導航:首頁 > 小學學科 > 小學數學算理與演算法

小學數學算理與演算法

發布時間:2020-12-28 10:39:33

『壹』 如何提高小學生的計算能力修改

如何提高小學生的計算能力修改
計算能力是一項基本的數學能力,培養小學生具有一定的計算能力,是小學數學教學的一項重要任務。在小學數學教材中,計算所佔的比重很大。有些概念的引入要通過計算來進行;數學應用題的解題思路、步驟、結果也要通過計算來落實。幾何知識的教學,要涉及周長、面積、體積的求法,這些公式的推導與運用同樣離不開計算。至於簡易方程、比例和統計圖表也無不與計算密切相關。那麼,怎樣提高學生的計算水平,使計算準確呢?
一、培養學生學習數學的興趣
「興趣是最好的老師」。在計算教學中,首先要激發學生的計算興趣,讓學生樂於學、樂於做,教會學生掌握一定的計算方法,達到算得對、算得快的目的。講究訓練形式,激發計算興趣。為了提高學生的計算興趣,寓教於樂,講究訓練形式多樣化。1、在游戲中培養興趣。例如:在低年級計算教學中引入數學游戲「碰球」,既能進行口算練習,也能激發學生進行計算的興趣,2、用故事激發興趣。如: 在教學簡便運算前,首先給學生講解數學家高斯創造性地解答「1+2+3+……+99+100」這100個自然數之和的故事,為學生創設良好的學習情境,激發其學習數學的興趣,學生不自覺地產生了和數學家比一比的念頭。中外數學家的典型事例,以學生喜聞樂見的小故事娓娓道來,既增添課堂氣氛,吸引學生注意力,也激發學生對數學學習的愛好和興趣。
二、理清算理,掌握演算法
算理是算的一種道理和想法,而演算法是算理的一種表達形式或書寫格式,算理要通過演算法來表現,演算法又要體現算理。在新課程的教學中,特別突出對算理的理解,追求演算法多樣化。
1.利用教具演示和學生動手操作,幫助學生理解算理。數學中的一些概念,如整數、小數、分數、百分數的認識,運算定律和性質,及和、差、積、商的變化規律,都是運演算法則的依據。但是這些都是抽象的數學知識,而小學生的思維是以具體形象思維為主的。這樣抽象的數學知識與小學生的思維之間有一定的距離。所以對算理的剖析就要根據小學生的認識特點,通過教師的「架橋」,寓抽象的知識於具體形象之中,把學生的認識逐步引導到抽象的彼岸,從而概括出計演算法則。在教學中,教師要盡可能的選擇與教學內容相關的感性材料,選擇直觀的教學手段,為學生動手操作創造條件,為進一步進行思維加工奠定基礎。直觀演示和動手操作學具,是幫助學生感知和理解抽象的數學知識的重要手段。
2.引導學生在理解的基礎上,准確的運用法則,並簡化運算過程,是提高計算能力的關鍵。 運演算法則的掌握過程是從開展的、詳盡的思維活動過度到壓縮的、省略的思維活動。開展是為了理解,以確保初期運算的准確,壓縮是為了簡化中間環節,提高計算速度,學生理解並掌握新的運演算法則之後,開始訓練時,要嚴格要求學生用法則進行運算,還應要求口述計算過程,培養學生言而有理,行必有據,以確保運算的自覺性和正確性。
三、培養學生良好的計算習慣
良好的計算習慣,直接影響學生計算能力的形成和提高。大量事實說明,缺乏認真的學習態度和學習習慣,是學生計算上造成錯誤的重要原因之一。因此,教師要嚴格要求學生,養成良好的計算習慣。
1.書寫要規范
良好的計算習慣的培養從書寫開始。從平常教學實踐來看,許多學生正是因為書寫格式不規范導致錯誤。規范的書寫格式可以表達學生的運算思路和計算方法、步驟,防止錯寫、漏寫數字和運算符號,提高正確率。要想使小學生能盡快養成良好的書寫習慣,關鍵是教師的言傳身教,樹立榜樣,在潛移默化中進行培養。比如在上課時,板書設計要合理,規范整齊,書寫做到一筆一畫,哪怕是小小的「=」、豎式中的一條橫線,都必須嚴謹、規范。在作業批改時給學生的批語也要認真書寫,讓學生看得懂並給孩子一個示範。經常如此,有利於培養學生認真細致的學習態度,計算的錯誤率會大大下降,教師的工作效率也會提高。
2.計算時做到一看、二想、三算、四檢
一看:小學生在計算過程中,常常會出現這樣那樣的錯誤。例如,不是抄錯數字,就是抄錯符號。因此,做題前,先要完整地看清每個數字和每個符號,決不抄錯題目,這是正確計算的前提。
二想:確定運算步驟。小學生在計算過程中,往往一拿到題就做,根本不去想它的運算步驟。例如,在小學四年級數學下冊的四則運算中:75+25×4和128-28×4這兩道題往往小學生是先做加法和減法,後做乘法。又如9×9÷9×9這道題往往小學生認為都是一級運算怎樣做都可以,於是就出現了先算9×9和9×9,最終結果等於1的錯誤結論。因此在計算四則運算前應先想一想四則運算的法則,先做什麼,後做什麼。看清每一個步驟,這是正確計算的關鍵。
三算:低年級學生很容易不是加法忘了進位,就是減法忘了退位;或者加法當減法做,乘法當除法做。因此在確定運算步驟後,要認真地進行計算。
四檢:平時學生除了對規定的驗算題目進行驗算外,基本上不能自覺驗算每一步。所以要強調學生算完一步要及時「回頭看」,檢查是否正確,一步一回頭,及時檢查驗算,及時糾正錯誤,保證計算的正確。檢驗要有明確的目的和嚴格的標准,做到每題必檢查,每步必驗算。
3.培養學生自覺進行簡便計算的習慣
小學數學中簡便演算法的技巧歸納起來就是「合、分、變」三方面。「分」的技巧適用於兩個數。例如:12.5×88就要將88分成8×11或者80+8;455+398簡算時需將398分成400-2;49÷35簡便演算法就是49÷7÷5等。「合」的技巧適用於三位數或三位以上的數。如算式4.5+7.2+5.5+2.8簡算算式就是(4.5+5.5)+(7.2+2.8);24×25×4簡算算式是24×(25×4);15.2-3.6-2.4=15.2-(3.6+2.4);189÷2÷5=189÷(2×5);2.5×4.4+2.5×5.6就應合成2.5×(4.4+5.6)等,不勝枚舉。「變」適用於簡算中難度較大的題目。例如算式63×111+93×999,硬算比較麻煩,若能看出其中蘊含的數字特點,將63×111變換成7×9×111再進一步變換成7×999,原來的算式就可以寫成63×111+93×999=7×999+93×999=(93+7)×999=100×999=99900,這樣從頭至尾只需口算就能較快得出結果。經常不斷地要求和檢查,學生就可以增強簡算的意識,對題中簡算的因素找得全,看得深,大大提高計算效率。
總之,學生計算能力的提高不是一朝一夕的事情,在平時的教學中教師要從教材的特點出發,從學生的實際出發,從兒童的心理特點出發,聯系現實生活,聯系游戲活動,進行多媒體的整合,為學生創設一個充滿童趣、富有活力的學習環境,使枯燥的計算教學煥發出新的生命力。

『貳』 小學數學一年級十幾加幾算理

先看個位的復數字,先相加減,如果得出制的數大於10那麼就在十位數字上加1,與此同時,在你個位得出的數字上減去10.如果你把個位數字相加後的和小於10,那麼就可以直接寫出得數

例1:14+9=?
4+9=13 ∵13>10 ∴十位數字:1+1=2 個位數字:13-10=3
結果:23

例2:12+4=?
2+4=6 ∵6<10 ∴十位數字:1 個位數字: 6
結果:16

就算是不對的話,看在我這么辛苦回答問題的份上
還是望採納啊、、~

『叄』 什麼是小學數學算理呢

一年級:加減運算。二年級:乘除加減混合運算。三年級:元、角、分、周長、計算,乘除內加減混合運算容。四年級:長方形正方形面積計算、小數加減乘除混合運算、簡便方法乘法分配率、結合律交換律。五年級:平行四邊形、梯形、三角形面積計算四則混合運算,分數小數混合運算。六年級:圓圓柱等面積計算

