棱長×棱長 公式:V=aaa 圓的周長=直徑×π 公式:L=πd=2πr 圓的面積=半徑×半徑×π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh 圓錐的體積=1/3底面×積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。分數的乘法則:用分子的積做分子,用分母的積做分母。分數的除法則:除以一個數等於乘以這個數的倒數。二、單位換算(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤(5)1公頃=10000平方米 1畝=666.666平方米(6)1升=1立方分米=1000毫升 1毫升=1立方厘米(7)1元=10角1角=10分1元=100分(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分 1分=60秒 1時=3600秒三、數量關系計算公式方面 1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數 2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數 3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度 4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價 5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率 6、加數+加數=和 和-一個加數=另一個加數 7、被減數-減數=差 被減數-差=減數 差+減數=被減數 8、因數×因數=積 積÷一個因數=另一個因數 9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數四、算術方面 1.加法交換律:兩數相加交換加數的位置,和不變。 2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。 3.乘法交換律:兩數相乘,交換因數的位置,積不變。 4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。 5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。 6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。 7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。 8.方程式:含有未知數的等式叫方程式。 9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。 10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。 11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。 12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。 13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。 14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。 15.分數除以整數(0除外),等於分數乘以這個整數的倒數。 16.真分數:分子比分母小的分數叫做真分數。 17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。 18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。 19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。 20.一個數除以分數,等於這個數乘以分數的倒數。 21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。五、特殊問題和差問題的公式 (和+差)÷2=大數 (和-差)÷2=小數和倍問題和÷(倍數-1)=小數小數×倍數=大數 (或者 和-小數=大數) 差倍問題差÷(倍數-1)=小數小數×倍數=大數 (或 小數+差=大數) 植樹問題 1 非封閉線路上的植樹問題主要可分為以下三種情形: (1)如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1) (2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼: 株數=段數=全長÷株距全長=株距×株數株距=全長÷株數(3)如果在非封閉線路的兩端都不要植樹,那麼: 株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1) 2 封閉線路上的植樹問題的數量關系如下株數=段數=全長÷株距全長=株距×株數株距=全長÷株數盈虧問題 (盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數相遇問題相遇路程=速度和×相遇時間相遇時間=相遇路程÷速度和速度和=相遇路程÷相遇時間追及問題追及距離=速度差×追及時間追及時間=追及距離÷速度差速度差=追及距離÷追及時間流水問題(1)一般公式: 順流速度=靜水速度+水流速度逆流速度=靜水速度-水流速度靜水速度=(順流速度+逆流速度)÷2 水流速度=(順流速度-逆流速度)÷2 (2)兩船相向航行的公式: 甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度 (3)兩船同向航行的公式: 後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度濃度問題溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量利潤與折扣問題利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100% 漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1) 利息=本金×利率×時間稅後利息=本金×利率×時間×(1-5%) 工程問題 (1)一般公式: 工作效率×工作時間=工作總量 工作總量÷工作時間=工作效率 工作總量÷工作效率=工作時間 (2)用假設工作總量為「1」的方法解工程問題的公式: 1÷工作時間=單位時間內完成工作總量的幾分之幾 1÷單位時間能完成的幾分之幾=工作時間
⑵ 小學5年級數學難題
長方體和正方體的表面積相等。即4.2*3+4.2*2+3*2=27,27*2=56就是長方體和正方體的表面積。正方體有6個面,所以56/6就是一個面的面積。
棱長為1分米的正方形體積為1立方分米,棱長為1厘米的正方體體積為1立方厘米。1立方分米=1000立方厘米,所以可擺1000厘米長。
⑶ 數學問題,小學
上午8時,在公園門口的迎客松前測得壯壯的影子是0.6米,迎客松影長9米,壯壯身高1.5米,迎客松多少米?
1.5÷0.6×9
=2.5×9
=22.5(米)
下午5時,壯壯和濤濤離開公園,在迎客松前測得壯壯影長2.4米,濤濤影長2.24米,只是影子朝東了。濤濤身高多少米?此時迎客松影子多少米?
1.5÷2.4×2.24
=0.625×2.24
=1.4(米)
22.5÷(1.5÷2.4)
=22.5÷0.625
=36(米)
⑷ 求10道小學生數學難題,要難得!奧數中的難題,5、6年級(最好是應用題,圖片的也可以) 謝謝
小明和小強同時從甲地出發去乙地。小明分別以5千米,4千米,3千米的時速行了同樣多的路程;小強分別以5千米。4千米,3千米的時速行了同樣多的時間。請問:誰先到達乙地?若快者到達乙地時,慢者還有0.5千米的路程,則甲乙兩地相距多少千米?
