『壹』 小學四年級數學手抄報的內容
你可以把乘法口訣表寫上去,在寫一些關於數學家的故事等,,還可以出些題目,或者趣味數學,也可以把數學家的資料寫上去。。。。
故事如,祖 沖 之
祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。
祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是 π的漸近分數。
還有些資料,,
華 羅 庚
華羅庚,中國現代數學家。1910年11月12日生於江蘇省金壇縣。1985年6月12日在日本東京逝世。華羅庚1924年初中畢業之後,在上海中華職業學校學習不到一年,因家貧輟學,他刻苦自修數學,1930年在《科學》上發表了關於代數方程式解法的文章,受到專家重視,被邀到清華大學工作,開始了數論的研究,1934年成為中華教育文化基金會研究員。1936年作為訪問學者去英國劍橋大學工作。1938年回國,受聘為西南聯合大學教授。1946年應蘇聯普林斯頓高等研究所邀請任研究員,並在普林斯頓大學執教。1948年始,他為伊利諾伊大學教授。
1950年回國,先後任清華大學教授、中國科技大學數學系主任、副校長,中國科學院數學研究所所長、中國科學院應用數學研究所所長、中國科學院副院長等。華羅庚還是第一、二、三、四、五屆全國人大常委會委員和政協第六屆全國委員會副主席。
華羅庚是國際上享有盛譽的數學家,他在解析數論、矩陣幾何學、多復變函數論、偏微分方程等廣泛數學領域中都做出卓越貢獻,由於他的貢獻,有許多定理、引理、不等式與方法都用他的名字命名。為了推廣優選法,華羅庚親自帶領小分隊去二十七個省普及應用數學方法達二十餘年之久,取得了明顯的經濟效益和社會效益,為我國經濟建設做出了重大貢獻。
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
1791年高斯終於找到了資助人--布倫斯維克公爵費迪南(Braunschweig),答應盡一切可能幫助他,高斯的父親再也沒有反對的理由。隔年,高斯進入Braunschweig學院。這年,高斯十五歲。在那裡,高斯開始對高等數學作研究。並且獨立發現了二項式定理的一般形式、數論上的「二次互逆定理」(Law of Quadratic Reciprocity)、質數分布定理(prime numer theorem)、及算術幾何平均(arithmetic-geometric mean)。
1795年高斯進入哥廷根(G?ttingen)大學,因為他在語言和數學上都極有天分,為了將來是要專攻古典語文或數學苦惱了一陣子。到了1796年,十七歲的高斯得到了一個數學史上極重要的結果。最為人所知,也使得他走上數學之路的,就是正十七邊形尺規作圖之理論與方法。
希臘時代的數學家已經知道如何用尺規作出正 2m×3n×5p 邊形,其中 m 是正整數,而 n 和 p 只能是0或1。但是對於正七、九、十一邊形的尺規作圖法,兩千年來都沒有人知道。而高斯證明了:
一個正 n 邊形可以尺規作圖若且唯若 n 是以下兩種形式之一:
1、n = 2k,k = 2, 3,…
2、n = 2k × (幾個不同「費馬質數」的乘積),k = 0,1,2,…
費馬質數是形如 Fk = 22k 的質數。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是質數。高斯用代數的方法解決二千多年來的幾何難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。
1799年高斯提出了他的博士論文,這論文證明了代數一個重要的定理:
任一多項式都有(復數)根。這結果稱為「代數學基本定理」(Fundamental Theorem of Algebra)。
事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。
在1801年,高斯二十四歲時出版了《算學研究》(Disquesitiones Arithmeticae),這本書以拉丁文寫成,原來有八章,由於錢不夠,只好印七章。
這本書除了第七章介紹代數基本定理外,其餘都是數論,可以說是數論第一本有系統的著作,高斯第一次介紹「同餘」(Congruent)的概念。「二次互逆定理」也在其中。
二十四歲開始,高斯放棄在純數學的研究,作了幾年天文學的研究。
當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,義大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」(Cere)。現在我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。
高斯這時對這個問是產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極准確地預測行星的位置。果然,穀神星准確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」 (Method of Least Square)。
1802年,他又准確預測了小行星二號--智神星(Pallas)的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。
1809年他寫了《天體運動理論》二冊,第一冊包含了微分方程、圓椎截痕和橢圓軌道,第二冊他展示了如何估計行星的軌道。高斯在天文學上的貢獻大多在1817年以前,但他仍一直做著觀察的工作到他七十歲為止。雖然做著天文台的工作,他仍抽空做其他研究。為了用積分解天體運動的微分力程,他考慮無窮級數,並研究級數的收斂問題,在1812年,他研究了超幾何級數(Hypergeometric Series),並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。
