導航:首頁 > 小學學科 > 小學5年級數學重點

小學5年級數學重點

發布時間:2020-12-29 23:45:46

小學五年級數學復習

五年級數學基礎知識復習資料 更多相關文章 相關課件 (一)整數
1、自然數和0都是整數。
2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。 一個物體也沒有,用0表示。0也是自然數。
3、計數單位:一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4、數位:計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5、數的整除:整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
6:倍數和因數:如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的因數。倍數和因數是相互依存的。 因為35能被7整除,所以35是7的倍數,7是35的因數。
7、一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。例如:10的因數有1、2、5、10,其中最小的因數是1,最大的因數是10。
8、一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、…其中最小的倍數是3 ,沒有最大的倍數。
9、個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
10、個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
11、一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
12、能被2整除的數叫做偶數。 不能被2整除的數叫做奇數。 0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
13、一個數,如果只有1和它本身兩個因數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
14、一個數,如果除了1和它本身還有別的因數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
15、1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其因數的個數的不同分類,可分為質數、合數和1。
16、每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
17、把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 例如把28分解質因數 28=2×2×7
18、幾個數公有的因數,叫做這幾個數的公因數。其中最大的一個,叫做這幾個數的最大公因數,例如12的因數有1、2、3、4、6、12;18的因數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因數,6是它們的最大公因數。
19、公因數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
20、1和任何自然數互質。 相鄰的兩個自然數互質。兩個不同的質數互質。 當合數不是質數的倍數時,這個合數和這個質數互質。兩個合數的公因數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
21、如果較小數是較大數的因數,那麼較小數就是這兩個數的最大公因數。
22、如果兩個數是互質數,它們的最大公因數就是1。
23、幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
24、如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
25、幾個數的公因數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1、小數的意義 :把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
2、一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數是整數部分,小數點右邊的數叫做小數部分。
3、在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
(三)分數
1、分數的意義 :把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
2、把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
3、分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。 假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
4、約分:把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
5、分子分母是互質數的分數叫做最簡分數。
6、把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)求最大公因數和最小公倍數的方法
例題:求20和45的公因數和最大公因數
方法一列舉法(通用):20的因數: 1、20、2、10、4、5;45的因數: 1、45、3、15、5、9,所以20和45的公因數是:1、5;
20和45的最大公因數:5
方法二:短除法(運用短除法,要除到商的公因數只有1時為止。)
5|20 45
4 9
所以20和45的最大公因數是2×2×3=12
求出12和30的最小公倍數。
方法一:12的倍數有:12,24,36,48,60,72……; 30的倍數有:30,60,90,120……
12和30的最小公倍數是60。
方法二:用短除法:(運用短除法,要除到商的公因數只有1時為止。)
2|12 30
3|6 15
2 5
12和30的最小公倍數是2×3×2×5=60。
(五) 約分和通分
1、約分的方法:用分子和分母的公因數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
2、通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
三 性質和規律
1、商不變的規律 :商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
2、小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。
3、小數點位置的移動引起小數大小的變化
(1)小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……
(2)小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……
(3)小數點向左移或者向右移位數不夠時,要用「0"補足位。
(五)分數的基本性質
分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。
(六)分數與除法的關系
1. 被除數÷除數= 被除數/除數
2. 因為零不能作除數,所以分數的分母不能為零。
3. 被除數 相當於分子,除數相當於分母。
四 運算的意義
(一)整數四則運算
加數+加數=和
一個加數=和-另一個加數
被減數-減數=差
被減數=減數+差
減數=被減數-差
一個因數× 一個因數 =積
一個因數=積÷另一個因數
被除數÷除數=商
除數=被除數÷商
被除數=商×除數
(四)運算定律
1. 加法交換律:兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2. 加法結合律:三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4. 乘法結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質:
從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c) 。
(五)運演算法則
1. 整數加法計演算法則:
相同數位對齊,從低位加起,哪一位上的數相加滿十,就向前一位進一。
2. 整數減法計演算法則:
相同數位對齊,從低位加起,哪一位上的數不夠減,就從它的前一位退一作十,和本位上的數合並在一起,再減。
3. 整數乘法計演算法則:
先用一個因數每一位上的數分別去乘另一個因數各個數位上的數,用因數哪一位上的數去乘,乘得的數的末尾就對齊哪一位,然後把各次乘得的數加起來。
4. 整數除法計演算法則:
先從被除數的高位除起,除數是幾位數,就看被除數的前幾位;如果不夠除,就多看一位,除到被除數的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補「0」佔位。每次除得的余數要小於除數。
5. 小數乘法法則:
先按照整數乘法的計演算法則算出積,再看因數中共有幾位小數,就從積的右邊起數出幾位,點上小數點;如果位數不夠,就用「0」補足。
6. 除數是整數的小數除法計演算法則:
先按照整數除法的法則去除,商的小數點要和被除數的小數點對齊;如果除到被除數的末尾仍有餘數,就在余數後面添「0」,再繼續除。
7. 除數是小數的除法計演算法則:
先移動除數的小數點,使它變成整數,除數的小數點也向右移動幾位(位數不夠的補「0」),然後按照除數是整數的除法法則進行計算。
8. 同分母分數加減法計算方法:
同分母分數相加減,只把分子相加減,分母不變。
9. 異分母分數加減法計算方法:
先通分,然後按照同分母分數加減法的的法則進行計算。
10. 帶分數加減法的計算方法:
整數部分和分數部分分別相加減,再把所得的數合並起來。
一. 教學內容:
總復習(一)

教學目標:
1. 系統本冊教材的1-3單元的內容;
2. 復習小數乘除法的意義及計算方法,逐步提高小數乘除法計算的正確率;
3. 鞏固復習四則混合運算的運算順序,靈活地運用運算定律進行小數四則運算及簡算;
4. 鞏固復習多邊形面積公式,並能運用公式正確求平面圖形的面積及靈活地解決實際問題。

二. 重點、難點
1. 正確靈活地進行四則混合運算及簡算;
2. 正確靈活地運用平面圖形的面積公式進行平面圖形的面積的計算及解決實際問題。

本周教學內容的知識概況
本冊教材1-3單元內容:
1. 分數乘除法的意義;
2. 分數乘除法的計演算法則;
3. 四則混合運算
4. 平面圖形

總復習過程:
(一)小數乘除法的意義及法則
1. 小數乘法意義:
小數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。例:3.5×4表示4個3.5相加是多少。或表示3.5的4倍是多少。
一個數乘小數的意義與整數乘法的意義不同,是求這個數的十分之幾,百分之幾,千分之幾……。例:25×0.17,表示25的百分之十七是多少。
2. 小數除法的意義
小數除法的意義與整數除法的意義相同,是已知兩個因數的積與其中的一個因數,求另一個因數的運算。例: 表示已知兩個因數的積是0.75和其中一個因數0.5,求另一個因數是多少。或表示0.75是0.5的多少倍。

(二)小數乘除法的計演算法則
1. 小數乘法法則:
(1)先按照整數乘法的法則計算;
(2)看因數中一共有幾位小數,就從積的右邊數出幾位,點上小數點。
2. 小數除法法則:
(1)先按照整數除法的法則去除;
(2)商的小數點和被除數的小數點對齊;
(3)除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。