『肆』 小學數學課堂學生活動與理解算理怎樣融合

【摘 要】培養學生准確而迅速的計算能力,是小學數學教學中的一項重要而艱巨的任務,也是小學數學教師在教學中必須努力完成的重要任務,更是學生學好數學的基礎。然而,在計算教學中,卻存在兩種「走極端」的現象:一方面,有的教師受傳統教學思想、教學方法的支配,只注重計算結果和計算速度,陷入了「重演算法、輕算理」的極端;另一方面,有的教師片面理解新課程理念和新教材,把過多的時間用在形式化的情境創設、動手操作、自主探索、合作交流上,陷入了「理解算理過繁、掌握演算法過軟、形成技能過難」的另一極端。算理是計算的依據,演算法是依據算理提煉出來的方法和規則,只有將算理和演算法的有機融合,才能更好的促進計算內容的教學。 【關鍵詞】數學 算理 演算法 教學 一、研究背景 「數的運算」,在小學階段所佔比重極大,在教材中所佔篇幅也是最長的,正確認識計算在數學教學中的作用, 准確了解計算的內在思想和方法,是科學有效地實現計算教學目標的關鍵。在教學過程中,有的老師往往出現照本宣科,很少深入思考的現象,尤其是公開課,基於計算課程很難「出彩」的功利心因素,多數教學一般均不會選擇計算課來進行交流。比如:今年山東省小學數學優質課評選泰安賽區32 節課,只有兩位老師選擇了計算教學的內容,從實際上課效果來看,與其他課型相比也有明顯差距。這無形之中給了教師們一個暗示:研究計算課教學沒有「前途」 ,一定程度上挫傷了教師們研究計算教學的積極性。作為年輕的數學老師,應當更加關注教學研究的薄弱環節,對計算教學的深入研究,通過對計算教學的核心問題之一——算理和演算法的結合問題進行系列打磨、研究活動,重視計算教學,重視計算教學的研究,進而展開對計算教學中一系列的具體問題展開研究。如「如何根據學生的思維和經驗基礎設計我們的教學環節, 使其以孩子的思維學會枯燥無味的數學計算?」「如何構建計算教學的知識 ,結構、如何引導學生主動關注前後知識的聯系、如何提高學生的計算技能?」等等,通過自己的研究能轉變教師對計算教學的某些偏見,大幅度的提高計算教學的實效性。 二、數的運算的認識 數的運算,與人們的日常生活息息相關,歷來是小學數學教學的最基本的內容,培養小學生的計算能力也一直是小學數學教學的主要目標之一,計算教學直接關系著學生對數學基礎知識與基本技能的掌握,關系著學生觀察、記憶、思維等能力的發展,關系著學生學習習慣、情感、意志等非智力因素的培 1養 。一定的計算能力是每個公民都應具備的基本素養。 (一)數的運算在日常生活中有廣泛的應用 《新課標》中明確指出:「教學時,應通過解決實際問題進一步培養學生的數感,增進對運算意義的理解。」數的運算是人們認識客觀世界和周圍事物的重要工具之一。從抽象的觀點看,客觀世界的表現形式可以概括為:數量、空間和時間及相互之間的關系。從數學的角度看,主要表現在數、量、形三個方面,而計量是離不開數的運算的,空間形式及其關系要量化也離不開數與計算。任何學科規律歸結 1為公式後基本上都要運用四則混合運算來計算 。 (二)數的運算對培養學生的思維能力有重要作用 學習數的運算的過程就是發展邏輯思維能力的過程。數的運算的概念、性質、法則、公式之間都有內在聯系,存在著嚴密的邏輯性。每個概念、性質、法則、公式的引入與建立,都要經過抽象、概括、判斷、推理的思維過程。學生學習、理解和掌握這些概念、性質、法則、公式,都要經過從具體到抽象、從感性到理性的過程。學生把這些應用到實際中去,還要經過由一般到特殊的演繹過程。因此,數的運 2算的學習有利於發展學生的思維能力 。 (三)數的運算有利於滲透數學思想方法教育 數的運算是在人類的生產、生活中產生和發展起來的,由低級到高級、從簡單到復雜。而數的運算中又有很多相互依存、對立統一的概念和計算方法。如整數與分數、約數與倍數,加與減、乘與除、通分與約分,等等。教學中闡明這些相互依存的概念與概念、計算方法與計算方法之間的關系,有利於滲透數學思想方法的教育。 三、計算教學中算理和演算法關系的處理 演算法主要解決「怎樣計算」的問題,算理主要回答「為什麼這樣算」的問題。算理是計算的依據,是演算法的基礎,而演算法是依據算理提煉出來的計算方法和規則,它是算理的具體體現。算理和演算法是計算教學中相輔相成、缺一不可的兩個方面。當前,計算教學中「走極端」的現象實質上是沒有正確處理好算理與演算法之間關系的結果。一些教師受傳統教學思想、教學方法的支配,計算教學只注重計算結果和計算速度,一味強化演算法演練,忽視算理的推導,教學方式「以練代想」,學生「知其然,不知其所以然」,導致教學偏向「重演算法、輕算理」的極端。與此相反,一些教師片面理解了新課程理念和新教材,他們把過多的時間用在形式化的情境創設、動手操作、自主探索、合作交流上,在理解算理上大做文章,過分強調為什麼這樣算,還可以怎樣算,卻缺少對演算法的提煉與鞏固,造成學生理解算理過繁, 3掌握演算法過軟,形成技能過難,教學走向「重算理、輕演算法」的另一極端 。 怎樣處理好算理與演算法教學統一,使學生既理解算理,又能牢固掌握演算法、提高計算的速度和正確率呢?下面就以二年級數學下冊 70 頁的兩位數乘一位數為例,說說如實現理算理與演算法的的教學統一。 (一)引導研究,理解算理 學生只有理解了計算的道理,才能「創造」出計算的方法,才能理解和掌握計算方法,才能正確迅速地計算,所以計算教學必須從算理開始。教學中要引導學生對計算的道理進行深入的研究,幫助學生應用已有的知識領悟計算的道理。首先引導學生思考:為什麼可以用 14×2 計算?使學生明白 14×2表示求 2 個 14 是多少;其次,讓學生思考:你打算怎麼計算 14×2?使學生明白 14 是由 1 個十和 4 個一組成的,可以把 14×2 轉化成已經學過的乘法計算:先算 2 個 10 是多少,再算 2 個 4 是多少,最後把兩次算的得數合並,計算的過程有三個算式:4×2=8,10×2=20,20+8=28。通過這樣的研究學生就理解兩位數乘一位數計算的道理,學生就能應用這樣的道理解決其他兩位數乘一位數的計算問題。 (二)及時練習,鞏固內化 通過上面的計算研究,學生雖然理解了兩位數乘一位數的道理,但是此時學生對算理的理解還處於似懂非懂的狀態,學生是否真正掌握了算理還要經過實際計算才能得到檢驗和鞏固,此時及時組織學生進行相應的練習是很有必要的,只有在練習中才能把算理內化為自己的理解,才能使學生理解和掌握算理。所以在學生初步理解了算理後,應當及時組織學生用三個算式進行兩位數乘一位數的練習,使學生在練習中加深對算理的理解,在練習中牢固掌握算理,為後面的抽象、概括計算方法奠定堅實的基礎。 (三)應用算理,進行創造。 算理是計算的思維本質,如果都這樣思考著算理進行計算,不但思維強度太大,而且計算的速度很慢算。為了提高計算的速度,使計算更方便、快捷,就必須尋找到計算的普遍規律,抽象、概括出計演算法則。計演算法則是算理的外在表達形式,是避開了復雜思維過程的程式化的操作步驟,它使計算變得簡便易行,它不但提高了計算的速度,還大大提高計算的正確率。所以當學生理解和掌握了算理之後,應引導學生對計算過程進行反思,啟發學生再思考:計算 14×2 要寫出三個算式,你的感覺怎樣?可以簡化一下嗎?怎麼簡化?學生通過獨立思考、同伴交流創造方便、快捷的計算方法:可以像計算加減法那樣用豎式計算,根據算理:先算 4×2=8,在個位上寫上 8,再算 10×2=20,在十位上寫 2、個位上寫0,最後再把 8 和 20 加起來等於 28,得出算理豎式。接著再啟發學生思考:還能再簡化嗎?通過師生共同研究,最終得出:加號可以省略,還可以把 8 個一與 2 個十直接合並,優化成簡化豎式。 (四)觀察比較,歸納方法 當學生比較熟練地繼續豎式計算後,再引導學生對豎式計算過程進行觀察反思: 這些乘法的豎式計算都是怎麼算的?分幾個步驟?從而歸納出兩位數乘一位數的計演算法則:先用一位乘數乘兩位數的個位數,積的末尾寫在個位上,再用一位乘數乘兩位的十位數,積的末尾寫在十位上。這時的計算就不再思考每一步的計算道理,只要按照這樣的操作步驟進行演算就能得到計算的結果, 由於避開了復雜的思維過程,縮短計算的思維路徑,把計算演變成一種機械的、程式化的操作方法,所以計算的速度大大加快,計算的效率大大提高。 四、小結 計算教學在小學數學中佔有重要的地位,如果教師把掌握演算法作為課堂的唯一目標,那麼沒有比直接告訴學生「應該怎麼算」更簡單的方法了,但學生也就失去了獨立思考和深層感悟的機會了,也就失去了「知其所以然」的機會。我們常說「知其然,不如知其所以然」,僅僅掌握演算法,猶如空中樓閣,雖然一時很美麗,但又怎能牢固呢?只有根據學生已有知識經驗體系,在清晰理解算理的基礎上,才能真正掌握計算的方法。因此,計算教學應該有兩個重點——「深刻理解算理,扎實掌握演算法」,在教學中,我們只有把算理與演算法之間的聯結、過渡好,為學生搭起理解的台階,學生才能充分體驗由算理直觀化到演算法抽象性之間的過渡,理解、把握演算法。

『伍』 小學數學(說算理)

設50元的門票售出x張,80元100元的門票各售出y張
所以有
x+2y=800
50x+(80+100)y=56000
解方程組得
x=400,y=200
所以50元400張,80元和100元都是200張

『陸』 小學數學有算理演算法還有什麼 急!