1820到1830年間,高斯為了測繪汗諾華(Hanover)公國(高斯住的地方)的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀(Heliotrope)。為了要對地球表面作研究,他開始對一些曲面的幾何性質作研究。
1827年他發表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵蓋一部分現在大學念的「微分幾何」。
在1830到1840年間,高斯和一個比他小廿七歲的年輕物理學家-韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。
1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。
1835年高斯在天文台里設立磁觀測站,並且組織「磁協會」發表研究結果,引起世界廣大地區對地磁作研究和測量。
高斯已經得到了地磁的准確理,他為了要獲得實驗數據的證明,他的書《地磁的一般理論》拖到1839年才發表。
1840年他和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。 1841年美國科學家證實了高斯的理論,找到了磁南極和磁北極的確實位置。
高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:「寧可發表少,但發表的東西是成熟的成果。」許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。 其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、 Lobatchevsky(羅巴切烏斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父親是高斯大學的同學,他曾想試著證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小Bolyai還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老Bolyai把兒子的成果寄給老同學高斯,想不到高斯卻回信道:
to praise it would mean to praise myself.我無法誇贊他,因為誇贊他就等於誇獎我自己。
早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。
美國的著名數學家貝爾(E.T.Bell),在他著的《數學工作者》(Men of Mathematics) 一書里曾經這樣批評高斯:
在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能現在數學早比目前還要先進半個世紀或更多的時間。阿貝爾(Abel)和雅可比(Jacobi)可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他力面去。
在1855年二月23日清晨,高斯在他的睡夢中安詳的去世了......
1客車長190米,貨車長240米,兩車分別以每秒20米和每秒23M的速度前進.在雙軌鐵路上,相遇時從車頭相遇到車尾相離需幾秒?
答案:10秒.
2 計算1234+2341+3412+4123=?
答案:11110
3 一個等差數列的首項是5.6 ,第六項是20.6,求它的第4項
答案:14.6
4 求和0.1+0.3+0.5+0.7+.....+0.87+0.89=?
答案:22.5
5 求解下列同餘方程:
(1)5X≡3(mod 13) (2)30x≡33(mod 39) (3)35x≡140(mod 47) (4)3x+4x≡45(mod 4)
答案:(1)x≡11(mod 13) (2)x≡5(mod 39) (3)x≡4(mod 47) (4)x≡3(mod 4)
6 請問數2206525321能否被7 11 13 整除?
答案:能
7現有1分.2分.5分硬幣共100枚,總共價值2元.已知2分硬幣總價值比一分硬幣總價值多13分,三類硬幣各幾枚?
答案:一分幣51`枚.二分幣32枚.5分幣17枚.
8 找規律填數:
0 , 3,8,15,24,35,___,63 答案: 48
9 100條直線最多能把平面分為幾個部分?
答案:5051
10 A B兩人向大洋前進,每人備有12天食物,他們最多探險___天
答案:8天
11 100以內所有能被2或3或5或7整除的自然數個數
答案:78個
12 1/2 + 1/2+3 + 1/2+3+4 + ......+ 1/2+3+4+....+10=?
答案:343/330
13 從1,2,3,......2003,2004這些數中最多可取幾個數,讓任意兩數差不等於9?
答案:1005
14 求360的全部約數個數. 答案: 24
15 停車場上,有24輛車,汽車四輪,摩托車3輪,共86個輪.三輪摩托車____輛. 答案:10輛.
16 約數共有8個的最小自然數為____. 答案:24
17求所有除4餘一的兩位數和 答案;1210
『貳』 數學家的故事
祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.
祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形, 求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率 ,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率, 外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".
祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.
祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理, 但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".