⑸ 小學5年級的數學難題帶答案
華羅庚數學學校五年級練習(三)1等差數列求和
一個數列,從第二個數起,每一個數減去它前面一個數的差是一個定數,這樣的數列叫做等差數列,這個定數叫做公差。例如:
(1)1、2、3、4、5、……99、100 (2)1、3、5、7、9、……97、99
(3)4、10、16、22、28……82、88
以上三個數列都是等差數列,數列(1)的公差是1,數列(2)的公差是2,數列(3)的公差是6。數列中每一個數都稱為數列的項,第一個數稱為第一項,第二個數稱為第二項,其餘類推。如果一個數列的項數是有限的,我們就把第一項稱為首項,最後一項稱為末項。
等差數列的和=(首項+末項)×項數÷2 末項=首項+公差×(項數—1)
首項=末項—公差×(項數—1) 項數=(末項—首項)÷公差+1
例1 1+3+5+7+……+1997+1999=? 例2 求首項為5,末項為155,
項數為51的等差數列的和。
例3 有60個數,第一個數是7,從 例4 數列3、8、13、18、……
第二個數開始,後一個數總比前 的第80項是多少?
一個數多4,求這60個數的和。 例5 3+7+11+……+99=?
例6 一個15項的等差數列,末項為110,公差為7。這個等差數列的和是多少?
五年(三)下盈 虧 問 題
1、一個植樹小組去栽樹。如果每人栽5棵,還剩下14棵樹苗;如果每人栽7棵,就缺少4棵樹苗。這個小組有多少人?一共有多少棵樹苗?
2、學校買了若干個籃球,平分給各班。如果每班分4個,則多餘14個;如果每班分5個,則正好分完。學校買了多少個籃球?有多少個班?
3、燕西街道幼兒班給小朋友們分蘋果。如果每人分6個,則缺少72個;如果每人分4個,則正好分完。求這個幼兒班的小朋友人數和所分蘋果的總數。
4、某車間擬訂生產計劃,預定生產機件若干。如果每組完成16件,可以超額6件;如果每組完成15件,尚能超額2件。這個車間預定生產機件多少件?工人有多少組?
5、四年級(1)班以鉛筆獎勵優秀生。每人獎14支,則缺19支;每人獎12支,則缺11支。這個班有幾名優秀生?有多少支鉛筆?
6、小華每天早晨7點從家出發到學校上學。如果每分走60米,則要遲到6分;如果每分走80米,則可以提前3分到校。從家出發需走多少分准時到校?小華家離學校有多少米路程?
7、在橋上用繩子測量橋的高度,把繩子對折後垂到水面時還餘5米,把繩子三折後垂到水面還餘2米。求橋高和繩長。
五年級練習(四)上 按新定義運算
數學競賽中,有一種要求按新定義進行運算的問題。這類題的特點是,規定了新定義的運算符號和新的運算順序,要求按照新定義用新的運算方法進行一種新的運算。按新定義運算的題目,趣味性強,靈活度大,它雖與課本的數學知識不一樣,但我們可以用所學的知識去解答。解答的關鍵是正確理解定義,並按新定義的關系式,把問題轉化為我們所熟知的四則運算。解答這類題有助於提高我們的觀察能力、分析能力、應變能力和運算能力。
例1 已知2 3=2+22+222=246,3 4=3+33+333+3333=3702,……按此規則計
算:(1)3 2; (2)5 3; (3)1 X=123,求X。
例2 已知A※B=(A+B)×(A—B), 例3 規定1※4=1×2×3×4,
求20※15的值。 6※5=6×7×8×9×10,那麼
(4※5)÷(6※3)=?
例4 規定[a、b、c、d]=9ab—cd, 例5 設a*b表示a的4倍減去b
如果[1、2、3、X]=3,求X的值。 的3倍,即a*b =4a—3b。
(1)計算:(1.5*0.8)*0.5;
(2)已知X*(5*2)=46,求X。
例6 如果A>B,那麼[A,B]=A;如果A<B,
那麼[A,B]=B。試求(1)[8,0.8];
(2){[1.9,1.90],1.9} 例7 n為自然數,規定f(n)=3n—2,
例如f(3)=3×3—2=7。試求:
f(1)+f(2)+f(3)+……+f(100)
的值。
例8 如果1=1! 1×2=2! 1×2×3=3! …… 1×2×3……×100=100!
那麼1!+2!+3!+……+100!的個位數字是( )。
華羅庚數學班五年級練習(四)下 還 原 問 題
1、有一個數,把它乘以5以後減去26,再把所得的差除以4,然後加上13,最後得29。這個數是幾?
2、某車間按工人超產情況發獎金。將獎金全額的一半發給甲,再將剩下的一半發給乙,然後發給丙80元,發給丁7元,最後餘下4元。這筆獎金共有多少元?