ctrl+f搜不到它

『柒』 小學數學筆算與乘法怎麼教

計算是我國小學數學教學的重要內容,它貫穿小學數學教學的始終,無論是數學概念的形成、數學結論的獲得、還是數學問題的解決等都依賴於計算活動的參與。新的《數學課程標准》對計算教學在目標定位上提出了新要求,更注重讓學生體驗計算在生活中的意義,並能運用數學計算解決實際問題,使學生切身感受到數學就在身邊,真正體驗到學習數學的價值。而今,學生計算能力不盡人意,究其原因,需要先從影響學生計算的心理因素談起。
l 影響學生計算的心理因素
影響學生計算的心理因素主要有:感知粗略、注意失調、記憶還原、表象模糊、情感脆弱、強信息干擾、思維定勢副作用等方面。
以口算為例加以說明——
1、感知粗略
要進行口算,首先必須通過學生的感覺器官來感知數據和符號組成的算式。小學生感知事物的特點是比較籠統、粗糙、不具體,往往只注意到一些孤立的現象,看不出事物的聯系及特徵,因而頭腦中留下的印象缺乏整體性。而口算題本身無情節,外顯形式單調,不易引發興趣。因此,學生口算時,往往只感知數據、符號的本身而較少考慮其意義,對相似、相近的數據或符號容易產生感知失真,造成差錯。如一些學生常把「+」看作「×」,把「÷」看作是「+」,把「56」寫成「65」,把「109」當成「169」等等。
2、 注意失調。
注意是心理活動對一定對象的指向與集中。注意的不穩定和較差的分配能力是產生口算差錯的重要心理因素。小學生注意不穩定,不持久,不容易分配,注意的范圍不廣,易被無關因素吸引而出現「分心」現象。在口算過程中,需要經常注意或把注意同時分配在不同的對象上。由於小學生注意力所顧及的面不廣,要求他們在同一時間內,把注意分配到兩個或兩個以上的對象時,往往顧此失彼,丟三落四。例如單獨口算6×8和48+7等口算題,大部分學生能算準確,而把兩題合起來時,算6×8+7,學生往往得45,忘記進位而造成差錯。
3、記憶還原。
記憶的目的不僅是信息的貯存,更重要的是能准確地提取。學生貯存信息的過程中,由於生理、時間、復習量等多種因素的影響,使得貯存的信息消失或暫時中斷,從而丟頭忘尾,造成「遺忘性差錯」。特別是連加、連減、進位加、退位減、連乘、連除等口算題,瞬時記憶量較大,如口算28×3時,要求學生能暫時記住每一步口算的結果,即20×3=60,8×3=24,並在腦中口算出60+24=84。而這類口算題出錯的原因,主要是中間得數的貯存與提取不完整或遺忘所致。
4、表象模糊
表象是感知向思維過渡的橋梁。從運算形式看,小學生的口算是從直觀感知過渡到表象運算,再到抽象運算。從小學生的思維特點看,其思維帶有很大的具體形象性,表象常成為其思維的憑借物。特別是低年級兒童,常因口算方法的表象不清晰而產生差錯。如一些一年級學生口算7+6、8+5等進位加法時,頭腦中對「分解」→「湊十」→「合並」的表象模糊,想像不出「湊十法」的具體過程,因而出現差錯。
5、情感脆弱
口算時,學生都希望很快算出結果。有些學生在做口算題時候,由於存在急於求成的心理,當數目小、算式簡單時,易生「輕敵」思想;而當數目大、計算復雜時,又表現出不耐心,產生厭煩情緒。口算時,一些學生常不能全面精細地看題,認真耐心地分析,更不能正確合理地選擇口算方法,進而養成題目未看清就匆匆動筆、做完不檢查等陋習。
6、強信息干擾
小學生的視、聽知覺是有選擇性的,所接受信息的強弱程度影響他們的思考。強化了的信息在學生的頭腦中留下了深刻的印象,如同數想減得0,0和1在計算中的特性,25×4=100,125×8=1000等等。這種強信息首先映入眼簾,容易掩蓋其它信息。如口算18-18÷3,學生並非不懂得「先乘除後加減」的順序,而是被「同數相減等於0」這一強信息所干擾,一些學生首先想到18-18=0,而忽視了運算順序,錯誤地口算成18-18÷3=0。
7、思維定勢負作用
定勢是思維的一種「慣性」,是一定心理活動所形成的准備狀態。這種准備狀態可以決定同類後繼活動的某種趨勢。在540÷60、450÷90、360÷40等題之後夾一道300-50,很多學生往往錯算成300-50=6。
l 正確處理計算教學中的四種關系
當前計算教學中,要想上好一節計算課,就必須處理好以下四個方面的關系:創設情境與復習鋪墊的關系、演算法多樣化與演算法優化的關系、算理直觀與演算法抽象的關系、形成技能與解決問題的關系。
一、正確處理創設情境與復習鋪墊的關系
現在的計算教學幾乎不見了傳統教學中的復習鋪墊,取而代之的是——情境創設。因此,很多計算課都創設生活情景,常常是創設「買東西」 或者是「逛商場」的情境,硬要從生活中得到一些數據用來計算或者一定要聯系生活,難道這就是新課標的理念嗎?
建構主義學習理論認為,學習總是與一定的社會文化背景即「情境」相聯系的,在實際情境下進行學習,有利於意義建構。的確,良好的問題情境能有效地激活學生的有關經驗和體驗。新課標也非常強調,計算教學時「應通過解決實際問題進一步培養數感,增進學生對運算意義的理解」「應使學生經歷從實際問題中抽象出數量關系,並運用所學知識解決問題的過程」「避免將運算與應用割裂開來」。然而,任何事物都不是絕對的。因為數學的來源,一是來自數學外部現實社會的發展需要;二是來自數學內部的矛盾,即數學本身發展的需要。這兩方面的來源都可能成為我們展開教學的背景。
例如「負數」的教學,傳統的教材中很少 出現在小學教學,現在課程標准規定在小學階段要引進負數。現實生活中存在著大量的具有相反意義的量,可以作為揭示負數的素材;同時,從數學本身出發,為了解決諸如「2-3」不夠減的矛盾,需要引進一種新的數,也同樣是小學生易於感知的問題情境。這里,選擇兩種角度之一引進都是可取的。
【案例】內容:新課標人教版第九冊小數乘整數和小數除以整數
【方法一】引入一個買風箏的生活情景。一個風箏3.5元,買3個這樣的風箏要多少元?在教小數除以整數時也出現了王鵬早鍛練的生活情景。用學生感興趣的事引入教學,在完成計算教學的目標的同時也教學了解決諸如單價×數量=總價,路程÷時間=速度等應用題,正所謂「一箭雙雕」。
【方法二】在教學這兩個內容的教學中用舊知識的遷移,在新授前作一個復習整數乘除法計算的鋪墊,通過對比練習,學生掌握積的小數點如何確定,商的小數點要和被除數的小數點對齊。這才是這節計算方法的重中之重。
【思考】方法一其目的是讓學生在解決實際生活中的問題,通過單位的轉化理解算理,這是可取的,也是現實的,無可非議。但一節課下來,學生究竟能兼顧多少?方法二的復習鋪墊是有必要的。試問有些學生連整數的乘除法都不過關,又豈能談小數的乘除法呢?為什麼會連整數的乘除法也不過關呢?新課標對學生的計算要求不高,又加上計算器的加入教學,有些老師的認識不夠,日積月累,學生的計算能力不強,事實證明有時候鋪墊時有必要的。但常常有的老師走進了誤區,為了使教學更順暢,設計了一些過渡性、暗示性問題,給學生設置了一條狹隘的思維通道,使得學生無需探究就可以得出結論。這樣的一個鋪墊,無疑成了抹殺學生廣闊思維的一筆。這些都是教師在選擇用情景導入還是復習導入要考慮和注意的問題。
可見,創設情境和復習鋪墊並不是對立的,不是所有的計算教學都必須從生活中找「原型」,選擇怎樣的引入方式取決於計算教學的內容特點和學生的學習起點。
二、正確處理演算法多樣化與演算法優化的關系
新課標在「基本理念」中指出「由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。」在第一學段「內容標准」中說:「應重視口算,加強估算,提倡演算法多樣化。」在第一學段「教學建議」中再次指出:「由於學生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應尊重學生的想法,鼓勵學生獨立思考,提倡計算方法的多樣化。」
「演算法多樣化」是新課程改革初期的熱門詞語。
數學課程改革實施的初期,大家對「演算法多樣化」感覺很新鮮,計算教學一改過去「教材選定演算法——教師講解演算法——學生模仿演算法——練習強化演算法」的機械模式,出現了非常可喜的變化,「演算法多樣化」已成為計算教學最顯明的特徵。
【案例】 「兩位數乘法」的教學片斷:
首先,教師通過問題情境:一箱汽水24瓶,18箱汽水有多少瓶?先讓學生估計一下大約有多少瓶,然後列出式子24×18,設法算出結果。經過老師的精心「引導」,出現了多樣化的演算法,老師花了將近一節課的時間進行了展示:
(1)24×10+24×8=432
(2)20×18+4×18=432
(3) 24×20-24×2=432
(4) 24×2×9=432
(5) 24×3×6=432
(6) 18×4×6=432
(7) 18×3×8=432
(8)24+24+24+24+……+24=432(18個24相加)
(9)18+18+18+18+……+18=432(24個18相加)
還有些同學用了豎式計算出結果。最後,老師說「你們喜歡用什麼樣的演算法就用什麼樣的演算法。」課後交流時,老師認為「現在計算教學一定要演算法多樣化,演算法越多越能體現課改精神。」通過詢問課堂上想出第八、九種演算法的學生:「你真是這樣算的嗎?」學生說:「我才不願意用這種笨方法呢!是老師課前吩咐我這么說的。」連續問了好幾個學生,竟沒有一個學生用這種逐個加的方法。那麼前面的幾種演算法真是學生自己想出來的嗎?
第8、9種方法有哪個學生願意用這種笨方法呢!在乘法的初步認識時已經知道了乘法的意義:求幾個相同加數的和的簡便計算。那麼第8、9種的方法完全沒必要在這節課中展示出來。其實學生用第1、2種方法就完全能明白兩位數乘法的算理,列豎式不就更簡單了嗎?