第二章 度量衡
(一) 長度常用單位
* 千米(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)
(三) 單位之間的換算
1厘米 =10 毫米 *1分米 =10 厘米 * 1米 =10分米毫米 * 1千米 =1000 米
二 面積 (面積,就是物體所佔平面的大小。對立體物體的表面的多少的測量一般稱表面積。
(二)常用的面積單位
* 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米
(三)面積單位的換算
* 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米
* 1公傾 =10000 平方米 * 1平方公里 =100 公頃
三、質量
(一)什麼是質量
質量,就是表示表示物體有多重。
(二)常用單位
* 噸 t * 千克 kg * 克 g
(三)常用換算
* 一噸=1000千克
* 1千克=1000克
五 時間
(一)什麼是時間
是指有起點和終點的一段時間
(二)常用單位
世紀、 年 、 月 、 日 、時 、 分、 秒
(三)單位換算
* 1世紀=100年
* 1年=365天 平年
* 一年=366天 閏年
* 一、三、五、七、八、十、十二是大月 大月有31 天
* 四、六、九、十一是小月小月 小月有30天
* 平年2月有28天 閏年2月有29天
* 1天= 24小時
* 1小時=60分
* 一分=60秒
第三章 代數初步知識
一、用字母表示數
1 用字母表示數的意義和作用
* 用字母表示數,可以把數量關系簡明的表達出來,同時也可以表示運算的結果。
2用字母表示常見的數量關系、運算定律和性質、幾何形體的計算公式
(1)常見的數量關系
路程用s表示,速度v用表示,時間用t表示,三者之間的關系:
s=vt v=s/t t=s/v
總價用a表示,單價用b表示,數量用c表示,三者之間的關系:
a=bc b=a/c c=a/b
(2)運算定律和性質
加法交換律:a+b=b+a
加法結合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質:a-(b+c) =a-b-c
(3)用字母表示幾何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。 c=2(a+b) s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示。 c=4a s=a²
平行四邊形的底a用表示,高用h表示,面積用s表示。 s=ah
三角形的底用a表示,高用h表示,面積用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示, s=(a+b)h/2
3 用字母表示數的寫法
數字和字母、字母和字母相乘時,乘號可以記作「.」,或者省略不寫,數字要寫在字母的前面。
當「1」與任何字母相乘時,「1」省略不寫。
【模擬試題】(答題時間:60分鍾)
一. 口算
537-98 100-0.91 1.25×8 4.3×1.01
2.3×11 500×0.001 7÷1.25 100-0.1
13÷0.25 4.2÷0.02 7.28÷0.7 0.6×0.9

二. 填空
1. 3.07平方米=( )平方分米
2. 0.55時=( )分 1時15分=( )時
3. 一個三角形的面積是1.8平方米,與它等底等高的平行四邊形的面積是( )平方米
4. 一個梯形的面積是16.15平方厘米,已知它的上底6.3厘米,高是3.4厘米,它的下底是( )厘米
5. 兩個完全一樣的直角三角形,底是25厘米,高是18厘米,把它們拼成一個平行四邊形,這個平行四邊形的底是( )厘米,高是( )厘米
6. 8.036464……用簡便記法是( ),精確到百分位的是( )

三. 判斷
1. 當 時,a一定大於0.27( )
2. 不是方程( )
3. ( )
4. ( )

四. 脫式計算(能簡算的要簡算)
1.
2.
3.
4.

五. 按要求列式計算
1. 8.2除以0.2的商減去8與2.4的積,差是多少?
2. 8.35與3.75的和乘它們的差,積是多少?

六. 求下列圖形的面積(單位:厘米)

七. 解答下面的應用題
1. 一輛卡車從甲地到乙地,原計劃每小時行65千米,3.2小時到達。實際由於堵車,比原計劃多用0.8小時到達乙地,實際每小時行多少千米?
2. 師徒二人共要加工368個零件,師傅先加工6小時,每小時完成24個,剩下的由徒弟加工,徒弟每小時加工16個,徒弟需要加工幾小時才能完成?
3. 農機廠生產一批噴物器,每天生產240台,要26天完成,技術革新後,每天生產260台,這樣可以提前幾天完成?
4. 用一批布料製作兒童服裝,一條褲子用布0.8米,一件上衣比一條褲子多用布0.4米。如果全部做褲子可以做150條,如果全部做上衣可以做多少件?
5. 學校召開「親子運動會」,同學們要做10面小旗(如圖),一共要用彩紙多少平方厘米?

思考題:下圖是兩個完全一樣的直角三角形疊在一起,已知AB=8分米,BC=3分米,CD=5分米,求陰影部分的面積。

【試題答案】
一. 口算


二. 填空
1. 3.07平方米=(307)平方分米
2. 0.55時=(33)分 1時15分=(1.25)時
3. 一個三角形的面積是1.8平方米,與它等底等高的平行四邊形的面積是(3.6)平方米
4. 一個梯形的面積是16.15平方厘米,已知它的上底6.3厘米,高是3.4厘米,它的下底是(3.2)厘米
5. 兩個完全一樣的直角三角形,底是25厘米,高是18厘米,把它們拼成一個平行四邊形,這個平行四邊形的底是(25)厘米,高是(18)厘米
6. 8.036464……用簡便記法是( ),精確到百分位的是(8.04)

三. 判斷
1. 當 時,a一定大於0.27(×)
2. 不是方程(√)
3. (×)
4. (√)

四. 脫式計算(能簡算的要簡算)
1.
=13.02
3.
=1.1
這樣可以么?

⑵ 小學一到五年級數學知識重點匯總(詳細)

小學五年級全科目課件教案習題匯總語文數學

三 單 元
有兩個相對的面是正方形,長方體中相對的面完全相同;有12條棱,相對的棱長度相等;有8個頂點。
2、正方體的特徵:正方體有6個面,這6個面都是正方形,所有的面完全相同;有12條棱,所有的棱長度相等;有8個頂點。 正方體可以看成是長、寬、高都相等的長方體。
3、相交於一個頂點的3條棱的長度分別叫做長方體的長、寬、高。 4、長方體或者正方體的12條棱的總長度叫做他們的棱長總和。 長方體的棱長總和=(長+寬+高)×4, 用字母可以表示為=C長方體(a+b+h)4。
正方體的棱長總和=棱長×12,用字母可以表示為=12aC正方體。 5、長方體或者正方體6個面的總面積叫做它的表面積。
長方體的表面積=(長×寬+長×高+寬×高)×2,用字母表示為
=(ab+ah+bh)2S長方體。
正方體的表面積=棱長×棱長×6,用字母表示為2=6aS正方體。 6、物體所佔空間的大小叫做物體的體積。
計量體積要用體積單位,常用的體積單元有立方厘米、立方分米、立方米,用字母表示為3cm、3dm、3m。3311000dmcm,33
11000mdm。 7、棱長是1 cm的正方體,體積是13cm。一個手指尖的體積大約是13
cm。
棱長是1 dm的正方體,體積是13dm。一個粉筆盒的體積大約是13
cm。
棱長是1 m的正方體,體積是13
m。用3根1 m長的木條,做成一個互成直角的架子架在牆角,它的體積是13
cm。
8、長方體的體積=長×寬×高,用字母表示為=abhV長方體。 正方體的體積=棱長×棱長×棱長,用字母表示為3
=aV正方體。 長方體和正方體的統一公式:支柱體的體積=底面積×高。
9、容器所能容納物體的體積,叫做它的容積。計量容積一般就用體積單位,計量液體的體積,常用容積單位升和毫升,用字母表示是L和ml。

