① 六年級上冊數學日記《圓的認識》
篇一:學習圓的周長
今天早上老師要教我們怎樣算周長。
老師先拿出圓片說:「每個人先畫一個圓片或拿出一個圓形的東西,想辦法量出它的周長。」於是,我們開始討論了。我們先想辦法,再動手操作,一個同學馬上想出了辦法,便說:「我有辦法了。先在圓片上做一個記號,再從那個記號為點,向右在尺子上滾動一周,做一個記號,量出的長度就是這個圓片的周長了。」我馬上又想到了一個辦法,我說:「我也有辦法,我們用紙條在圓片上繞一周,做一個記號,然後量出紙條長度,就是圓的周長了。」
過了一會,老師聽我們講出各自的辦法之後便說,這樣有些辦法不免會有些誤差,我來教你們怎樣算周長吧!
「圓的周長要用到直徑,圓的周長總是直徑的3倍多一些,實際上,圓的周長除以直徑是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14,所以圓的周長=直徑×圓周率(3.14),也就是c=πd或c=2πr。老師說完又舉了例子。
我們學會了怎樣算圓周率(圓的周長)。
篇二:關於圓的數學日記
老師就讓我們將學具中的圓折一折看看能從中發現什麼?我心裡奇怪了:圓就是一個圓,有什麼好折的呢?原來讓我們折圓是為了了解圓的對稱啊!
我們又拿出剪刀將一個圓剪了下來,再平均剪成八份。老師讓我們想一想如何球出圓的面積來。同學們有的說用π乘、有的說用半徑求……大家七嘴八舌,課堂好不熱鬧。最後老師讓我們把剪好的八份近似於扇形的紙片試著拼成一個別的圖形。我拼的是一個近似於平行四邊形的圖形。
隨後,我們又分別將圓平均分成了16份、32份,再分別將剪好的小扇形拼成一個多邊形。這時候我發現,平均分的數量越多,拼成的圖形越接近長方形。
因為:長方形的面積=長×寬
所以:圓的面積=C/2×r=2πr/2×r=πr2
經過了圖形的分解再組合,我知道了怎麼求圓的面積啦!數學好神奇喲~
篇三:圓與正方形的奧秘
周末,我和爸爸一起去超市買卧室門外的小地毯,到了超市,爸爸選中了一種花色,這種花色有兩種形狀:圓形和正方形,服務員告訴我們,這兩種地毯的周長都是一樣的,是12.56dm。爸爸說:「反正大小都一樣的,你來挑吧!」我連忙喊道:「我來算算。」說著,我向服務員要了紙和筆,按老師教過的方法,算起圓的面積。
要算圓的面積先求圓的半徑:12.56÷3.14÷2=2分米,面積:3.14×2×2=12.56平方分米.
正方形的邊長:12.56÷4=3.14分米,面積:3.14×3.14=9.8596平方分米.
「以即使圓和正方形的周長相等,它們的面積也不一定相等,買圓形地毯比正方形地毯要劃算。」我滔滔不絕地給爸爸講著,爸爸聽得目瞪口呆,一旁的服務員也誇我聰明,我別提有多高興了。
生活中真是處處有數學,處處有學問啊!
篇四:生活中的圓
今天,我在寫作業的時候發現了一個問題。那就是生活中的圓。
什麼叫做生活中的圓,那就是在生活中有哪些關於圓的周長、圓的面積還有圓的對稱軸之類的東西,也就是圓的知識在生活中的應用。
在我們的現實生活中有許多地方要應用到圓的周長,只要你認真觀察,就肯定能發現的,雖然我不知道大家知道多少關於圓的周長的東西,今天我就把我所知的一點皮毛告訴大家,據我所知,車輪走一圈的路程就是這個圓的周長;時鍾的分針針尖走過的路線是鍾面的周長;圓形餐桌圍的花布邊的長度也是餐桌面的周長;人們經常戴在手上的手鐲也含有圓的周長的知識……真的是太多太多了,我只說了一點剩下的就由你這位高手去觀察了。
圓面積其實也很簡單,只要你會觀察,眼睛亮一點就可以了。圓桌的大小也就是圓桌的面積;時針掃過的面的大小也就是這個鍾的面積;還有就是可能大家很少見,那就是用繩子拴住牛吃草,求牛吃草的最大范圍,也就是求圓的面積,……。這是我所歸納的。
還有,圓有無數條對稱軸,切記!