【思考】上述案例反映了在計算教學中少數老師對演算法多樣和演算法優化這對基本矛盾的認識模糊。演算法多樣化應是一種態度,是一個過程,它的本意是指群體中不同個體間的方法的多樣化,而不是指每一個體的方法多要多樣化,不要求學生對同一計算掌握多種演算法。演算法多樣化的本質是要尊重學生的不同想法,鼓勵學生獨立思考、嘗試創新,而不是千篇一律。演算法多樣化不是教學的最終目的,不能片面追求形式化。老師不必煞費苦心「索要」多樣化的演算法,也不必為了體現多樣化,刻意引導學生尋求「低思維層次演算法」。即使有時是教材編排的演算法,但在實際教學中學生中沒有出現,即學生已經超越了的「低思維層次演算法」,教師可以不再出示,沒有必要走回頭路。
在如何更有效地處理演算法多樣與演算法優化這對矛盾上,我們應該進行更深層次的思考。以學生思維憑借的依據來看,可以分為基於動作的思維、基於形象的思維和基於符號與邏輯的思維。顯然這三種思維並不在同一層次上,不在同一層次上的演算法就應該提倡優化,而且必須優化,只是優化的過程應是學生不斷體驗與感悟的過程,而不是教師強制規定和主觀臆斷的過程,應讓學生逐步找到適合自己的最優演算法。具體體現在
1、計算方法的優化。
演算法的優化是讓學生在群體比較的過程中優化,在個體感悟的前提下實施優化。因為優化是學生對知識結構的再構建過程,是發自學生內心的行為和自主的活動。正如葉瀾教授所說「沒有聚焦的發散是沒有價值的,聚焦的目的是為了促進學生發展。」演算法優化是學生個體的學習、體驗與感悟的過程,不是群體或教師的優化。對於個體而言,是個體對原有的計算方法進行優化的過程,是個體學習、容納他人計算方法的過程,是個體思維發展、提高的過程。如果不對演算法進行優化,那麼我們的學生就沒有收獲、沒有提高。
2、傳承優秀教學文化。
中國優秀教學文化非常豐富,乘法口訣就是最好的說明。我們的計算教學中做了一些嘗試。我們在三年級進行了「巧算24點」的數學游戲介紹,計算中的技巧方法講解;五年級進行了兩個兩位數相乘的巧算:十位數互補,尾數相同,其計算方法是:頭乘頭後加尾數為前積,尾自乘為後積。如48×68=3264。計算程序是4×6=24 24+8=32 32為前積,8×8=64為後積,兩積相連就得3264。還有兩個頭相同,尾互補數相乘的巧算;兩個十幾的數相乘的巧算等。讓學生在發現探索中學習掌握,事實證明,這些優秀的教學文化不但能極大限度地調動學生眼、腦、手、口、耳多種感官的協調活動,對於培養我們快捷的心算能力和反應能力都很有幫助。
三、正確處理算理直觀與演算法抽象的關系
曾有一些教師認為,計算教學沒有什麼道理可講,只要讓學生掌握計算方法後,反復「演練」,就可以達到正確、熟練的要求了。結果,不少學生雖然能夠依據計演算法則進行計算,但因為算理不清,知識遷移的范圍就極為有限,無法適應計算中千變萬化的各種具體情況。
算理是指四則計算的理論依據,它是由數學概念、性質、定律等內容構成的數學基礎理論知識。演算法是實施四則計算的基本程序和方法。算理為演算法提供了理論指導,演算法使算理具體化。學生在學習計算的過程中,明確了算理和演算法,就便於靈活、簡便地進行計算,計算的多樣性才有基礎和可能。因此,在計算教學中重視算理和演算法是一個十分重要的課題。
【案例】《分數與除法》
首先這位老師從一個同學的生日引出分蛋糕這一生活情景,激發學生的學習興趣。讓學生知道數學知識來源於實際生活的需要。在教學中為了能讓學生充分理解了3÷4=的算理。讓每個學生都動手操作分餅。把3塊餅平均分給4個小朋友可以有幾種分法,引導學生動手操作,得出兩種不同的分法,引出的兩種含義,這個數學學習活動是一個生動活潑的、主動的、富有個性的過程,讓學生通過實際操作感悟新知識。課件的生動演示更能學生明白分餅的過程。
【思考】在這節課中學生在不斷地嘗試、探究、猜想、思考中,不斷地產生問題、解決問題、再生成新的問題,在合作、比較、交流中進一步理解分數與除法的關系。也給學生留出了操作空間,因此學生對分數與除法的關系理解得比較透徹。而本環節中,用動手操作來解釋答案到底是四分之三還是四分之一成為必然,而不是依樣畫葫蘆,照著課本「例行公事」或按著老師的旨意被動行事。這樣的動手操作才能使學生真正理解了本課的重點,突破難點。
在教具演示、學具操作等直觀刺激下,學生對算理理解得十分清晰。但是,可能好景不長,當學生還流連在直觀形象的算理中,馬上就面對十分抽象的演算法,接著的計算都是直接運用抽象的簡化演算法進行計算。如在四年級利用運算定律簡便計算的教學時,這方面的教學讓很多老師都很「頭痛」。學生在剛學的時候,掌握得不錯。但很多式子在一起要判斷能簡算的簡算時,很多學生就不能作出正確的判斷。這正是學生對算理和演算法的了解不夠深入。如:75+25×3往往很多同學做成(75+25)×3,以為是利用了乘法分配律。原因是對乘法分配律這算理理解得不透徹。因此,在算理直觀與演算法抽象之間應該架設一座橋梁,讓學生在剪拼圖形的過程中逐步完成「動作思維---形象思維---抽象思維」的發展過程。
總之,計算教學既需要讓學生在直觀中理解算理,也需要讓學生掌握抽象的法則,更需要讓學生充分體驗由直觀算理到抽象演算法的過渡和演變過程,從而達到對算理的深層理解和對演算法的切實把握。
四、正確處理形成技能與解決問題的關系
《義務教育數學課程標准》中不再設置專門的「應用題」領域,而是注重讓學生「經歷將一些實際問題抽象為數與代數問題的過程,掌握數與代數的基礎知識和基本技能,並能解決簡單的問題」。現在的計算課,能否擔當起以往應用題教學的重任?如何處理解決實際問題與形成計算技能之間的矛盾?計算本身的問題如何解決?
不難發現,為了體現計算與應用的密切聯系,在計算教學時不少教師總是從實際問題引入,在學生初步理解算理後,馬上就去解決大量的實際問題。表面上看,學生的應用意識得到了培養,但另一方面我們也發現,學生常常是算式列對了,計算錯誤率卻很高。一段時間下來,發現學生的計算能力並未達到目標,於是再反過來進行大量的訓練,使得不少學生短時間內似乎計算正確率和速度提高不少,但實際上違背了學生的認知規律,學生的計算技能並沒有實質性的提高,更嚴重的是這種簡單化的處理大大挫傷了學生的學習熱情。
教育心理學認為,計算是一種智力操作技能,而知識轉化為技能是需要過程的,計算技能的形成具有自身獨特的規律。誠然,過去計算教學中單調、機械的模仿和大量重復性的過度訓練是要不得的,但是,在計算教學時只注重算理的理解和解決實際問題,對計算技能形成的過程如蜻蜓點水般一帶而過,也是不利於培養學生的計算能力的。特別需要指出的是:可以先針對重點、難點進行專項和對比練習,再根據學生的實際體驗,適時縮減中間過程,進行歸類和變式練習,最後讓學生面對實際問題,掌握相應策略。
如:在第九冊的《稍復雜的方程》中的3個例題中都無一例外地擔負著雙重任務,不僅要引導學生正確分析等量關系,學會列方程,同時還要教會他們解形如ax±b=c、a(x±b)=c、ax±bx=c的方程,所以在教學過程中老師要注意節奏的調控,重難點處應把握好輕重緩急。如果是一課時完成兩個任務,學生吃不消,尤其是班額較大的班級。因此,可分開進行教學,第一課時先解較復雜的方程,先讓學生掌握解方程的技巧,落實基本技能目標。第二課時再完成列方程解決問題。這樣下來的問題確實少很多,這樣令重點突出,難點分散。現在的教材是希望學生在解決問題的過程中形成計算的技能。
總之,計算教學中正確處理以上四種關系對於數學課程改革的成敗起著重要作用,從數學教育本質的角度出發,以計算教學基本矛盾的解決為導向,促進計算教學的深入改革,為切實提高學生的計算能力和數學素養打下良好的基礎。在教學中選擇有效的計算教學策略,提高學生計算的能力。
l 解釋改革以來教師在計算教學中的困惑
一、估算19+17時,很多學生直接算出36,這時教師該怎麼辦?在教學中如何處理好估算和精確計算的關系?
首先要講清楚估算的要求,讓學生理解估算的含義。估算是對運算過程與計算結果進行近似或粗略估計的一種能力。當前國際數學教育中十分重視估算,隨著科技的迅速發展,有大量事實是不可能也不需要進行精確計算的。無數事例說明,一個人在一天活動中估計和差積商的次數,遠比進行精確計算的次數多的多。
估算主要是在日常生活中無法進行精確計算或沒有必要算出精確結果時所採用的一種計算方式;精算則是根據需要准確計算出結果的計算方式。兩者在教學中各有各的要求,在小學階段主要是培養學生精確計算的能力,同時讓學生在具體情境中體驗估算的需要。
而精確計算(包括口算和筆算)能力是學生必要的計算技能,在教學中要注意培養。
二、現在的教材在計算教學中都沒有出現計演算法則,對此,教師該怎樣處理?
數學法則反映的是幾個數學概念之間的關系。計演算法則是用文字表述的運算規定,它是在算理指導下對運算過程實施細則作出的具體規定,所反映的是一種規范化的操作程序。
新課程改革的趨勢之一就是淡化形式,注重本質。因此現在的計算教學淡化了程式化地敘述算理和計演算法則,強化的是學生對算理的理解和演算法的掌握,強化的是學生在計算過程的經歷過程和主動探索。
對於教材中沒有出現的計演算法則,只要讓學生理解算理並掌握演算法就行了。
至於敘述和概括計演算法則,不要太高的要求,特別是低年級。
三、計算課,如何有效提高學生計算的速度和准確率?
關於計算的速度和准確率,是衡量學生計算能力形成的兩個重要維度。計算教學改革的總體趨勢是對計算的快捷性要求有所降低。
對於一些基本口算要讓學生達到快速和正確的要求。即在小學階段的口算內容中,兩個一位數相加與其相對應的減法和表內乘法與其相對應的除法是四則運算中的基本口算,俗稱「四張九九表」,這「四表」是一切計算的基礎,務必使學生達到「脫口而出」的熟練程度。
而對於筆算,不必過高地提出速度的要求,重要的是讓學生正確計算,逐步提高速度。
四、計算器進入課堂後,學生平時可以使用嗎?怎樣才能解決現代教學工具和筆算的矛盾?
根據《義務教育數學課程標准(實驗稿)》中的規定,在第二學段中指出「能藉助計算器進行較復雜的運算,解決簡單的實際問題,探索簡單的數學規律。」因此,有些版本的教材從四年級開始就引入計算器的教學,以幫助學生進行計算和探索規律。只要有必要,學生平時當然可以使用。不過也要注意引導學生合理使用計算器,不能完全依賴計算器。