『叄』 初中歷史教師資格證可以報考小學數學的特崗教師嗎
初中歷史教師資格證是否可以報考小學數學的特崗教師以當地規定作為參考。比如雲南省規定除了應聘英語、音樂、體育、美術學科教師的原則上與專業相同,其他的不做規定。
招聘條件:
(1)政治素質好,熱愛社會主義祖國,擁護黨的各項方針、政策,熱愛教育事業,有強烈的事業心和責任感,品行端正,遵紀守法,在校或工作(待業)期間表現良好,未受過任何紀律處分,為人師表,志願服務農村基層教育;
(2)符合服務崗位要求,應聘初中教師的,學歷要求為本科及以上;應聘英語、音樂、體育、美術學科教師的,原則上要求所學專業與申請服務崗位學科一致;
(3)身體條件符合雲南省申請教師資格人員體檢標準的規定,並能夠適應設崗地區工作、生活環境條件;
(4)普通話水平應達到《〈教師資格條例〉實施辦法》規定的相應標准要求,並取得相應等級的《普通話水平測試等級證書》。
(5)取得教師資格證或《中小學教師資格考試合格證明》、參加過「大學生志願服務西部計劃」、「三支一扶」計劃且服務期滿的志願者同等條件下優先聘用。
(6)申請到國家扶貧開發工作重點縣、邊境縣、民族自治縣農村學校服務的師范院校師范類專業本科畢業生、全日制碩士及以上畢業研究生,可免筆試,直接進入面試考核錄用。
(7)在崗特崗教師或國家在職在編公職人員不得參加特崗教師招聘考試。
解讀:
這里的招聘條件需特別注意的是,應聘初中教師的,學歷要求最低為本科;而應聘英語、音樂、體育、美術學科教師的,原則上要求所學專業與申請服務崗位學科一致。
(3)中小學數學史擴展閱讀:
雲南省特崗教師的招聘對象(面向全國招聘,向本地生源傾斜):
(1)全日制普通高校2019年畢業的本科及以上畢業生;
(2)2017年、2018年、2019年畢業的全日制普通高校師范類專業專科畢業生(必須是特殊緊缺學科,原則上不超過州、市年度總招聘數的30%);
(3)年齡在30周歲(1989年5月15日後出生)以下的全日制普通高校往屆本科及以上畢業生;
(4)往屆畢業生須取得相應《教師資格證書》。
『肆』 【人教版】高中數學教材總目錄
總目錄如下:
必修一
第一章 集合
1.集合的含義與表示
2.集合的基本關系
3.集合的基本運算
3.1交集與並集
3.2全集與補集
第二章 函數
1.生活中的變數關系
2.對函數的進一步認識
2.1函數的概念
2.2函數的表示方法
2.3映射
3.函數的單調性
4.二次函數性質的再研究
4.1二次函數的圖像
4.2二次函數的性質
5.簡單的冪函數
第二章 指數函數與對數函數
1.正指數函數
2.指數擴充及其運算性質
2.1指數概念的擴充
2.2指數運算是性質
3.指數函數
3.1指數函數的概念
3.2指數函數 的圖像和性質
3.3指數函數的圖像和性質
4.對數
4.1對數及其運算
4.2換底公式
5.對數函數
5.1對數函數的概念
5.2 的圖像和性質
5.3對數函數的圖像和性質
6.指數函數、冪函數、對數函數增長的比較
第四章 函數的應用
1.函數和方程
1.1利用函數性質判定方程解的存在
1.2利用二分法求方程的近似解
2.實際問題的函數建模
2.1實際問題的函數刻畫
2.2用函數模型解決實際問題
2.3函數建模案例
必修二
第一章 立體幾何初步
1.簡單幾何體
1.1簡單旋轉體
1.2簡單多面體
2.直觀圖
3.三視圖
3.1簡單組合體的三視圖
3.2由三視圖還原成實物圖
4.空間圖形的基本關系與公理
4.1空間圖形基本關系的認識
4.2空間圖形的公理
5.平行關系
5.1平行關系的判定
5.2平行關系的性質
6.垂直關系
6.1垂直關系的判定
6.2垂直關系的性質
7.簡單幾何體的面積和體積
7.1簡單幾何體的側面積
7.2稜柱、棱錐、稜台和圓柱、圓錐、圓台的體積