4
311Ldm,311mlcm,11000Lml
10、長方體或正方體容器的容積的計算方法,跟體積的計算方法相同。但是要從容器裡面量出長、寬、高。
11、形狀不規則的物體,求他們的體積,可以用排水法。水面上升或者下降的那部分水的體積就是物體的體積。

第 四 單 元
一、分數的意義
1、在進行測量、分物或計算時,往往不能正好得到整數的結果,這時常用分數來表示。
2、一個物體、一些物體等都可以看做一個整體,把這個整體平均分成若干份,這樣的一份或幾份都可以用分數來表示。把什麼平均分,什麼就是單位「1」。 3、把單位「1」平均分成若干份,表示其中的一份的數叫做分數單位。一個分數的分母越大,分數單位越小;一個分數的分母越小,分數單位越大。 4、分數與除法的關系:分數可以表示整數除法的商;除法里的被除數相當於分數中的分子,除數相當於分數里的分母,出號相當於分數線。 =
被除數被除數除數除數,=分子
分子分母分母

5、求一個數是另一個數的幾分之幾的解題方法:用除法計算。 =一個數一個數另一個數另一個數

在解決問題中,要先找出單位「1」和比較量,一般來說,問題中「是」或「占」的後面是單位「1」,前面的比較量,如果沒出現這兩個字,要根據題意判斷, 再根據公式「1=
1
比較量
比較量單位「」單位「」 」計算。
6、低級單位化高級單位(用分數表示)時,等於低級單位的數值兩個單位間的進率
,能約分的要約成最簡分數。 二、真分數和假分數
1、分子比分母小的分數叫做真分數,真分數小於1;
分子比分母大或者分子和分母相等的分數叫做假分數,假分數大於1或等於1;
由整數部分(不包括0)和真分數合成的分數叫做帶分數。
2、假分數化成整數或帶分數,要用分子除以分母。當分子是分母的倍數時,

5
能化成整數;當分子不是分母的倍數時,能化成帶分數,商是帶分數的整數部分,余數是分數部分的分子,分母不變。
3、帶分數化成假分數,用原來的分母做分母,用分母和整數的乘積再加上原來的分子作分子,用式子表示成:+=分母整數分子帶分數分母

三、分數的基本性質、約分、通分
1、分數的基本性質:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。可以利用分數的基本性質,對分數進行約分或通分,或者把分母化成指定的分母或分子的分數。
2、兩個數公有的因數,叫做它們的公因數。其中最大的公因數叫做它們的最大公因數。當兩個數成倍數關系時,較小的數就是他們的最大公因數;當兩個數只有公因數1時,它們的最大公因數就是1.(公因數只有1的兩個數叫做互質數)
3、求兩個數的最大公因數,可以用列舉法分別列出這兩個數的因數,再尋找公有的因數。也可以用短除法計算。
4、分子和分母只有公因數1的分數叫做最簡分數。
把一個分數化成和它相等,但分子分母都比較小的分數叫做約分。約分時可以用分子和分母的公因數(1除外)去除,一步步來約分,也可以直接用最大公因數去除,直接約分。
5、兩個數公有的倍數叫做它們的公倍數,其中最小的倍數叫做它們的最小公倍數。一般情況下,求一個數的倍數可以用列舉法、圖示法、大數翻倍法、短除法。當兩個數是倍數關系時,大數就是它們的最小公倍數;互質的兩個數的最小公倍數是它們的積。
6、把異分母分數分別化成和原來的分數相等的同分母分數,叫做通分。 四、分數和小數的互化 1、小數化分數的方法
小數化成分數時,小數部分有幾位小數,就在1後面寫幾個「0」作分母,把原來的小數去掉小數點後作分子。小數化成分數後,能約分的要約成最簡分數。
2、分數化小數的方法

6
①分母是10,100,1000„的分數化成小數,可以直接去掉分母,看分母1後面後面有幾個0,就在分子中從最後一位起向左數出幾位,點上小數點;分子位數不足時,用0補足,整數部分寫0.
②不是以上這些特徵的分數時,要用分子除以分母。除不盡的,根據「四捨五入」法保留一定的位數。
3、判斷一個分數是否能化成有限小數的方法:一個最簡分數,如果墳墓中只含有質因數2或5,這個分數就能化成有限小數。 4、比較幾個數的大小
如果只有兩個分數要比較大小:①分母相同的,分子大的分數就大;②分子相同的,分母越大的分數反而越小;③分子、分母都不相同的,要化成分母相同的分數再比較。
幾個數比較大小,包含分數和小數時,一般把分數化成小數後再比較大小,最後需要比較的是原數的大小。(需要特別注意是從大到小排列時要用大於號連接;而小到大排列,用小於號連接)

第 五 單 元
1、同分母分數相加減,計算時,分母不變,只是把分子相加減。
2、計算時要注意:當計算的結果是假分數時,要化成整數或帶分數;當計算的結果能約分的,一定要約成最簡分數;當幾個分數相減,分子等於0時,這個分數就是0.
3、任意一個自然數(1除外)作為分母的所有最簡真分數的和,等於最簡真分數的個數除以2.
4、計算異分母分數加減法,因為分母不同,就意味著分數單位不同,不能直接相加減。根據分數的基本性質,先進行通分,然後再按照同分母的分數加減法的計演算法則進行計算。
5、分數加減混合運算的運算順序和整數加減混合運算的順序相同,即從左到右依次計算,有括弧的要先算括弧裡面的。整數加法的交換律、結合律、減法的性質對於分數加減法仍然適用。