『捌』 小學數學(要說算理)

設三個箱子的重量分別為X Y Z
X+Y=166
X+Z=172
Y+Z=170
解這個三元一次方程:
X=84
Y=82
Z=88
所以最重的是88千克

『玖』 參加小學數學教師編制的考核,說課怎麼說啊還有幾天就要面試了~怎麼准備啊

小學數學優秀說課稿《小數除法》
一、 教學理念
教師的教學方案必須建立在學生的基礎之上。新課程標准指出,「數學課程不僅要考慮教學自身的特點,更應遵循學生學習數學的心理規律,強調從學生已有的生活經驗出發……數學教學活動必須建立在學生的認知發展水平和已有知識經驗基礎之上。」
筆者認為教學中成功的關健在於:教師的「教」立足於學生的「學」。
1、從學生的思維實際出發,激發探索知識的願望,不同發展階段的學生在認知水平、認知風格和發展趨勢上存在差異,處於同一階段的不同學生在認知水平、認知風格和發展趨勢上也存在著差異。人的智力結構是多元的,有的人善於形象思維,有的人長於計算,有的人擅長邏輯思維,這就是學生 的實際。教學要越貼近學生的實際,就越需要學生自己來探索知識,包括發現問題,分析、解決問題。在引導學生感受算理與演算法的過程中,放手讓學生嘗試,讓學生主動、積極地參與新知識的形成過程中,並適時調動學生大膽說出自己的方法,然後讓學生自己去比較方法的正確與否,簡單與否。這樣學生對算理與演算法用自己的思維方式,既明於心又說於口。
2、遇到課堂中學生分析問題或解決問題出現錯誤,特別是一些受思維定勢影響的「規律性錯誤」比如學生在處理商的小數點時受到小數加減法的影響。教師針對這種情況,是批評、簡單否定還是鼓勵大膽發言、各抒己見,然後讓學生發現錯誤,驗證錯誤?當然應該是鼓勵學生大膽地發表自己的意見、看法、想法。學生對自己的方法等於進行了一次自我否定。這樣對教學知識的理解就比較深刻,既知其然,又知其所以然。而且學生通過對自己提出的問題,分析或解決的問題提出質疑,自我否定,有利於學生促進反思能力與自我監控能力。
數學教學活動應該是一個從具體問題中抽象出數學問題,並用多種數學語言分析它,用數學方法解決它,從中獲得相關的知識與方法,形成良好的思維習慣和應用數學的意識,感受教學創造的樂趣,增進學生學習數學的信心,獲得對數學較為全面的體驗與理解。因此,學生是數學學習的主人,教師應激發學生的學習積極性,要向學生提供充分從事數學活動的機會,幫助他們掌握基本的數學知識、技能、思想、方法,獲得豐富的數學活動經驗。
二、教學思路
一個數除以小數」即「除數是小數的除法」是九年義務教育六年制小學數學第九冊的重點知識之一。本節教材的重點是:除數是小數的除法轉化成除數是整數的除法時小數點的移位法則。其關鍵是根據「除數、被除數同時擴大相同的倍數,商不變」的性質,把除數是小數的除法轉化成除數是整數的除法。
1、 調查分析
在教學小數除法前一個星期,筆者對曾對班內十五位同學進行了一次簡單的調查,(調查結果見附表)筆者認為學生存在很大的教學潛能,這些潛在的「能源」就是教學的依據,教學的資源。從上表可以得出以下結論:
(1) 學生對小數除法的基礎掌握的比較鞏固。
(2) 學生運用新知識解決實際問題的能力存在比較明顯的差異,但不同的學生具有不同的潛力。
(3) 優秀學生與學習困難生對算理的理解在思維水平上有較大差異。但對豎式書寫都不規范。
筆者認為小數除法如果按照教材按部就班教學是很不合理的,不僅浪費教學時間,而且不利於學生從整體上把握小數除法,不利於知識的系統性的形成,更不利於學生對知識的建構。因此,筆者選擇了重組教材。(把例6例7與例8有機的結合在一起)
2、利用遷移,明確轉化原理
理解除數是小數的除法的計演算法則的算理是「商不變的性質」和「小數點位置移動引起小數大小變化的規律」,把除數是小數的除法轉化成除數是整數的除法後就用「除數是整數的小數除法」計演算法則進行計算。為了促進遷移,明確轉化移位的原理,可設計如下環節:
(1)、小數點移動規律的復習
(2)、商不變規律的復習
(3)、移位練習
3、試做例題,掌握轉化方法
明確轉化原理後,讓學生試算例題。在試做的基礎上引導學生進行觀察比較,抽象出轉化時小數點的移位方法,最後概括總結出移位的法則。具體做法如下:
①.學生試做例題6例題7,並講出每個例題小數點移位的方法。
②.學生試做例8
③.引導學生概括總結出轉化時移位的方法,同時在此基礎上歸納出除數是小數的除法計演算法則。在得出計演算法則後,還要注意強調:
(1)小數點向右移動的位數取決於除數的小數位數,而不由被除數的小數位數確定。
(2)整數除法中,兩個數相除的商不會大於被除數,而在小數除法中,當除數小於1時,商反而比被除數大。
(3)要注意小數除法里余數的數值問題。對這一問題可舉例說明。如:57.4÷24,要使學生懂得余數是2.2,而不是22。4、專項訓練,提高「轉化」技能
除數是小數的除法,把除數轉化成整數後,被除數可能出現以下情況:被除數仍是小數;被除數恰好也成整數;被除數末尾還要補「0」。針對上述情況可作專項訓練:
①.豎式移位練習。練習在豎式中移動小數點位置時,要求學生把劃去的小數點和移動後的小數點寫清楚,新點上的小數點要點清楚,做到先劃、再移、後點。這種練習小數點移位形象具體,學生所得到的印象深刻。
②.橫式移位練習。練習在橫式中移動小數點位置時,由於「劃、移、點」只反映在頭腦里,這就需要學生把轉化前後的算式建立起等式,使人一目瞭然。(1)判斷下面的等式是否成立,為什麼?
教學過程
(一)復習導入
1.要使下列各小數變成整數,必須分別把它們擴大多少倍?小數點怎樣移動?
1.2 0.67 0.725 0.003
2.把下面的數分別擴大10倍、100倍、1000倍是多少?
1.342, 15, 0.5, 2.07。
3.填寫下表。根據上表,說說被除數、除數和商之間有什麼變化規律。(被除數和除數同時擴大或縮小相同的倍數,商不變。)
根據商不變的性質填空,並說明理由。
(1)5628÷28=201; (2)56280÷280=( );
(3)562800÷( )=201; (4)562.8÷2.8=( )。
(重點強調(4)的理由。(4)式與(1)式比較,被除數、除數都縮小了10倍,所以商不變,還是201,即562.8÷2.8=5628÷28=201)
(該環節的設計意圖是通過學生的講與練,理解其轉化原理是:當除數由小數變成整數時,除數擴大10倍、100倍、1000倍……被除數也應擴大同樣的倍數。)
(二)探究算理 歸納法則
1.學習例6:
一根鋼筋長3.6米,如果把它截成0.4米長的小段。可以截幾段?
(1)學生審題列式:3.6÷0.4。
(2)揭示課題:
這個算式與我們以前學習的除法有什麼不同?(除數由整數變成了小數。)
今天我們一起來研究「一個數除以小數」。(板書課題:一個數除以小數。)
(3)探究算理。
①思考:我們學習了除數是整數的小數除法,現在除數是小數該怎樣計算呢?
(把除數轉化成整數。)
怎樣把除數轉化成整數呢?
②學生試做:
板演學生做的結果,並由學生講解:
解法1:把單位名稱「米」轉換成厘米來計算。
3.6米÷0.4米=36厘米÷4厘米=9(段)。
解法2: 答:可以截成9段。
講算理:(為什麼把被除數、除數分別擴大10倍?)
把除數0.4轉化成整數4,擴大了10倍。根據商不變的性質,要使商不變,被除數3.6也應擴大10倍是36。
小結:這道題我們可以通過哪些方法把除數轉化成整數?
(①改寫單位名稱;②利用商不變的性質。)
(3)練習:完成例7
思考:你用哪種方法轉化?為什麼?
同桌互相說說轉化的方法及道理。獨立計算後,訂正。例7里的余數15表示多少?
強調:利用商不變的性質,把被除數和除數同時擴大多少倍,由哪個數的小數位數決定?
(由除數的小數位數決定。因為我們只要把除數轉化成整數就成了除數是整數的小數除法。如0.756÷0.18=75.6÷18。)
(設計意圖:在試做的基礎上引導學生初步感受轉化時小數點的移位方法,為自主概括法則作鋪墊)
2.學習例8:買0.75千克油用3.3元。每千克油的價格是多少元?
學生列式:3.3÷0.75。
(1)要把除數0.75變成整數,怎樣轉化?(把除數0.75擴大100倍轉化成75。要使商不變,被除數也應擴大100倍。)
(2)被除數3.3擴大100.倍是多少?(3.3擴大100.倍是330,小數部分位數不夠在末尾補「0」。)
(3)學生試做:
(3)比較例6、7與例8有什麼不同?(被除數在移動小數點時,位數不夠在末尾用「0」補足。)
(4) 練習:課本P49練一練第三題學生獨立完成後,歸納小結。
(設計意圖:對被除數小數點移位後補「0」的方法,教師可作適當點撥。學生試做後先不急於講評,讓他們對照教材中的兩個例題,啟發學生觀察、比較兩道例題的不同點與計算時的注意點。引導學生分析、比較,逐步抽象出移位的方法。讓學生在充分積累經驗的基礎上歸納出除數是小數的除法的計演算法則,會收到水道渠成的效果)
(三)展開練習 深化認識
1. (1)不計算,把下面各式改寫成除數是整數的算式。