7.3球的表面積和體積
第二章 解析幾何初步
1.直線和直線的方程
1.1直線的傾斜角和斜率
1.2直線的方程
1.3兩條直線的位置關系
1.4兩條直線的交點
1.5平面直接坐標系中的距離公式
2.圓和圓的方程
2.1圓的標准方程
2.2圓的一般方程
2.3直線與圓、圓與圓的位置關系
3.空間直角坐標系
3.1空間直接坐標系的建立
3.2空間直角坐標系中點的坐標
3.3空間兩點間的距離公式
必修三
第一章 統計
1.從普查到抽樣
2.抽樣方法
2.1簡單隨機抽樣
2.2分層抽樣與系統抽樣
3.統計圖表
4.數據的數字特徵
4.1平均數、中位數、眾數、極差、方差
4.2標准差
5.用樣本估計總體
5.1估計總體的分布
5.2估計總體的數字特徵
6.統計活動:結婚年齡的變化
7.相關性
8.最小二乘估計
第二章 演算法初步
1.演算法的基本思想
1.1演算法案例分析
1.2排序問題與演算法的多樣性
2.演算法框圖的基本結構及設計
2.1順序結構與選擇結構
2.2變數與賦值
2.3循環結構
3.幾種基本語句
3.1條件語句
3.2 循環語句
第三章 概率
1.隨機事件的概率
1.1頻率與概率
1.2生活中的概率
2.古典概型
2.1古典概型的特徵和概率計算公式
2.2建立概率模型
2.3互斥事件
3.模擬方法——概率的應用
必修四
第一章 三角函數
1.周期現象
2.角的概念的推廣
3.弧度制
4.正弦函數和餘弦函數的定義與誘導公式
4.1任意角的正弦函數、餘弦函數的定義
4.2單位圓與周期性
4.3單位圓與誘導公式
5.正弦函數的性質與圖像
5.1從單位圓看正弦函數的性質
5.2正弦函數的圖像
5.3正弦函數的性質
6.餘弦函數的圖像和性質
6.1餘弦函數的圖像
6.2餘弦函數的性質
7.正切函數
7.1正切函數的定義
7.2正切函數的圖像和性質
7.3正切函數的誘導公式
8.函數的圖像
9.三角函數的簡單應用
第二章 平面向量
1.從位移、速度、力到向量
1.1位移、速度和力
1.2向量的概念
2.從位移的合成到向量的加法
2.1向量的加法
2.2向量的減法
3.從速度的倍數到數乘向量
3.1數乘向量
3.2平面向量基本定理
4.平面向量的坐標
4.1平面向量的坐標表示
4.2平面向量線性運算的坐標表示
4.3向量平行的坐標表示
5.從力做的功到向量的數量積
6.平面向量數量積的坐標表示
7.向量應用舉例
7.1點到直線的距離公式
7.2向量的應用舉例
第三章 三角恆等變形
1.同角三角函數的基本關系
2.兩角和與差的三角函數
2.1兩角差的餘弦函數
2.2兩角和與差的正弦、餘弦函數
2.3兩角和與差的正切函數
3.二倍角的三角函數
必修五
第一章 數列
1.數列
1.1數列的概念
1.2數列的函數特性
2.等差數列
2.1等差數列
2.2等差數列的前n項和
3.等比數列
3.1等比數列
3.2等比數列的前n項和
4.數列在日常經濟生活中的應用
第二章 解三角形
1.正弦定理與餘弦定理
1.1正弦定理
1.2餘弦定理
2.三角形中的幾何計算
3.解三角形的實際應用舉例
第三章 不等式
1.不等關系
1.1不等關系
1.2不等關系與不等式
2.一元二次不等式
2.1一元二次不等式的解法
2.2一元二次不等式的應用
3.基本不等式
3.1基本不等式
3.2基本不等式與最大(小)值
4.簡單線性規劃
4.1二元一次不等式(組)與平面區域
4.2簡單線性規劃
4.3簡單線性規劃的應用
選修2-1
第一章 常用邏輯用語
1.命題
2.充分條件與必要條件
2.1充分條件
2.2必要條件
2.3充要條件
3.全稱量詞與存在量詞
3.1全稱量詞與全稱命題
3.2存在量詞與特稱命題
3.3全稱命題與特稱命題的否定
4.邏輯連結詞「且」「或」「非」