3、一位老人說:「把我的年齡數加上17,然後用4除,再減去15後乘以10,恰好是100。」這位老人有多少歲?
4、有甲、乙兩數,甲數減去乙數的結果等於7;乙數加上甲數,然後乘以甲數,再減去甲數,最後除以甲數,其結果等於甲數。求甲、乙兩數。
5、有一個賣桃子的人,拿了一籃桃子到各家銷售:到第一家,先嘗了一個,然後買去所余的一半;到第二家,又是先嘗一個,再買去所余的一半;到第三家,還是先嘗一個,買去所余的一半。這時籃子里還剩下35個桃子。原來這籃桃子共有多少個?
6、某人外出旅行,先用去旅費的一半多350元,回來又用去餘款的一半少130元,到家還剩285元。他帶去旅費多少元?
7、東興機器廠有5個車間,今年計劃生產車床比去年多一倍,結果比計劃還超額480台。已知每個車間即使少生產120台,也能達到800台。這個廠去年生產車床多少台?
8、某數加上1,減去2,乘以3,用4除,結果得6。這個數是幾?
五年級練習(五) 數 圖 形
一個五邊形,把它的對角線連成一個
五角星(如右圖),圖中一共有多少個三角
形?像這樣的問題,就是圖形的計數問題。
計數時要求做到既不重復,又不遺漏。
例1 下圖中,有多少條線段? 例2 數出右圖中共有多少條線段?
A B C D E
例3 數出右圖中共有( )個三角形? 例4 數出下圖正五邊形中共有( )個三角形?
A
E B
D C
例5 數出下圖中正方形的總數( )個。 例6 數出下圖中共有( )個長方形。
⑹ 小學數學難題
1.
車速提高20%,為原來的:
1+20%=6/5
行駛同樣的路程,所用時間為原來的5/6
所以內原定時間為:
1÷(1-5/6)容=6小時
車速提高25%,為原來的:
1+25%=5/4
行駛同樣的路程,所用時間為原來的4/5
所以提速後的路程,如果按原速度來行駛,需要:
40/60 ÷(1-4/5)=10/3小時
原速度行駛的120千米,用了:
6-10/3=8/3小時
原速度為每小時:
120÷8/3=45千米
甲乙相距:
45×6=270千米
2.
空餘部分和水的體積比為12:10=6:5
水有:1430÷(6+5)×5=650升
3.
圓錐和圓柱水箱的底面積之比為:
15*15:30*30=1:4
零件的高和水箱下降高度的比為:
1×3÷1:1÷4=12:1
零件高:2.5×12=30厘米
4.
如果每天制136個奧特曼
每天制136×2=272個阿童木
阿童木和奧特曼同時制完
現在每天製作的阿童木少了272-230=42個
剩下了210個阿童木
所以一共製作了:210÷42=5天
阿童木:272×5=1360個
奧特曼:136×5=680個
⑺ 小學數學難題有那幾個
小學數學重點有三個(本人認為)
一個是代數,第二個平面幾何和立體幾何,第三個是統計與一些雜題。
代數主要包括方程,還有一些數學的基礎,例如什麼質數合數什麼的。特別是方程,要重點復習。
平面幾何主要包括小學學的基礎圖形,還要記住基礎概念,例如什麼三角形具有穩定形,還要背公式,最總要的一點是靈活靈用。
立體幾何,這是小學的難點,建議多做題。
統計等,這些都很簡單,可以簡要看一看
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 Ѕ=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體
1、 每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高 s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒積=底面積×高 V=Sh
希望能給你幫助! 謝謝....
⑻ 求小學6年級數學難題及答案
1、把一個正方體木塊削成一個最大的圓柱,這個圓柱的體積是94.2cm³,求正方體木塊的體積。
分析:把正方體木塊削成最大的圓柱,則圓柱的底面直徑和高都是正方體的棱長。設正方體的棱長為a(a>0),則正方體的體積是a³,圓柱的體積是π×(a÷2)²×a=π÷4×a³,說明圓柱體積是正方體體積的π÷4。
解答:94.2÷(3.14÷4)=
2、有一個底面直徑為20cm的裝有一些水的圓柱型玻璃杯,已知杯中水面距杯口3cm。若將一個圓錐形鉛錐浸入杯中,水會溢出20mL。求鉛錐的體積。
分析:鉛錐的體積等於底面直徑為20cm,高為3cm的圓柱的體積是加上溢出杯外的水的體積,與鉛錐的形狀無關。
解答:3.14×(20÷2)²×3+20=
3、一個正方體的體積是225cm³,一一個圓錐的底面半徑和高都等於該正方體的棱長。求這個圓錐的體積。
分析:設正方體的棱長為a,則a³=25cm³。根據圓錐和正方體的關系可知圓錐的體積為1/3πa²×a=1/3πa²
解答:1/3×3.14×225=
4、師徒兩人生產同一種零件,已知師傅生產的零件數比徒弟多1/3,而徒弟所用的時間卻比師傅少1/4。求師徒二人的工作效率比。
分析:把徒弟的工作總量看作整體一,則師傅的工作總量是(1+1/3),把師傅的工作時間看作整體一,則土地的工作時間是(1-1/4)
解答:1:1
5、一隻獵狗發現在離它8m遠的前方有一隻正在奔跑的小兔,就立刻追上去。已知獵狗跑2步的路程是小兔跑5步的路程,但是小兔的動作快,小兔跑5步的時間獵狗卻只能跑3步。獵狗至少要跑出多少米才能追上小兔?