(2)下面各式錯在哪裡,應怎樣改正?

2.根據10.44÷0.725=14.4,填空:
(1)104.4÷7.25=( );(2)1044÷( )=14.4;
(3)( )÷0.0725=14.4;(4)10.44÷7.25=( );
(5)1.044÷0.725=( );(6)1.044÷7.25=( )。
3. (3)選出與各組中商相等的算式。
A.4.83÷0.7 B.0.225÷0.15
483÷7 0.483÷7 48.3÷7
225÷15 2.25÷15 22.5÷15
4.口算:
1.2÷0.3= 0.24÷0.08= 0.15÷0.01= 2.8÷4=
2.6÷0.2= 4.6÷4.6= 3.8÷0.19= 2.5÷0.05=
(設計意圖:旨在通過各種形式的練習提高學生學習興趣,鞏固法則,強化重點,突破難點)
(四)回顧總結
思考:除數是小數的除法應怎樣計算?討論得出(填空):除數是小數的除法的計演算法則是:除數是小數的除法,先移動( )的小數點,使它變成( );除數的小數點向右移動幾位,被除數的小數點也( )移動( )(位數不夠的,在被除數的( )用「0」補足);然後按照除數是( )的小數除法進行計算。看書P46--49,劃出重點詞語。

『拾』 小學數學,怎麼樣進行計算課的教學

計算是我國小學數學教學的重要內容,它貫穿小學數學教學的始終,無論是數學概念的形成、數學結論的獲得、還是數學問題的解決等都依賴於計算活動的參與。新的《數學課程標准》對計算教學在目標定位上提出了新要求,更注重讓學生體驗計算在生活中的意義,並能運用數學計算解決實際問題,使學生切身感受到數學就在身邊,真正體驗到學習數學的價值。而今,學生計算能力不盡人意,究其原因,需要先從影響學生計算的心理因素談起。
l 影響學生計算的心理因素
影響學生計算的心理因素主要有:感知粗略、注意失調、記憶還原、表象模糊、情感脆弱、強信息干擾、思維定勢副作用等方面。
以口算為例加以說明——
1、感知粗略
要進行口算,首先必須通過學生的感覺器官來感知數據和符號組成的算式。小學生感知事物的特點是比較籠統、粗糙、不具體,往往只注意到一些孤立的現象,看不出事物的聯系及特徵,因而頭腦中留下的印象缺乏整體性。而口算題本身無情節,外顯形式單調,不易引發興趣。因此,學生口算時,往往只感知數據、符號的本身而較少考慮其意義,對相似、相近的數據或符號容易產生感知失真,造成差錯。如一些學生常把「+」看作「×」,把「÷」看作是「+」,把「56」寫成「65」,把「109」當成「169」等等。
2、 注意失調。
注意是心理活動對一定對象的指向與集中。注意的不穩定和較差的分配能力是產生口算差錯的重要心理因素。小學生注意不穩定,不持久,不容易分配,注意的范圍不廣,易被無關因素吸引而出現「分心」現象。在口算過程中,需要經常注意或把注意同時分配在不同的對象上。由於小學生注意力所顧及的面不廣,要求他們在同一時間內,把注意分配到兩個或兩個以上的對象時,往往顧此失彼,丟三落四。例如單獨口算6×8和48+7等口算題,大部分學生能算準確,而把兩題合起來時,算6×8+7,學生往往得45,忘記進位而造成差錯。
3、記憶還原。
記憶的目的不僅是信息的貯存,更重要的是能准確地提取。學生貯存信息的過程中,由於生理、時間、復習量等多種因素的影響,使得貯存的信息消失或暫時中斷,從而丟頭忘尾,造成「遺忘性差錯」。特別是連加、連減、進位加、退位減、連乘、連除等口算題,瞬時記憶量較大,如口算28×3時,要求學生能暫時記住每一步口算的結果,即20×3=60,8×3=24,並在腦中口算出60+24=84。而這類口算題出錯的原因,主要是中間得數的貯存與提取不完整或遺忘所致。
4、表象模糊
表象是感知向思維過渡的橋梁。從運算形式看,小學生的口算是從直觀感知過渡到表象運算,再到抽象運算。從小學生的思維特點看,其思維帶有很大的具體形象性,表象常成為其思維的憑借物。特別是低年級兒童,常因口算方法的表象不清晰而產生差錯。如一些一年級學生口算7+6、8+5等進位加法時,頭腦中對「分解」→「湊十」→「合並」的表象模糊,想像不出「湊十法」的具體過程,因而出現差錯。
5、情感脆弱
口算時,學生都希望很快算出結果。有些學生在做口算題時候,由於存在急於求成的心理,當數目小、算式簡單時,易生「輕敵」思想;而當數目大、計算復雜時,又表現出不耐心,產生厭煩情緒。口算時,一些學生常不能全面精細地看題,認真耐心地分析,更不能正確合理地選擇口算方法,進而養成題目未看清就匆匆動筆、做完不檢查等陋習。
6、強信息干擾
小學生的視、聽知覺是有選擇性的,所接受信息的強弱程度影響他們的思考。強化了的信息在學生的頭腦中留下了深刻的印象,如同數想減得0,0和1在計算中的特性,25×4=100,125×8=1000等等。這種強信息首先映入眼簾,容易掩蓋其它信息。如口算18-18÷3,學生並非不懂得「先乘除後加減」的順序,而是被「同數相減等於0」這一強信息所干擾,一些學生首先想到18-18=0,而忽視了運算順序,錯誤地口算成18-18÷3=0。
7、思維定勢負作用
定勢是思維的一種「慣性」,是一定心理活動所形成的准備狀態。這種准備狀態可以決定同類後繼活動的某種趨勢。在540÷60、450÷90、360÷40等題之後夾一道300-50,很多學生往往錯算成300-50=6。
l 正確處理計算教學中的四種關系
當前計算教學中,要想上好一節計算課,就必須處理好以下四個方面的關系:創設情境與復習鋪墊的關系、演算法多樣化與演算法優化的關系、算理直觀與演算法抽象的關系、形成技能與解決問題的關系。
一、正確處理創設情境與復習鋪墊的關系
現在的計算教學幾乎不見了傳統教學中的復習鋪墊,取而代之的是——情境創設。因此,很多計算課都創設生活情景,常常是創設「買東西」 或者是「逛商場」的情境,硬要從生活中得到一些數據用來計算或者一定要聯系生活,難道這就是新課標的理念嗎?
建構主義學習理論認為,學習總是與一定的社會文化背景即「情境」相聯系的,在實際情境下進行學習,有利於意義建構。的確,良好的問題情境能有效地激活學生的有關經驗和體驗。新課標也非常強調,計算教學時「應通過解決實際問題進一步培養數感,增進學生對運算意義的理解」「應使學生經歷從實際問題中抽象出數量關系,並運用所學知識解決問題的過程」「避免將運算與應用割裂開來」。然而,任何事物都不是絕對的。因為數學的來源,一是來自數學外部現實社會的發展需要;二是來自數學內部的矛盾,即數學本身發展的需要。這兩方面的來源都可能成為我們展開教學的背景。
例如「負數」的教學,傳統的教材中很少 出現在小學教學,現在課程標准規定在小學階段要引進負數。現實生活中存在著大量的具有相反意義的量,可以作為揭示負數的素材;同時,從數學本身出發,為了解決諸如「2-3」不夠減的矛盾,需要引進一種新的數,也同樣是小學生易於感知的問題情境。這里,選擇兩種角度之一引進都是可取的。
【案例】內容:新課標人教版第九冊小數乘整數和小數除以整數
【方法一】引入一個買風箏的生活情景。一個風箏3.5元,買3個這樣的風箏要多少元?在教小數除以整數時也出現了王鵬早鍛練的生活情景。用學生感興趣的事引入教學,在完成計算教學的目標的同時也教學了解決諸如單價×數量=總價,路程÷時間=速度等應用題,正所謂「一箭雙雕」。
【方法二】在教學這兩個內容的教學中用舊知識的遷移,在新授前作一個復習整數乘除法計算的鋪墊,通過對比練習,學生掌握積的小數點如何確定,商的小數點要和被除數的小數點對齊。這才是這節計算方法的重中之重。