第六 單元 1、在一組數據中,出現次數最多的數就是這組數據的眾數,眾數能夠反映一組數據的集中程度。
2、在一組數據中,眾數可能不止一個,也可能沒有眾數。

小學數學五年級上冊重難點

第一單元:小數乘法。

1、小數乘整數------重點:理解小數乘整數的算理。

2、小數乘小數------重點:小數乘小數的計算方法。

3、積的近似數------重點:會用「四捨五入」法取積是小數的近似數。難點:根據實際情況取近似值。

4、連乘、乘加、乘減------重點:小數連乘、乘加、乘減的運算順序。難點:引導學生理解解決問題中出現的解題思路。

5、整數乘法運算定律推廣到小數------重點:理解整數乘法的運算定律在小數乘法中同樣適用。

第二單元:小數除法。

1、小數除以整數------重點:小數除以整數的計算方法。難點:讓學生理解商的小數點是如何確定的。

2、一個數除以小數------重點:掌握除數是小數除法的計算方法。

3、商的近似數------重點:求商的近似數時,商中的小數位數要比要求保留的小數位數多一位。

4、循環小數------重點:理解循環小數的意義,會用簡便方法讀寫循環小數。難點:怎樣判斷除得的商是循環小數。

5、解決問題------重點:訓練學生解決問題的思路,讓學生掌握分析問題的基本步驟。

第四單元:簡易方程。

1、用字母表示數------重點:會用字母表示數、運算定律及計算公式。

2、用含有字母的式子表示數量及數量關系------重點:用含有字母的式子表示數量。

3、方程的意義------重點:初步理解方程的意義。

4、解方程------重點:利用天平平衡的道理理解解比較簡單的方程的方法。

5、稍復雜的方程(一)------重點:學生自主探索通過列方程解決較復雜應用題的方法。

6、稍復雜的方程(二)------重點:分析數量關系。難點:列方程和解方程。

7、稍復雜的方程(三)------重點:正確設未知數,找出等量關系列方程並解決問題。

第六單元:統計與可能性。

1、可能性------重點:理解掌握可能性的意義,用分數表示可能性。

2、中位數------重點:理解中位數的意義,掌握求中位數的方法,能根據數據的具體情況及所要分析的問題選擇適當的統計量。

3、鋪一鋪------重點:認識密鋪,知道哪些圖形可以密鋪。

第七單元:數學廣角。

1、數學廣角(一)------重點:學會通過各種途徑查找資料,並能對搜集的信息進行分析,發現生活中數字編碼所反應的信息。

2、數學廣角(二)------重點:使學生能利用規律根據實際需要設計編碼,運用所學的知識給全校學生編碼,給班級圖書編號。

⑷ 小學數學五年級位置知識點總結

網路知道
位置的知識點
小學數學五年級位置知識點總結查看全部9個回答
小學數學五年級內位置知識點總結容
小學數學五年級位置知識點總結
我來答
熱心網友
2019-01-14
位置重要知識點整理
1、數對:一般由兩個數組成。
作用:數對可以表示物體的位置,也可以確定物體的位置。 2、行和列的意義:豎排叫做列,橫排叫做行。
3、數對表示位置的方法:先表示列,再表示行。用括弧把代表列和行的數字或
字母括起來,再用逗號隔開。例如:在方格圖(平面直角坐標系)中用數對(3,5)表示(第三列,第五行)。
註:(1)在平面直角坐標系中X軸上的坐標表示列,y軸上的坐標表示行。如:數對(3,2)表示第三列,第二行。
(2)數對(X,5)的行號不變,表示一條橫線,(5,Y)的列號不變,表示一條豎線。(有一個數不確定,不能確定一個點)
( 列 , 行 )
↓ ↓ 豎排叫列 橫排叫行
(從左往右看)(從下往上看)
4、兩個數對,前一個數相同,說明它們所表示物體位置在同一列上。 如:(2,4)和(2,7)都在第2列上。
5、兩個數對,後一個數相同,說明它們所表示物體位置在同一行上。如:(3,6)和(1,6)都在第6行上
望採納 謝謝

⑸ 小學五年級數學該怎麼復習

五年級屬於一個非常時期,面臨小升初的壓力必須要在這一時期將數學成績有所提高.另外五年級的數學難度有所提高,下一步是迎接初中.五年級在其中發揮重要的作用.那小學五年級數學輔導具體有哪些.

(難度)


對於孩子的學習往往使家長感到很頭大,此時可以在假期藉助輔導班來對孩子進行全面的輔導,從學習的要點到學習方法,還有就是學習習慣的養成利用好假期,使孩子在假期中不浪費時間,提高數學的成績.小學五年級數學輔導單單依靠家庭有時候是不能完成的,家長朋友給孩子找個輔導班或者是一對一家教,利用假期時間,制定好學習計劃,讓孩子嚴格按照計劃按部就班堅持去做,相信會有很大的收獲.

⑹ 怎樣學好五年級數學,小學數學重點概念

1,加法交換律:兩數相加交換加數的位置,和不變。
2,加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3,乘法交換律:兩數相乘,交換因數的位置,積不變。
4,乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5,乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變
6,除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 0除以任何不是0的數都得0。
簡便乘法:被乘數,乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。

7,什麼叫等式
等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8,什麼叫方程式
答:含有未知數的等式叫方程式。
9, 什麼叫一元一次方程式
答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
10,分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11,分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12,分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。

13,分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14,分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15,分數除以整數(0除外),等於分數乘以這個整數的倒數。
16,真分數:分子比分母小的分數叫做真分數。
17,假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18,帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19,分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。

20,一個數除以分數,等於這個數乘以分數的倒數。
21,甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
分數的加,減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
22,什麼叫比:兩個數相除就叫做兩個數的比。
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
23,什麼叫比例:表示兩個比相等的式子叫做比例。
24,比例的基本性質:在比例里,兩外項之積等於兩內項之積。
25,解比例:求比例中的未知項,叫做解比例。

26,正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
27,反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
28,百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
29,把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
30,把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
31,把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
32,把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
33,要學會把小數化成分數和把分數化成小數的化法。