4.1邏輯連結詞「且」
4.2邏輯連結詞「或」
4.3邏輯連結詞「非」
第二章 空間向量與立體幾何
1.從平面向量到空間向量
2.空間向量的運算
3.向量的坐標表示和空間向量基本定理
3.1空間向量的標准正交分解與坐標表示
3.2空間向量基本定理
3.3空間向量運算的坐標表示
4.用向量討論垂直與平行
5.夾角的計算
5.1直線間的夾角
5.2平面間的夾角
5.3直線與平面的夾角
6.距離的計算
第三章圓錐曲線與方程
1.橢圓
1.1橢圓及其標准方程
1.2橢圓的簡單性質
2.拋物線
2.1拋物線及其標准方程
2.2拋物線的簡單性質
3.雙曲線
3.1雙曲線及其標准方程
3.2雙曲線的簡單性質
4.曲線與方程
4.1 曲線與方程
4.2圓錐曲線的共同特徵
4.3直線與圓錐曲線的交點
選修2-2
第一章 推理與證明
1.歸納與類比
1.1歸納推理
1.2類比推理
2.綜合法與分析法
2.1綜合法
2.2分析法
3.反證法
4.數學歸納法
第二章 變化率與導數
1.變化的快慢與變化率
2.導數的概念及其幾何意義
2.1導數的概念
2.2導數的幾何意義
3.計算導數
4.導數的四則運演算法則
4.1導數的加法與減法法則
4.2導數的乘法與除法法則
5.簡單復合函數的求導法則
第三章 導數的應用
1.函數的單調性與極值
1.1導數與函數的單調性
1.2函數的極值
2.導數在實際問題中的應用
2.1實際問題中導數的意義
2.2最大值、最小值問題
第四章 定積分
1.定積分的概念
1.1定積分的背景——面積和路程問題
1.2定積分
2.微積分基本定理
3.定積分的簡單應用
3.1平面圖形的面積
3.2簡單幾何體的體積
第五章 數系的擴充與復數的引入
1.數系的擴充與復數的引入
1.1數的概念的擴展
1.2復數的有關概念
2.復數的四則運算
2.1復數的加法與減法
2.2復數的乘法與除法
人教版即由人民教育出版社出版,簡稱為人教版。
數學(漢語拼音:shù xué;希臘語:μαθηματικ;英語:Mathematics或Maths),源自於古希臘語的μθημα(máthēma),其有學習、學問、科學之意。古希臘學者視其為哲學之起點,「學問的基礎」。另外,還有個較狹隘且技術性的意義——「數學研究」。即使在其語源內,其形容詞意義凡與學習有關的,亦會被用來指數學的。
其在英語的復數形式,及在法語中的復數形式+es成mathématiques,可溯至拉丁文的中性復數(Mathematica),由西塞羅譯自希臘文復數τα μαθηματικά(ta mathēmatiká).
在中國古代,數學叫作算術,又稱算學,最後才改為數學.中國古代的算術是六藝之一(六藝中稱為「數」).
數學起源於人類早期的生產活動,古巴比倫人從遠古時代開始已經積累了一定的數學知識,並能應用實際問題.從數學本身看,他們的數學知識也只是觀察和經驗所得,沒有綜合結論和證明,但也要充分肯定他們對數學所做出的貢獻.
基礎數學的知識與運用是個人與團體生活中不可或缺的一部分.其基本概念的精煉早在古埃及、美索不達米亞及古印度內的古代數學文本內便可觀見.從那時開始,其發展便持續不斷地有小幅度的進展.但當時的代數學和幾何學長久以來仍處於獨立的狀態.
代數學可以說是最為人們廣泛接受的「數學」.可以說每一個人從小時候開始學數數起,最先接觸到的數學就是代數學.而數學作為一個研究「數」的學科,代數學也是數學最重要的組成部分之一.幾何學則是最早開始被人們研究的數學分支.
直到16世紀的文藝復興時期,笛卡爾創立了解析幾何,將當時完全分開的代數和幾何學聯繫到了一起.從那以後,我們終於可以用計算證明幾何學的定理;同時也可以用圖形來形象的表示抽象的代數方程.而其後更發展出更加精微的微積分.