我知道的就這些,不算多,所謂:「天外有山,人外有人」請指教。
其實生活中有許多數學,看你仔細不仔細。Do you know?
篇五:數學日記之圓的面積
之前,我們探索了圓的周長,現在我們繼續我們的探索之旅。圓有周長就"理所當然"會有面積。現在我們探索我們的圓的周長的"兄弟"圓的面積。
之前,圓的周長是關於直徑的,那"兄弟"面積就是關於直徑的"老弟"半徑的了。我們看著書上的探究活動,我們拿出數學用具,裡面有兩個圓形,一個圓是把一個圓分成了12份,一個圓是把一個圓分成了24份。我把12份的剪了下來,按照書上,我們拼成了一個像平行四邊形的圖形,我很奇怪,繼續把24份的也拼成了像長方形的圖形,我慢慢的理解到了:拼成的平行四邊形的高相當於圓的半徑,它的底相當於圓周長的一半。而長方形的長相當於圓周長的一半,它的寬相當於圓的半徑。從我的理解中,我推測出了圓的面積計算公式:π乘r的平方就是圓的面積了。在原來的基礎中,我舉一反三,列出了考試時考圓的面積的三種方式:1.已知半徑求面積,這一種是最簡單的,直接π乘r的平方就行了。2.已知直徑求面積,這一種先要求出半徑(直徑除以2=半徑),再用半徑的平方乘π就行了。3.已知周長就面積,這一道題就有點困難,但只要細心就能做好。先求直徑:周長除以π,再求半徑:直徑除以2,再π乘r的平方就行了。
數學我們要學會舉一反三,我們也要學會自己動手推出公式,這樣數學才會成為你的知心朋友。
篇六:圓的周長
我們剛剛學習了圓的認識(一)、(二),知道了圓的許多知識,並且由圓的認識了解到了圓周長的應用,能聯系生活實際解決問題,我們去了解一下圓周長的知識!
剛開始學圓的周長時,知道了能用滾動法和繞線法來量出圓的周長,探究出了圓的周長總是直徑3倍多一些,實際上,圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時,通常取3.14。我們就得出一個公式:如果用C表示的周長,那麼C=πd或C=2πr也就是圓的周長=圓周率×直徑。圓的周長有3個應用:1.已知d求C=πd 2.已知r求C,先求d再求C 3.已知C求d d=C÷π 已知C求r 先求d 再求r。
已知d求C:一個圓的直徑是5.5分米, 求這個圓的周長,那就用π3.14×直徑5.5=17.27dm.
已知r求C:汽車車輪的半徑為0.3米,它滾動1圈前進多少米?滾動1000圈前進多少米?它滾動一圈前進多少米?也就是求這個輪子的周長,先求出直徑:0.3×2=0.6m,然後求一圈的周長:3.14×0.6=1.884m 最後求出1000圈前進多少米:1.884×1000=1884m。
已知C求d:花壇的的周長是62.8m。你能求出這個圓形花壇的直徑嗎?周長6.28÷π3.14=d 2m
已知C求r:一個圓的周長是25.12㎝,求這個圓的半徑,那麼先求這個圓的直徑:用周長25.12÷π3.14=d 8㎝ 再求半徑:8÷2=4㎝。
這是圓周長的四大典型例題,圓的周長,除以直徑是一個固定的數,π是≈3.14的。
還有一種類型的題目:下圖是一個一面靠牆,另一面用竹籬笆圍成的半圓形養雞場,這個半圓的直徑為6米,籬笆長多少米?這題是求半圓的周長,一面靠牆的就不用算上籬笆,也就是求圓周長的一半,就用直徑6m×π3.14=圓的周長 18.84m 再算圓周長的一半:18.84÷2=9.42m。
這就是有趣的圓的周長,圓周長的一半,讓數學與生活緊緊地聯系在一起,原來數學也是蘊藏著生活的奧秘!