⑺ 小學五年級數學知識點

小學五年級數學上冊期末復習知識點歸納
第一單元小數乘法
1、小數乘整數(P2、3):意義——求幾個相同加數的和的簡便運算。
如:1.5×3表示1.5的3倍是多少或3個1.5的和的簡便運算。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
2、小數乘小數(P4、5):意義——就是求這個數的幾分之幾是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
計算方法:先把小數擴大成整數;按整數乘法的法則算出積;再看因數中一共有幾位小數,就從積的右邊起數出幾位點上小數點。
注意:計算結果中,小數部分末尾的0要去掉,把小數化簡;小數部分位數不夠時,要用0佔位。
3、規律(1)(P9):一個數(0除外)乘大於1的數,積比原來的數大;
一個數(0除外)乘小於1的數,積比原來的數小。
4、求近似數的方法一般有三種:(P10)
⑴四捨五入法;⑵進一法;⑶去尾法
5、計算錢數,保留兩位小數,表示計算到分。保留一位小數,表示計算到角。
6、(P11)小數四則運算順序跟整數是一樣的。
7、運算定律和性質:
加法:加法交換律:a+b=b+a 加法結合律:(a+b)+c=a+(b+c)
減法:減法性質:a-b-c=a-(b+c) a-(b-c)=a-b+c
乘法:乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】
除法:除法性質:a÷b÷c=a÷(b×c)
第二單元小數除法
8、小數除法的意義:已知兩個因數的積與其中的一個因數,求另一個因數的運算。
如:0.6÷0.3表示已知兩個因數的積0.6與其中的一個因數0.3,求另一個因數的運算。
9、小數除以整數的計算方法(P16):小數除以整數,按整數除法的方法去除。,商的小數點要和被除數的小數點對齊。整數部分不夠除,商0,點上小數點。如果有餘數,要添0再除。
10、(P21)除數是小數的除法的計算方法:先將除數和被除數擴大相同的倍數,使除數變成整數,再按「除數是整數的小數除法」的法則進行計算。
注意:如果被除數的位數不夠,在被除數的末尾用0補足。
11、(P23)在實際應用中,小數除法所得的商也可以根據需要用「四捨五入」法保留一定的小數位數,求出商的近似數。
12、(P24、25)除法中的變化規律:①商不變性質:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。
②除數不變,被除數擴大,商隨著擴大。③被除數不變,除數縮小,商擴大。
13、(P28)循環小數:一個數的小數部分,從某一位起,一個數字或者幾個數字依次不斷重復出現,這樣的小數叫做循環小數。 循環節:一個循環小數的小數部分,依次不斷重復出現的數字。如6.3232……的循環節是32.
14、小數部分的位數是有限的小數,叫做有限小數。小數部分的位數是無限的小數,叫做無限小數。
第三單元觀察物體
15、從不同的角度觀察物體,看到的形狀可能是不同的;觀察長方體或正方體時,從固定位置最多能看到三個面。
第四單元簡易方程
16、(P45)在含有字母的式子里,字母中間的乘號可以記作「•」,也可以省略不寫。
加號、減號除號以及數與數之間的乘號不能省略。
17、a×a可以寫作a•a或a ,a 讀作a的平方。 2a表示a+a
18、方程:含有未知數的等式稱為方程。
使方程左右兩邊相等的未知數的值,叫做方程的解。
求方程的解的過程叫做解方程。
19、解方程原理:天平平衡。
等式左右兩邊同時加、減、乘、除相同的數(0除外),等式依然成立。
20、10個數量關系式:加法:和=加數+加數 一個加數=和-兩一個加數
減法:差=被減數-減數 被減數=差+減數 減數=被減數-差
乘法:積=因數×因數 一個因數=積÷另一個因數
除法:商=被除數÷除數 被除數=商×除數 除數=被除數÷商
21、所有的方程都是等式,但等式不一定都是等式。
22、方程的檢驗過程:方程左邊=…… 23、方程的解是一個數;
=…… 解方程式一個計算過程。
=方程右邊
所以,X=…是方程的解。
第五單元多邊形的面積
23、公式:長方形:周長=(長+寬)×2——【長=周長÷2-寬;寬=周長÷2-長】 字母公式:C=(a+b)×2
面積=長×寬 字母公式:S=ab
正方形:周長=邊長×4 字母公式:C=4a
面積=邊長×邊長 字母公式:S=a
平行四邊形的面積=底×高 字母公式: S=ah
三角形的面積=底×高÷2 ——【底=面積×2÷高;高=面積×2÷底】 字母公式: S=ah÷2
梯形的面積=(上底+下底)×高÷2 字母公式: S=(a+b)h÷2
——【上底=面積×2÷高-下底,下底=面積×2÷高-上底;高=面積×2÷(上底+下底)】
24、平行四邊形面積公式推導:剪拼、平移 25、三角形面積公式推導:旋轉
平行四邊形可以轉化成一個長方形; 兩個完全一樣的三角形可以拼成一個平行四邊形,
長方形的長相當於平行四邊形的底; 平行四邊形的底相當於三角形的底;
長方形的寬相當於平行四邊形的高; 平行四邊形的高相當於三角形的高;
長方形的面積等於平行四邊形的面積, 平行四邊形的面積等於三角形面積的2倍,
因為長方形面積=長×寬,所以平行四邊形面積=底×高。 因為平行四邊形面積=底×高,所以三角形面積=底×高÷2
26、梯形面積公式推導:旋轉 27、三角形、梯形的第二種推導方法老師已講,自己看書
兩個完全一樣的梯形可以拼成一個平行四邊形, 知道就行。
平行四邊形的底相當於梯形的上下底之和;
平行四邊形的高相當於梯形的高;
平行四邊形面積等於梯形面積的2倍,
因為平行四邊形面積=底×高,所以梯形面積=(上底+下底)×高÷2
28、等底等高的平行四邊形面積相等;等底等高的三角形面積相等;
等底等高的平行四邊形面積是三角形面積的2倍。
29、長方形框架拉成平行四邊形,周長不變,面積變小。
30、組合圖形:轉化成已學的簡單圖形,通過加、減進行計算。
第六單元統計與可能性
31、平均數=總數量÷總份數
32、中位數的優點是不受偏大或偏小數據的影響,用它代表全體數據的一般水平更合適。
第七單元數學廣角
33、數不僅可以用來表示數量和順序,還可以用來編碼。
34、郵政編碼:由6位組成,前2位表示省(直轄市、自治區) 0 5 4 0 0 1
前3位表示郵區
前4位表示縣(市)
最後2位表示投遞局