【思考】方法一其目的是讓學生在解決實際生活中的問題,通過單位的轉化理解算理,這是可取的,也是現實的,無可非議。但一節課下來,學生究竟能兼顧多少?方法二的復習鋪墊是有必要的。試問有些學生連整數的乘除法都不過關,又豈能談小數的乘除法呢?為什麼會連整數的乘除法也不過關呢?新課標對學生的計算要求不高,又加上計算器的加入教學,有些老師的認識不夠,日積月累,學生的計算能力不強,事實證明有時候鋪墊時有必要的。但常常有的老師走進了誤區,為了使教學更順暢,設計了一些過渡性、暗示性問題,給學生設置了一條狹隘的思維通道,使得學生無需探究就可以得出結論。這樣的一個鋪墊,無疑成了抹殺學生廣闊思維的一筆。這些都是教師在選擇用情景導入還是復習導入要考慮和注意的問題。
可見,創設情境和復習鋪墊並不是對立的,不是所有的計算教學都必須從生活中找「原型」,選擇怎樣的引入方式取決於計算教學的內容特點和學生的學習起點。
二、正確處理演算法多樣化與演算法優化的關系
新課標在「基本理念」中指出「由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。」在第一學段「內容標准」中說:「應重視口算,加強估算,提倡演算法多樣化。」在第一學段「教學建議」中再次指出:「由於學生生活背景和思考角度不同,所使用的方法必然是多樣的,教師應尊重學生的想法,鼓勵學生獨立思考,提倡計算方法的多樣化。」
「演算法多樣化」是新課程改革初期的熱門詞語。
數學課程改革實施的初期,大家對「演算法多樣化」感覺很新鮮,計算教學一改過去「教材選定演算法——教師講解演算法——學生模仿演算法——練習強化演算法」的機械模式,出現了非常可喜的變化,「演算法多樣化」已成為計算教學最顯明的特徵。
【案例】 「兩位數乘法」的教學片斷:
首先,教師通過問題情境:一箱汽水24瓶,18箱汽水有多少瓶?先讓學生估計一下大約有多少瓶,然後列出式子24×18,設法算出結果。經過老師的精心「引導」,出現了多樣化的演算法,老師花了將近一節課的時間進行了展示:
(1)24×10+24×8=432
(2)20×18+4×18=432
(3) 24×20-24×2=432
(4) 24×2×9=432
(5) 24×3×6=432
(6) 18×4×6=432
(7) 18×3×8=432
(8)24+24+24+24+……+24=432(18個24相加)
(9)18+18+18+18+……+18=432(24個18相加)
還有些同學用了豎式計算出結果。最後,老師說「你們喜歡用什麼樣的演算法就用什麼樣的演算法。」課後交流時,老師認為「現在計算教學一定要演算法多樣化,演算法越多越能體現課改精神。」通過詢問課堂上想出第八、九種演算法的學生:「你真是這樣算的嗎?」學生說:「我才不願意用這種笨方法呢!是老師課前吩咐我這么說的。」連續問了好幾個學生,竟沒有一個學生用這種逐個加的方法。那麼前面的幾種演算法真是學生自己想出來的嗎?
第8、9種方法有哪個學生願意用這種笨方法呢!在乘法的初步認識時已經知道了乘法的意義:求幾個相同加數的和的簡便計算。那麼第8、9種的方法完全沒必要在這節課中展示出來。其實學生用第1、2種方法就完全能明白兩位數乘法的算理,列豎式不就更簡單了嗎?
【思考】上述案例反映了在計算教學中少數老師對演算法多樣和演算法優化這對基本矛盾的認識模糊。演算法多樣化應是一種態度,是一個過程,它的本意是指群體中不同個體間的方法的多樣化,而不是指每一個體的方法多要多樣化,不要求學生對同一計算掌握多種演算法。演算法多樣化的本質是要尊重學生的不同想法,鼓勵學生獨立思考、嘗試創新,而不是千篇一律。演算法多樣化不是教學的最終目的,不能片面追求形式化。老師不必煞費苦心「索要」多樣化的演算法,也不必為了體現多樣化,刻意引導學生尋求「低思維層次演算法」。即使有時是教材編排的演算法,但在實際教學中學生中沒有出現,即學生已經超越了的「低思維層次演算法」,教師可以不再出示,沒有必要走回頭路。
在如何更有效地處理演算法多樣與演算法優化這對矛盾上,我們應該進行更深層次的思考。以學生思維憑借的依據來看,可以分為基於動作的思維、基於形象的思維和基於符號與邏輯的思維。顯然這三種思維並不在同一層次上,不在同一層次上的演算法就應該提倡優化,而且必須優化,只是優化的過程應是學生不斷體驗與感悟的過程,而不是教師強制規定和主觀臆斷的過程,應讓學生逐步找到適合自己的最優演算法。具體體現在
1、計算方法的優化。
演算法的優化是讓學生在群體比較的過程中優化,在個體感悟的前提下實施優化。因為優化是學生對知識結構的再構建過程,是發自學生內心的行為和自主的活動。正如葉瀾教授所說「沒有聚焦的發散是沒有價值的,聚焦的目的是為了促進學生發展。」演算法優化是學生個體的學習、體驗與感悟的過程,不是群體或教師的優化。對於個體而言,是個體對原有的計算方法進行優化的過程,是個體學習、容納他人計算方法的過程,是個體思維發展、提高的過程。如果不對演算法進行優化,那麼我們的學生就沒有收獲、沒有提高。
2、傳承優秀教學文化。
中國優秀教學文化非常豐富,乘法口訣就是最好的說明。我們的計算教學中做了一些嘗試。我們在三年級進行了「巧算24點」的數學游戲介紹,計算中的技巧方法講解;五年級進行了兩個兩位數相乘的巧算:十位數互補,尾數相同,其計算方法是:頭乘頭後加尾數為前積,尾自乘為後積。如48×68=3264。計算程序是4×6=24 24+8=32 32為前積,8×8=64為後積,兩積相連就得3264。還有兩個頭相同,尾互補數相乘的巧算;兩個十幾的數相乘的巧算等。讓學生在發現探索中學習掌握,事實證明,這些優秀的教學文化不但能極大限度地調動學生眼、腦、手、口、耳多種感官的協調活動,對於培養我們快捷的心算能力和反應能力都很有幫助。
三、正確處理算理直觀與演算法抽象的關系
曾有一些教師認為,計算教學沒有什麼道理可講,只要讓學生掌握計算方法後,反復「演練」,就可以達到正確、熟練的要求了。結果,不少學生雖然能夠依據計演算法則進行計算,但因為算理不清,知識遷移的范圍就極為有限,無法適應計算中千變萬化的各種具體情況。
算理是指四則計算的理論依據,它是由數學概念、性質、定律等內容構成的數學基礎理論知識。演算法是實施四則計算的基本程序和方法。算理為演算法提供了理論指導,演算法使算理具體化。學生在學習計算的過程中,明確了算理和演算法,就便於靈活、簡便地進行計算,計算的多樣性才有基礎和可能。因此,在計算教學中重視算理和演算法是一個十分重要的課題。
【案例】《分數與除法》
首先這位老師從一個同學的生日引出分蛋糕這一生活情景,激發學生的學習興趣。讓學生知道數學知識來源於實際生活的需要。在教學中為了能讓學生充分理解了3÷4=的算理。讓每個學生都動手操作分餅。把3塊餅平均分給4個小朋友可以有幾種分法,引導學生動手操作,得出兩種不同的分法,引出的兩種含義,這個數學學習活動是一個生動活潑的、主動的、富有個性的過程,讓學生通過實際操作感悟新知識。課件的生動演示更能學生明白分餅的過程。
【思考】在這節課中學生在不斷地嘗試、探究、猜想、思考中,不斷地產生問題、解決問題、再生成新的問題,在合作、比較、交流中進一步理解分數與除法的關系。也給學生留出了操作空間,因此學生對分數與除法的關系理解得比較透徹。而本環節中,用動手操作來解釋答案到底是四分之三還是四分之一成為必然,而不是依樣畫葫蘆,照著課本「例行公事」或按著老師的旨意被動行事。這樣的動手操作才能使學生真正理解了本課的重點,突破難點。