② 六年級上冊數學圓的認識概念(書忘帶了急!!!)
圓的認識(一)
1.圓中心的一點叫圓心,用O表示.一端在圓心,另一端在圓上的線段叫半徑,用r表示.兩端都在圓上,並過圓心的線段叫直徑,用d表示.
2.圓有無數條半徑,有無數條直徑.
3.圓心決定圓的位置,半徑決定圓的大小.
圓的認識(二)
4.把圓對折,再對折就能找到圓心.
5.圓是軸對稱圖形,直徑所在的直線是圓的對稱軸.圓有無數條對稱軸.
6.在同一個圓里,直徑的長度是半徑的2倍,可以表示為d=2r或r=d/2.
圓的周長和半圓的周長:
7.圓一周的長度就是圓的周長.半圓的周長等於圓周長的一半加一條直徑。
8.圓的周長除以直徑的商是一個固定的數,我們把它叫做圓周率,用字母π表示,計算時通常取3.14.
9.C=πd或C=πr.
10.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.4
圓的面積
11.用S表示圓的面積, r表示圓的半徑,那麼S=πr^2 S環=π(R^2-r^2)
12.11^2=121 12^2=144 13^2=169 14^2=196 15^2=225 16^2=256 17^2=289 18^2=324 19^2=361 20^2=400
13.周長相等時,圓的面積最大.面積相等時,圓的周長最小.
百分數的應用
百分數的應用(四)
14.利息=本金乘利率乘時間
比的認識
15.兩個數相除,又叫做這兩個數的比.比的後項不能為0.16.比的前項和後項同時乘上或除以一個相同的數(0除外).比值不變,這叫做比的基本性質.
六年級全冊數學知識點(整個小學階段和中學都通用,比較重要)
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關系。
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定行程過程中的位置
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追擊問題:追擊時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間 逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速 逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2 水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
【和差問題公式】
(和+差)÷2=較大數; (和-差)÷2=較小數。
【和倍問題公式】
和÷(倍數+1)=一倍數; 一倍數×倍數=另一數, 或 和-一倍數=另一數。
【差倍問題公式】
差÷(倍數-1)=較小數; 較小數×倍數=較大數, 或 較小數+差=較大數。
【平均數問題公式】
總數量÷總份數=平均數。
【一般行程問題公式】
平均速度×時間=路程; 路程÷時間=平均速度; 路程÷平均速度=時間。
【反向行程問題公式】反向行程問題可以分為「相遇問題」(二人從兩地出發,相向而行)和「相離問題」(兩人背向而行)兩種。這兩種題,都可用下面的公式解答:
(速度和)×相遇(離)時間=相遇(離)路程;
相遇(離)路程÷(速度和)=相遇(離)時間;
相遇(離)路程÷相遇(離)時間=速度和。
【同向行程問題公式】
追及(拉開)路程÷(速度差)=追及(拉開)時間;
追及(拉開)路程÷追及(拉開)時間=速度差;
(速度差)×追及(拉開)時間=追及(拉開)路程。
【列車過橋問題公式】
(橋長+列車長)÷速度=過橋時間;
(橋長+列車長)÷過橋時間=速度;
速度×過橋時間=橋、車長度之和。
【行船問題公式】
(1)一般公式:
靜水速度(船速)+水流速度(水速)=順水速度;
船速-水速=逆水速度;
(順水速度+逆水速度)÷2=船速; (順水速度-逆水速度)÷2=水速。
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度。
(求出兩船距離縮小或拉大速度後,再按上面有關的公式去解答題目)。
僅供參考:
【工程問題公式】
(1)一般公式:
工效×工時=工作總量; 工作總量÷工時=工效; 工作總量÷工效=工時。
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾;
1÷單位時間能完成的幾分之幾=工作時間。