分析:獵狗跑2步的路程小兔要跑5步,則獵狗的步長:小兔的步長=1/2
:1/4=5:2。小兔跑5步的時間獵狗能跑3步,則獵狗跑的步數:小兔跑的步數=3:5。因此,獵狗跑的路程:小兔跑的路程=(5×3):(2×5)=3:2。
解答:1/2:1/5
(5×3):(2×5)=3:2
x:(x-80)=3:2
6、一艘輪船往返於A、B兩港之間一次用8小時。由於順風順水,從A港開往B港時每小時行45km,返回時每小時行35km,A、B兩港相距多少千米?
分析:因為往返路程相等,所以速度和時間成反比例。45:35=9:7,因此去時的時間和返回的時間比是7:9。
解答:45:35=9:7
45×(8×7/16)=315/2(km)
7、製作一批零件,甲單獨完成要8個小時,已知甲、乙的工作效率比是4:3,那麼乙單獨完成要多長時間?
分析:把這批零件總數看做單位一,則甲的工作效率是1/8,若乙單獨完成要x小時,則以的工作效率為1/x。甲、乙的工作效率比是1/8
:1/x,也就是4:3,由此列出方程。
解答:1/8:1x=4:3
8、配件一車間加工一批零件,如果每小時加工零件30個,可比原計劃提前10小時完成。如果每小時加工零件20個,可比原計劃提前6小時完成,這批零件有多少個?
分析:這批零件的總數一定,所以每小時加工的零件數和加工時間成反比例。
解答:30×(x-10)=20×(x-6)
x=18
零件總數:30×(18-10)=
9、李明用同樣的杯子給自己倒了一滿杯可樂,又給媽媽倒了一滿杯果汁。李明先喝了半杯可樂,媽媽喝一口後剩2/3杯果汁,然後李明用自己杯中的可樂將媽媽的杯子添滿,充分混合後媽媽又將自己杯中的飲料將李明的杯子添滿,最後兩人又各自喝完杯中所有飲料。問李明喝了幾分之幾杯可樂?
分析:李明喝的可樂包括他第一次喝的半杯、倒給媽媽後杯中剩下的部分以及媽媽又倒入李明杯中的可樂。
解答:第一次李明喝了1/2杯,還剩1-1/2=1/2(杯)
倒入媽媽杯中的可樂是1-2/3=1/3(杯),還剩1/2-1/3=1/6(杯)
媽媽倒回李明杯中後剩下的可樂是1/3×1/6=1/18(杯)
李明喝了1-1/18=17/18(杯)
⑼ 小學數學難題張小冬去上學
分析:找出在相同的時間內,張小冬不同走法,路程的差和速度差是關鍵.現在從張小冬開始加速起,到他應到學校的時間為止研究.
如果他不加速,則還差 50×8=400米才能到學校.
如果他加速則可以多走(50+10)×5=300米.由路程差與速度差,得出
這一段路程所需時間為(400+300)÷10=70分
他家學校到學校距離為50×(2+70+8)=4000米
⑽ 小學數學難題
小學數學公式大全,第一部分: 概念。
1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數,乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7,什麼叫等式 等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式 答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式 答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。
異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。
17,假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33,要學會把小數化成分數和把分數化成小數的化發。
34,最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個, 叫做最大公約數。)
35,互質數: 公約數只有1的兩個數,叫做互質數。
36,最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
37,通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
38,約分:把一個分數化成同它相等,但分子,分母都比較小的分數,叫做約分。(約分用最大公約數)
39,最簡分數:分子,分母是互質數的分數,叫做最簡分數。
40,分數計算到最後,得數必須化成最簡分數。
41,個位上是0,2,4,6,8的數,都能被2整除,即能用2進行
42,約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
43,偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
44,質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
45,合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
46,利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
47,利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
幾年級的?先給你公式。
48,自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
49,循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3。 141414
50,不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。如圓周率:3。 141592654
51,無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3。 141592654……
52,什麼叫代數 代數就是用字母代替數。
53,什麼叫代數式 用字母表示的式子叫做代數式。如:3x =ab+c