現時數學已包括多個分支.創立於二十世紀三十年代的法國的布爾巴基學派則認為:數學,至少純數學,是研究抽象結構的理論.結構,就是以初始概念和公理出發的演繹系統.他們認為,數學有三種基本的母結構:代數結構(群,環,域,格……)、序結構(偏序,全序……)、拓撲結構(鄰域,極限,連通性,維數……)。
數學被應用在很多不同的領域上,包括科學、工程、醫學和經濟學等.數學在這些領域的應用一般被稱為應用數學,有時亦會激起新的數學發現,並促成全新數學學科的發展.數學家也研究純數學,也就是數學本身。
『伍』 小學數學你知道嗎中關於數學史的有
小學的數學歷史基本很少,因為加減法的運算從古時候開始就有了,多數後面字元的引入部分也是國外引入的
『陸』 如何將數學史運用到小學數學教學中
數學史上的哪些研究成果對推動人類社會進步有很大的作用
王見定教授挑戰「數學突破獎
(四)申報「數學突破獎」的理由 1983年王見定教授在世界上首次提出半解析函數理論,1988年又首次提出並系統建立了共軛解析函數理論,並將這兩項理論成功地應用於電場、磁場、流體力學、彈性力學等領域。此兩項理論受到眾多專家、學者的引用和發展,並由此引發雙解析函數、復調和函數、多解析函數(K階解析函數)、半雙解析函數、半共軛解析函數以及相應的邊值問題,微分方程、積分方程等一系列數學分支的產生,而且這種發展勢頭強勁有力、不可阻擋。這也是中國學者對發展世界數學作出的前所未有的大范圍的原創工作。王見定教授的半解析函數、共軛解析函數理論及其影響是:柯西、黎曼、維爾斯特拉斯、高斯、歐拉等世界數學大師開創的解析函數理論的推廣和發展,18、19世紀乃至20世紀的廣大數學家幾乎都在解析函數領域留下了他們的足跡。王見定教授在數學上的另一個重大貢獻是:王見定教授指出:社會統計學描述的是變數,數理統計學描述的是隨機變數,而變數和隨機變數是兩個既有區別又有聯系,且在一定條件下可以互相轉化的數學概念。王見定教授的這一論述在數學上就是一個巨大的發現。我們知道「變數」的概念是17世紀由著名數學家笛卡爾首先提出,而隨機變數是20世紀30年代以後由蘇聯學者首先提出,兩個概念的首次提出相差三個世紀。截止到王見定教授,世界上還沒有第二個人提出變數和隨機變數兩者的聯系、區別以及相互轉化。我們知道變數的提出造就了一系列的函數論、方程論、微積分等重大數學學科的產生和發展,進而引發了世界范圍內新的工業革命的興起。而隨機變數的提出則奠定了概率論、數理統計以及資訊理論、系統論、控制論等科學的產生和發展,從而引發了全球范圍內的高科技時代的誕生。可見變數、隨機變數的概念的提出的價值何等重大,從而把王見定教授在世界上首次提出變數隨機變數的聯系、區別以及相互的轉化的意義稱之為巨大,也就不視為過。下面我們回到:「社會統計學和數理統計學的統一」理論上來。王見定教授指出社會統計學描述的是變數,數理統計學描述的是隨機變數,這樣王見定教授准確地界定了社會統計學和數理統計學各自研究的范圍,以及在一定條件下可以相互轉化的關系,這是對統計學的最大貢獻。它結束了近四百年來幾十種甚至上百種以上五花八門種類的統計學混戰的局面,使它們回到正確的軌道上來。由於變數不斷的出現且永遠地繼續下去,所以社會統計學不僅不會消亡,而且會不斷地發展壯大。數理統計學也會由於隨機變數的不斷出現同樣發展壯大。但是,對隨機變數的研究一般來說比對變數的研究復雜得多,而且直到今天數理統計的研究尚處在較低水平,且使用起來比較復雜,再從長遠的研究來看,對隨機變數的研究最終會逐步轉化為對變數的研究,這與我們通常研究復雜問題轉化為若干簡單問題研究的道理是一樣的。既然社會統計學描述的是變數,而變數描述的范圍是極其寬廣的,絕非某些數理統計學者所雲:社會統計學只做簡單的加減乘除。從理論上講,社會統計學應該覆蓋除了數理統計學之外的絕大多數數學學科的運作。比如說最有實用價值的微積分也包含在內,因為微積分描述的也是變數。所以王見定教授提出的:「社會統計學與數理統計學統一」的理論,從根本上糾正了統計學界長期存在的低估社會統計學的錯誤學說,並從理論和應用上論證了社會統計學的廣闊前景。由於統計學現已上升到方法論的地位,所以新的統計學理論將對所有科學的發展起到不可估量的作用,可見王見定教授在數學上的發現是巨大的,而不是重大的。