35、身份證號碼:18位

1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9
河北省 邢台市 邢台縣 出生日期 順序碼 校驗碼
倒數第二位的數字用來表示性別,單數表示男,雙數表示女。
第一單元 倍數與因數(我們只在自然數(0除外)范圍內研究倍數和因數。)
1、像0、1、2、3、4、5、6……這樣的數是自然數。
2、像-3、-2、-1、0、1、2、3……這樣的數是整數。3、整數與自然數的關系:整數包括自然數。
4、倍數和因數: 舉例如4×5=20,20是4和5的倍數,4和5是20的因數,倍數和因數是相互依存的。
5、找倍數:從1倍開始有序的找。
6、一個數倍數的特點: ①一個數的倍數的個數是無限的;
②最小的倍數是它本身;
③沒有最大的倍數。
7、找因數:找一個數的因數,一對一對有序的找較好。
8、一個數因數的特點: ①一個數的因數的個數是有限的;
②最小的因數是1;
③最大的因數是它本身。
9、2的倍數的特徵:個位是0、2、4、6、8的數是2的倍數。
10、奇數和偶數:是2的倍數的數叫偶數,不是2的倍數的數叫奇數。
按一個數是不是2的倍數來分,自然數可以分成兩類:奇數和偶數
11、5的倍數的特徵:個位是0或5的數是5的倍數。
12、3的倍數的特徵:各個數位上的數字的和是3的倍數,這個數就是3的倍數。
13、既是2的倍數又是5的倍數的特徵:個位是0的數。
既是2的倍數又是3的倍數的特徵:①個位是0、2、4、6、8的數;
②各個數位上的數字的和是3的倍數
既是3的倍數又是5的倍數的特徵:①個位是0或5的數;
②各個數位上的數字的和是3的倍數
既是2的倍數又是3的倍數還是5的倍數的特徵: ①個位是0的數;
②各個數位上的數字的和是3的倍數
9的倍數的特徵:各個數位上的數字的和是9的倍數,這個數就是9的倍數
14、質數:一個數只有1和它本身兩個因數,這個數叫質數。最小的質數是2,是唯一的質數中的偶數。
100以內的質數:
15、合數:一個數除了1和它本身以外還有別的因數,這個數叫合數。
1既不是質數也不是合數,最小的合數是4.
16、按一個數的因數個數分,自然數可以分為三類。
第二單元 圖形的面積(一)
1、 長方形周長=(長+寬)×2 C = 2 ( a + b )
2、 長方形面積=長×寬 S = a b
3、 正方形周長=邊長×4 C = 4 a
4、 正方形面積=邊長×邊長 S = a 2
5、 平行四邊形面積=底×高 S = a h
6、 平行四邊形底=面積÷高 a = S ÷ h
7、 平行四邊形高=面積÷底 h = S ÷ a
8、 三角形面積=底×高÷2 S = a h ÷ 2
9、 三角形底=面積×2÷高 a = 2 S ÷ h
10、 三角形高=面積×2÷底 h = 2 S ÷ a
11、 梯形面積=(上底+下底)×高÷2 S = ( a + b ) h ÷ 2
12、 梯形高=梯形面積×2÷(上底+下底) h = 2 S ÷( a + b )
13、 梯形上底=梯形面積×2÷高-下底 a = 2 S ÷ h - b
14、 梯形下底=梯形面積×2÷高-上底 b = 2 S ÷ h - a
15、 1平方千米=100公頃=1000000平方米
16、 1公頃=10000平方米
17、 1平方米=100平方分米=10000平方厘米
第三單元 分數
1、 分數:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做分數。
2、 分母:表示平均分的份數。分子:表示取出的份數。
3、 分數單位:把單位「1」平均分成若干份,表示這樣的一份或幾份的數,叫做
分數。表示其中的一份的數,叫做這個分數的分數單位。
4、 真分數:分子小於分母的分數叫做真分數。真分數小於1。
5、 假分數:分子大於或等於分母的分數,叫做假分數。假分數都大於或等於1。
6、 帶分數:由整數和真分數組成的分數叫做帶分數。
7、 假分數化成帶分數:用分子除以分母,商是帶分數的整數部分,余數是帶分數分數部分的分子,分母不變。
8、 整數化成假分數:用指定的分母做分母,用整數與分母的積做分子。
9、 帶分數化成假分數:用帶分數的整數部分乘分母加分子做分子,分母不變。
10、 質因數:每個合數都可以寫成幾個質數相乘的形式,其中每個質數都是這個合數的因數,叫做這個合數的質因數。
11 把一個合數用質因數相乘的形式表示出來,叫做分解質因數。 如12=2×2×3
12、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個,叫做它們的最大公因數。
13 互質:兩個數的公因數只有1,這兩個數叫做互質。
互質的規律:
(1) 相鄰的自然數互質;
(2) 相鄰的奇數都是互質數;
(3) 1和任何數互質;
(4) 兩個不同的質數互質
(5) 2和任何奇數互質。
質數與互質的區別:質數是就一個數而言,而互質是指兩個或兩個以上的數之間的關系;這些數本身不一定是質數,但它們之間最大的公因數是1,如8和9.
14、 幾個數公有的倍數叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數。
15、 求最大公因數,最小公倍數的方法
關系
最大公因數
最小公倍數
倍數關系
16、 分子分母互質的分數叫最簡分數,或者說分子分母的公因數只有的1的
分數是最簡分數。
17、 約分:把一個分數的分子和分母同時除以公因數,分數值不變,這個過
程叫做約分。計算結果通常用最簡分數表示。
18、 通分:把異分母分數分別化成同分母分數,叫通分。通常用最小公倍數
做分數的分母較簡便。
19、 如何比較分數的大小:
分母相同時,分子大的分數大;
分子相同時,分母小的分數大;
分子分母都不同時,通分再比。
20、 分數基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分
數大小不變。
21、分數的意義兩種解釋:①把單位「1」平均分成4份,表示這樣的3份。
②把3平均分成4份,表示這樣的1份。
數學與交通:
1 相遇問題:
基本公式:一個人走:速度×時間=路程
兩個人同時相對而行:速度和×相遇時間=兩人共走路程
甲走的路程+乙走的路程=兩人共走的路程
2、旅遊費用:
①購票方案:根據人數的多少,價格的不同以及團體優惠人數的多少,合理選
擇一種方案購票或幾種方案結合起來購票。若只有A、B兩種方案是,只要選擇
其中一種價格便宜的就行。
②租車問題: 用列表法解決問題。兩個原則:多用單價低的,少空座。
3、看圖找關系:
①讀懂圖表中的有關信息,一定要分析橫軸與縱軸分別表示的是什麼。
②在速度與時間的關繫上,線往上畫,說明提速;與橫軸平行,說明勻速行
駛;線往下畫,說明減速。
③在時間與路程的問題上,線往上畫,說明從某地出發;與橫軸平行,說明
原地不動;線往下畫,說明又從終點回到某地。
第四單元 分數加減法
1, 異分母分數加減法:先通分,化成同分母分數,然後按照同分母分數加減法法則進行計算。
2, 對計算結果的要求:能約分的要約成最簡分數,是假分數要化成帶分數。
3, 分數化成小數的方法:用分子除以分母,除不盡的保留兩位小數。
4, 小數化成分數的方法:看小數部分有幾位,就在1的後面加幾個0做分母,去掉小數點做分子,能約分的要約分。
第五單元 圖形的面積(二)
1, 求組合圖形面積的方法:
(1) 分割法:將圖形進行合理分割,形成基本圖形,基本圖形面積的和就是組合圖形的面積。(和法)
(2) 添補法:將圖形所缺部分進行添補,組成幾個基本圖形,基本圖形面積-添補圖形面積=組合圖形面積。
2.不規則圖形面積的估算:
(1)數格子的方法。
(2)把不規則圖形看成近似的基本圖形,估算出面積。
雞兔同籠:
1, 列表法。
2, 假設法
3, 列方程
點陣中的規律:略
第六單元 可能性大小
1,用1表示事件一定發生,用0表示事件一定不會發生,用分數表示可能性的大小。
2,設計活動方案。
鋪地磚:
1, 地面面積除以每塊地磚面積=所鋪地磚塊數
2, 每平方米所需地磚塊數乘以地面面積=所鋪地磚塊數
3, 列方程
4, 注意:轉化單位,結果不是整塊數用進一法取近似值
1、直接寫出得數。(每小題0.5分,共6分)
0.125+7/8= 1/3+1/4= 1-1/9= 5/12+5/24= 12.5X0.1= 1-8/9-1/9=
9.8÷0.01= 3.4+13= 1.08+1/2= 5/8+1/4= 4/5-0.2-0.4= 2/5+5/6+3/5=
2、計算,能簡算的要簡算。(每小題2分,共8分)
5-3/7-4/7 8/9+1/3+2/3 1/2+3/5-11/20 1/2+(1/3-1/5)
3、解方程。(每小題2分,共6分)
① X+1/5-4/35=27

② 3X-6.75=33/4 ③ X-(1-3/7)=1/4
4、列式計算。(每小題3分,共6分)
① 65減去多少個2.5後還剩17.5?
② 一個數的一半與20的和是120,求這個數。
5、圖形觀察、計算。(每小題3分,共6分)
???
五、解決問題。(每小題5分,共30分)
1、小明的媽媽去超市買牛奶,有下面這樣三種瓶裝的牛奶,你認為買哪種瓶裝的最合算?為什麼?
① 250ml/2.00元 ② 500ml/4.60元 ③ 1L/9.00元
2、在一塊長45米,寬28米的長方形地上鋪一層4厘米厚的沙土,如果用一輛每次只能運3.5方沙土的汽車來運這些沙土,這輛汽車至少要運多少次?
3、一段長方體木材,長1.2米,如果鋸短2分米,它的體積就減少40立方分米。求原來這段木材的體積。
4、東東家有一些雞蛋,5個5的數,6個6的數,12個12的數,都多4個,已知這些雞蛋在100-130個之間。你知道東東家有多少個雞蛋嗎?