在教具演示、學具操作等直觀刺激下,學生對算理理解得十分清晰。但是,可能好景不長,當學生還流連在直觀形象的算理中,馬上就面對十分抽象的演算法,接著的計算都是直接運用抽象的簡化演算法進行計算。如在四年級利用運算定律簡便計算的教學時,這方面的教學讓很多老師都很「頭痛」。學生在剛學的時候,掌握得不錯。但很多式子在一起要判斷能簡算的簡算時,很多學生就不能作出正確的判斷。這正是學生對算理和演算法的了解不夠深入。如:75+25×3往往很多同學做成(75+25)×3,以為是利用了乘法分配律。原因是對乘法分配律這算理理解得不透徹。因此,在算理直觀與演算法抽象之間應該架設一座橋梁,讓學生在剪拼圖形的過程中逐步完成「動作思維---形象思維---抽象思維」的發展過程。
總之,計算教學既需要讓學生在直觀中理解算理,也需要讓學生掌握抽象的法則,更需要讓學生充分體驗由直觀算理到抽象演算法的過渡和演變過程,從而達到對算理的深層理解和對演算法的切實把握。
四、正確處理形成技能與解決問題的關系
《義務教育數學課程標准》中不再設置專門的「應用題」領域,而是注重讓學生「經歷將一些實際問題抽象為數與代數問題的過程,掌握數與代數的基礎知識和基本技能,並能解決簡單的問題」。現在的計算課,能否擔當起以往應用題教學的重任?如何處理解決實際問題與形成計算技能之間的矛盾?計算本身的問題如何解決?
不難發現,為了體現計算與應用的密切聯系,在計算教學時不少教師總是從實際問題引入,在學生初步理解算理後,馬上就去解決大量的實際問題。表面上看,學生的應用意識得到了培養,但另一方面我們也發現,學生常常是算式列對了,計算錯誤率卻很高。一段時間下來,發現學生的計算能力並未達到目標,於是再反過來進行大量的訓練,使得不少學生短時間內似乎計算正確率和速度提高不少,但實際上違背了學生的認知規律,學生的計算技能並沒有實質性的提高,更嚴重的是這種簡單化的處理大大挫傷了學生的學習熱情。
教育心理學認為,計算是一種智力操作技能,而知識轉化為技能是需要過程的,計算技能的形成具有自身獨特的規律。誠然,過去計算教學中單調、機械的模仿和大量重復性的過度訓練是要不得的,但是,在計算教學時只注重算理的理解和解決實際問題,對計算技能形成的過程如蜻蜓點水般一帶而過,也是不利於培養學生的計算能力的。特別需要指出的是:可以先針對重點、難點進行專項和對比練習,再根據學生的實際體驗,適時縮減中間過程,進行歸類和變式練習,最後讓學生面對實際問題,掌握相應策略。
如:在第九冊的《稍復雜的方程》中的3個例題中都無一例外地擔負著雙重任務,不僅要引導學生正確分析等量關系,學會列方程,同時還要教會他們解形如ax±b=c、a(x±b)=c、ax±bx=c的方程,所以在教學過程中老師要注意節奏的調控,重難點處應把握好輕重緩急。如果是一課時完成兩個任務,學生吃不消,尤其是班額較大的班級。因此,可分開進行教學,第一課時先解較復雜的方程,先讓學生掌握解方程的技巧,落實基本技能目標。第二課時再完成列方程解決問題。這樣下來的問題確實少很多,這樣令重點突出,難點分散。現在的教材是希望學生在解決問題的過程中形成計算的技能。
總之,計算教學中正確處理以上四種關系對於數學課程改革的成敗起著重要作用,從數學教育本質的角度出發,以計算教學基本矛盾的解決為導向,促進計算教學的深入改革,為切實提高學生的計算能力和數學素養打下良好的基礎。在教學中選擇有效的計算教學策略,提高學生計算的能力。
l 解釋改革以來教師在計算教學中的困惑
一、估算19+17時,很多學生直接算出36,這時教師該怎麼辦?在教學中如何處理好估算和精確計算的關系?
首先要講清楚估算的要求,讓學生理解估算的含義。估算是對運算過程與計算結果進行近似或粗略估計的一種能力。當前國際數學教育中十分重視估算,隨著科技的迅速發展,有大量事實是不可能也不需要進行精確計算的。無數事例說明,一個人在一天活動中估計和差積商的次數,遠比進行精確計算的次數多的多。
估算主要是在日常生活中無法進行精確計算或沒有必要算出精確結果時所採用的一種計算方式;精算則是根據需要准確計算出結果的計算方式。兩者在教學中各有各的要求,在小學階段主要是培養學生精確計算的能力,同時讓學生在具體情境中體驗估算的需要。
而精確計算(包括口算和筆算)能力是學生必要的計算技能,在教學中要注意培養。
二、現在的教材在計算教學中都沒有出現計演算法則,對此,教師該怎樣處理?
數學法則反映的是幾個數學概念之間的關系。計演算法則是用文字表述的運算規定,它是在算理指導下對運算過程實施細則作出的具體規定,所反映的是一種規范化的操作程序。
新課程改革的趨勢之一就是淡化形式,注重本質。因此現在的計算教學淡化了程式化地敘述算理和計演算法則,強化的是學生對算理的理解和演算法的掌握,強化的是學生在計算過程的經歷過程和主動探索。
對於教材中沒有出現的計演算法則,只要讓學生理解算理並掌握演算法就行了。
至於敘述和概括計演算法則,不要太高的要求,特別是低年級。
三、計算課,如何有效提高學生計算的速度和准確率?
關於計算的速度和准確率,是衡量學生計算能力形成的兩個重要維度。計算教學改革的總體趨勢是對計算的快捷性要求有所降低。
對於一些基本口算要讓學生達到快速和正確的要求。即在小學階段的口算內容中,兩個一位數相加與其相對應的減法和表內乘法與其相對應的除法是四則運算中的基本口算,俗稱「四張九九表」,這「四表」是一切計算的基礎,務必使學生達到「脫口而出」的熟練程度。
而對於筆算,不必過高地提出速度的要求,重要的是讓學生正確計算,逐步提高速度。
四、計算器進入課堂後,學生平時可以使用嗎?怎樣才能解決現代教學工具和筆算的矛盾?
根據《義務教育數學課程標准(實驗稿)》中的規定,在第二學段中指出「能藉助計算器進行較復雜的運算,解決簡單的實際問題,探索簡單的數學規律。」因此,有些版本的教材從四年級開始就引入計算器的教學,以幫助學生進行計算和探索規律。只要有必要,學生平時當然可以使用。不過也要注意引導學生合理使用計算器,不能完全依賴計算器。
1、處理好筆算和計算器運算的關系。
對小學生來說,掌握一些簡單筆算方法,是學習數學的基本要求,因此扎扎實實打好基本功也是必要的。而對於一些比較繁雜的運算,就可以由計算器來代替。
2、培養學生運用計算器探索數學規律的習慣。
在一些教材中,編排了一些讓學生運用計算器探索規律的題材,讓學生運用計算器進行計算、觀察、猜測和驗證等活動,對培養學生的探索式學習有很大的促進作用。
五、學生較難掌握的計算知識,如與圓周率有關的計算,要多練嗎?
一方面,對於學生較難掌握的計算知識,要加強針對性練習,如有關圓周率的計算可以讓學生通過計算記住一些3.14的倍數6.28、9.42、12.56、15.7、18.84等等;另一方面,對於計算復雜的內容,要減輕學生繁雜計算的負擔,如有關圓周率的計算可以用計算器幫助計算。
總之,要上好一節數學計算課,需要研究計算的有關理論,分析影響學生計算能力提高的真正原因,依據新課標的要求,採取合理的教學方法,使學生找准計算內容對他們的潛在意義,引導學生將認知結構中有關的計算知識形成知識網路,用聯系的觀點對待計算問題,想必會取得良好的效果。

閱讀全文

與小學數學算理與演算法相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99