⑻ 小學五年級數學知識點總結

數學與交通:
1 相遇問題:
基本公式:一個人走:速度×時間=路程
兩個人同時相對而行:速度和×相遇時間=兩人共走路程
甲走的路程+乙走的路程=兩人共走的路程
2、旅遊費用:
①購票方案:根據人數的多少,價格的不同以及團體優惠人數的多少,合理選

擇一種方案購票或幾種方案結合起來購票。若只有A、B兩種方案是,只要選擇

其中一種價格便宜的就行。
②租車問題: 用列表法解決問題。兩個原則:多用單價低的,少空座。

3、看圖找關系:
①讀懂圖表中的有關信息,一定要分析橫軸與縱軸分別表示的是什麼。
②在速度與時間的關繫上,線往上畫,說明提速;與橫軸平行,說明勻速行

駛;線往下畫,說明減速。
③在時間與路程的問題上,線往上畫,說明從某地出發;與橫軸平行,說明

原地不動;線往下畫,說明又從終點回到某地。

⑼ 小學五年級數學學習重點有哪些

其中,小數的乘法和除法是為了讓在學生再掌握了整數的加減乘除運算、小數的性質以及小數加法、減法的基礎上進行的運算,目的是培養學生小數的乘除法運算能力。簡單方程中的難點有:用字母表示數字、等式有哪些性質、解簡易方程、用簡易方程表示相等關系,從而解決一些實際數學問題等內容,最終目的是為了發展學生的思維能力,提高解決實際問題的能力。學生在學習過程中要抓住這些重點,多加練習,達到觸類旁通的效果。 在幾何圖形這類題上,本年級安排了多邊形的面積、周長計算兩個單元。著重讓學生認識各種圖形的特徵、圖形之間關系以及圖形之間的相互轉化,掌握四邊形、三角形、面積公式,在解決這些題目時,通常會用到平移、旋轉等方法。 統計與概率也是小學五年級數學學習重點之一,在統計與概率方面,小學五年級著重讓學生學習有關可能性的知識,即不可能事件、可能事件等。在教學中,老師重點通過實驗向學生證明事件的可能性,讓學生學會處理一些事件發生的可能性。 綜上所述,要清楚小學五年級數學學習重點,首先得全面了解小學五年級數學教材中具體包括哪些方面的內容,然後結合老師課堂講授的重點,判斷哪些內容是本年級學習的重點。然後通過多做練習,總結同類題型的規律,做到觸類旁通。不要忽視的是,數學學習中同樣需要記憶,比如公式,但是這種記憶需要結合具體題型,而不是死記硬背。

⑽ 小學五年級下數學知識點

5下的
1. 理解分數的意義;*
2. 思考,並會用長方體,正方體的表面積,體積運算公式。*
3. 做好統計,並學會做統計表,會看統計表!
(以上都很重要,打星號的特別重要)

做些題吧

一.填空。

1.自然數中,既不是質數,又不是合數的數是 ( ),最小的質數是 ( ),最小的合數是 ( )。

2.把120分解質因數是( )。

3.兩個互質數,又都是合數,它們的最小公倍數是60,這兩個數分別是 ( ) 和 ( )。

4.a和b是一對互質數,a×b =36,則a和b分別是( )

5.一個三位數,它的個位上是最小的自然數,十位上是最小合數,百位上是最小的質數,這個三位數是( )。

6.一個長方體的長為1分米,寬為8厘米,高為3厘米,它的表面積是( ),體積是( )。

7.用一根長為48厘米的鐵絲製成一個最大的正方體框架,它的表面積是( )平方厘米,體積是( )立方厘米。

8.已知一個三角形的面積是24平方厘米 , 底是8厘米,高是( )厘米。

9.把一根長2米的長方體木料,平均鋸成4段,表面積比原來增加了48平方分米,原來這根木料的體積是( )立方分米。

10.已知一個梯形的面積是36平方厘米,高為4厘米,上底與下底的和是( )。

11.已知甲數=3×3×5×7, 乙數=3×5×7×11, 甲乙兩數的最大公約數是( )。

12.把下面各數按要求填。

6 9 102 45 110 91 780 248 37

奇數( ) 能被2整除( )

偶數( ) 能被3整除( )

質數( ) 能被5整除( )

合數( ) 能被2、3、5整除( )

二.判斷。

1.長方體的棱長之和是84厘米,從一個頂點出發的三條棱的長度之和是21厘米。 ( )

2.7.2除以一個小數,所得的商一定大於7.2。 ( )

3.沒有公約數的兩個數叫做互質數。 ( )

三.選擇題。

1、如果m、 n 都是自然數,m = 8n,則m和n的最小公倍數是 ( )。

A、m B、n C、mn D、8

2、下面的各組數里,第一個數能被第二數整除的是 ( ) 。

A、36和0.9 B、7和56 C、54和27 D、84和8

3、如果兩個自然數的最小公倍數是210,它們的最小公約數是14,那麼這兩個數是 ( )。

A、140和21 B、42和70 C、10和21 D、14和35

4、若m÷n = 13, m ,n 都是自然數,則m是n的( ),n是m的( )。

A. 最小公約數 B. 最大公約數 C. 最大公倍數 D. 最小公倍數

5、99.999保留兩位小數是 ( )。

A.99.99 B.100 C.100.00 D.100.0

6、相鄰兩個自然數的和一定是( ),積一定是( )。

A. 奇數 B. 偶數 C. 合數 D. 質數

四.計算。

1.計算,能簡算的要簡算。

6.71×7.5 + 2.5×6.71 ( 3.12 + 0.3 )÷[ ( 1-0.4 )÷0.2 ]

3.14×625-3.14×374-3.14 [ 41-( 4.2 + 5.8÷5 ) ]÷0.9

3.4÷4.41 + 0.4×0.05 12.5×3.2×0.25×1.3

2.直接寫出得數。

5.2-3 + 8= 2.9 + 4.1 = 1÷0.05 = 8×0.5 = 3.29÷3.29 =

8.9 + 8.9 = 2-3.6 = 8.8-0.8 = 4.8÷1.6 = 0×(4-0.4 ) =

3.解方程。

6x-0.4×6 = 9.6 118-2×( 4.1 + X ) = 55 4x +80 = 160

9.6÷X = 0.8 4.8-X = 3×( X + 6 ) 4.3X-1.5 + 3.2X = 4.5

4.求陰影部分面積。

5厘米

3厘米

五.列式計算。

1.一個數減去3.6,所得的差的5 倍,正好等於這個數的3倍,求這個數。

2.乙數比丙數的2倍少3,甲數是乙數的4倍,已知甲數是132,求丙數。

3.2.5與64的積去除 1.44,商是多少?

4.一個數的5倍比40除以5的商少48,求這個數。(用方程解)

六.應用題。

1.只列式不計算 。

(1)工程隊修一條長480米的路,計劃12天完成。實際10天就完成了,實際每天比計劃多修多少米? 算式:____________________

(2) 小華前2次數學測驗的平均成績是91分,後3次測驗平均成績是90分。求他這5次測驗的平均成績。 算式:_____________________

2.李紅和王剛買同一種練習本5本和3本,已知李紅比王剛多付7.20元,這種練習本的單價是多少元?

3.甲乙兩位運動員練習賽跑,甲每秒跑7米,乙每秒跑6.5米。如果讓乙先跑出10米後,甲再出發,幾秒鍾後甲追上乙?(用方程解)

4.甲車每小時行50千米,乙車每小時行56千米,兩車從相距20千米的兩地相背而行,幾小時後兩車相距274.4千米?

5.一個游泳池長50米,寬30米,深3.5米。在游泳池的四壁和底部鋪上邊長1分米的方磚,共需方磚多少塊?如果將這個游泳池放滿水,能放水多少立方米?

6.果園里有桃樹730棵,比梨樹的1.25倍少20棵,果園有梨樹和桃樹共多少棵?

7.工程隊要築一條長7.4千米的公路,已經築了12天,平均每天築0.35千米,剩下的要在8天內完成,平均每天至少要築多少千米?

五年級下冊數學期末試卷

一.填空題 。

1、24的所有約數有( )個,24的最小倍數是( )。

2、在自然數1--20中,既是偶數又是質數的有( );既是奇數又是合數的有( )。

3、a和b的最大公約數是1,最小公倍數是( )。

4、一個正方體的棱長擴大3倍,體積就擴大( )倍,表面積擴大( )倍。

5、3升60毫升 =( )升 =( )毫升。

6、甲數 = 2×3×5×7 乙數 = 2×5×11

則兩數的最大公約數是( ),最小公倍數是( )

7、把96分解質因數是( )。

8、把4米長的木棒平均分成7段,每段長 )米,每段佔全長的( )。

9、 =( )÷15 = 15÷( )=

10、分數單位是 的最大真分數是(),最小假分數是( ),最小帶分數是( )

11、1裡面有( ),2裡面有( )。

2 的分數單位是( ),20個這樣的分數單位是( )。

12.李明今年a歲,張亮今年a + b歲;5年後,兩人的年齡相差( )歲。

13.已知a = 2.3,b = 5;則8a-b + 2a的值是( )。

14.兩個數的積是72,它們的最小公倍數是36,這兩個數的和最小是( )。

15.有周長都是36厘米的正方形和長方形,長方形的長是寬的3倍。它們的面積相差( )平方厘米。

二 判斷(對的打√,錯的打×)

1、長方體相鄰的面沒有完全相同的。 ( )

2、兩個數的公倍數必定比這兩個數都大。( )

3、任何整數,必定都有兩個約數。 ( )

4、兩個合數一定不是互質數。 ( )

5、是最簡分數。 ( )

6、因為比小,所以的分數單位比的分數單位小。 ( )

7. 2.12和18的最小公倍數是這兩個數的最大公約數的6倍。 ( )

8.沿著等腰三角形底邊上的高剪開,可以把等腰三角形分成兩個相等的直角三角形。 ( )

三 選擇(把正確答案的序號填在括弧里) 。

1、把一個長方體割成許多小正方體,它的體積( ),表面積( )

① 不變 ② 增加 ③ 減少

2、一個長方體是8厘米,寬是6厘米,高是4厘米,它的棱長和是( )厘米。 ① 18 ② 36 ③ 72

3、1立方米的正方體以分成( )個1立方分米的小正方體。

①1000個 ②100個 ③10個

4、下面各數中,兩個數都是合數又是互質數的數是( )。

①16和12 ②27和28 ③11和44

5、下面各數中,不能化成有限小數的是( )

① ② ③

四 文字題。

1.3與1的和,加上2,等於多少?

2. 5減去2所得的差加上3,和是多少?

六.應用題

1.某氣象小組在一天中的2時、8時、16時和20時分別測得氣溫是18度、20度、28度和26度。求這一天的平均氣溫。

2.新河鄉修了一條水渠,第一天修了58.5米,比第二天修的3倍多4 ,第二天修了多少米。

3.倉庫存有一批貨物,運走了45噸,比剩下的多20.3噸,這批貨物共有多少噸?

4.一根長24米的電線,用去了16米,用去了全長的幾分之幾?還剩下全長的幾分之幾?

5.用鐵皮做一個長方體油箱,油箱的長8分米,寬6分米,高5分米。至少要用鐵皮多少平方分米?如果每立方米油重0.82千克。那麼,這個油箱最多可裝柴油多少千克?

6.一輛汽車從甲地開往乙地,每小時行50千米,6小時到達;返回時,每小時行60千米,幾小時可以到達?

7.一個長方體的魚缸,從裡面量長6分米、高5分米、寬4分米,現在往魚缸內注入96升水,水面離魚缸的沿口有多少分米?

五年級下冊數學期末試卷
一.填空.
1.8平方米8平方分米=( )平方米 =( )平方分米
2.6700米=( )千米( )米 =( )千米
3.用鐵絲焊接成一個長10厘米,寬6厘米的長方體框架,至少需要( )厘米鐵絲.
4.把3個1立方厘米的小正方體木塊拼成一個長方體木塊,這個長方體木塊的體積是( ),表面積是( )
5. 從0, 1, 2, 4四個數字中分別選擇三個數字, 組成同時能被2, 5, 3整除的最大三位數是( ), 最小三位數是( ).
6.( ) 除以13商5餘2.
7.商是21, 如果被除數縮小10倍, 除數擴大10倍, 那麼商是( ).
8.在8的後面添上一個零, 這個數比原數多( ), 這個數比原數多( )倍
9.把3米長的線段平均分成5份,每份長用分數表示是( )米,用小數表示是( )米.
10. 和 這兩個分數中,分數值較大的數是( ),分數單位較大的數是( ).
11. 的分數單位是( ),再添上( )個這樣的分數單位就是最小質數.
12. 兩個兩位數,它們的最大公約數是9,最小公倍數是360,這兩個兩位數分別是

( )和( ).
13.把2米長的鐵絲截成相等的3段,每段佔全長的( ),每段長( )米.
14.16和24的最小公倍數是( ),把這個數用質數相乘的形式表示是( ).
二.判斷題.
1.2.4÷0.3 = 8, 因為商是整數而且沒有餘數, 所以2.4能被0.3整除. ( )
2.小數比整數小. ( )
3.質數中只有2是偶數,其餘都是奇數 . ( )
4.相鄰的兩個自然數一定是互質數. ( )
5.一個數的計數單位越大,這個數就越大. ( )
6.甲繩比乙繩長米,乙繩就比甲繩短. ( )
三.選擇題.
1.13÷2 = 6.5, 我們說13能被2. A. 整除 B. 除盡 [ ]
2.一個正方體的棱長是a ,它的表面積是 [ ]
A.12a B.6a2 C.a2 D.a3
3.自然數中最小的一個數是A. 0 B. 1 [ ]
4.的分母增加15,要使分數大小不變,分子應擴大 ( ).
A. 4倍 B. 3倍 C . 15倍 D. 6倍
5.小明家離學校大約1千米,他從家步行到學校,大約要( )分鍾.
A. 80 B. 60 C. 5 D. 3
6.在前1000個自然數中有168個質數,那麼合數的個數有( ).
A.833個 B,832個 C,831個 D,830個
7.一個長方體鋸成二段要用5分鍾,鋸成5段要( )分鍾.
A,25 B,20 C,12.5
8.三個連續自然數的和是12 ,這個三個數的最大公約數是( ).
A,1 B, 2 C, 3
四.應用題.
1.一個正方體的水箱,每邊長4分米,裝滿了一箱水,如果把這一箱水倒入另一個長是0.8米,寬是25厘米的長方體水箱中,水深是多少

2.用一張長50厘米,寬40厘米的長方形紙板,從四個角剪去邊長1厘米的正方形後,做成紙盒,這個紙盒容積是多少表面積是多少

3.甲乙兩港相距180千米,一艘輪船去時每小時行駛45千米,返回時逆風,每小時行駛30千米,求這艘輪船往返甲,乙兩港的平均速度.

4.甲汽車28分鍾行20千米,乙汽車40分鍾行25千米,每分鍾的速度哪一個快快多少

5.某糧店運進大米1.5噸,麵粉比大米多噸,雜糧比麵粉少噸,問共運進糧食多少噸

6.師徒兩人合作生產一批零件,師傅每小時生產40個,徒弟每小時生產30個,完成任務時徒弟正好生產了450個,這批零件共多少個

閱讀全文

與小學5年級數學重點相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99