(注意:用假設法解工程題,可任意假定工作總量為2、3、4、5……。特別是假定工作總量為幾個工作時間的最小公倍數時,分數工程問題可以轉化為比較簡單的整數工程問題,計算將變得比較簡便。)
【盈虧問題公式】
(1)一次有餘(盈),一次不夠(虧),可用公式:
(盈+虧)÷(兩次每人分配數的差)=人數。
例如,「小朋友分桃子,每人10個少9個,每人8個多7個。問:有多少個小朋友和多少個桃子?」
解(7+9)÷(10-8)=16÷2
=8(個)………………人數
10×8-9=80-9=71(個)………………………桃子
或8×8+7=64+7=71(個)(答略)
(2)兩次都有餘(盈),可用公式:
(大盈-小盈)÷(兩次每人分配數的差)=人數。
例如,「士兵背子彈作行軍訓練,每人背45發,多680發;若每人背50發,則還多200發。問:有士兵多少人?有子彈多少發?」
解(680-200)÷(50-45)=480÷5
=96(人)
45×96+680=5000(發)
或50×96+200=5000(發)(答略)
(3)兩次都不夠(虧),可用公式:
(大虧-小虧)÷(兩次每人分配數的差)=人數。
例如,「將一批本子發給學生,每人發10本,差90本;若每人發8本,則仍差8本。有多少學生和多少本本子?」
解(90-8)÷(10-8)=82÷2
=41(人)
10×41-90=320(本)(答略)
(4)一次不夠(虧),另一次剛好分完,可用公式:
虧÷(兩次每人分配數的差)=人數。
(例略)
(5)一次有餘(盈),另一次剛好分完,可用公式:
盈÷(兩次每人分配數的差)=人數。
(例略)
【雞兔問題公式】
(1)已知總頭數和總腳數,求雞、兔各多少:
(總腳數-每隻雞的腳數×總頭數)÷(每隻兔的腳數-每隻雞的腳數)=兔數;
總頭數-兔數=雞數。
或者是(每隻兔腳數×總頭數-總腳數)÷(每隻兔腳數-每隻雞腳數)=雞數;
總頭數-雞數=兔數。
例如,「有雞、兔共36隻,它們共有腳100隻,雞、兔各是多少只?」
解一 (100-2×36)÷(4-2)=14(只)………兔;
36-14=22(只)……………………………雞。
解二 (4×36-100)÷(4-2)=22(只)………雞;
36-22=14(只)…………………………兔。
(答 略)
(2)已知總頭數和雞兔腳數的差數,當雞的總腳數比兔的總腳數多時,可用公式
(每隻雞腳數×總頭數-腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數
或(每隻兔腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻免的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(3)已知總數與雞兔腳數的差數,當兔的總腳數比雞的總腳數多時,可用公式。
(每隻雞的腳數×總頭數+雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=兔數;
總頭數-兔數=雞數。
或(每隻兔的腳數×總頭數-雞兔腳數之差)÷(每隻雞的腳數+每隻兔的腳數)=雞數;
總頭數-雞數=兔數。(例略)
(4)得失問題(雞兔問題的推廣題)的解法,可以用下面的公式:
(1隻合格品得分數×產品總數-實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。或者是總產品數-(每隻不合格品扣分數×總產品數+實得總分數)÷(每隻合格品得分數+每隻不合格品扣分數)=不合格品數。
例如,「燈泡廠生產燈泡的工人,按得分的多少給工資。每生產一個合格品記4分,每生產一個不合格品不僅不記分,還要扣除15分。某工人生產了1000隻燈泡,共得3525分,問其中有多少個燈泡不合格?」
解一 (4×1000-3525)÷(4+15)
=475÷19=25(個)
解二 1000-(15×1000+3525)÷(4+15)
=1000-18525÷19
=1000-975=25(個)(答略)
(「得失問題」也稱「運玻璃器皿問題」,運到完好無損者每隻給運費××元,破損者不僅不給運費,還需要賠成本××元……。它的解法顯然可套用上述公式。)
(5)雞兔互換問題(已知總腳數及雞兔互換後總腳數,求雞兔各多少的問題),可用下面的公式:
〔(兩次總腳數之和)÷(每隻雞兔腳數和)+(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=雞數;
〔(兩次總腳數之和)÷(每隻雞兔腳數之和)-(兩次總腳數之差)÷(每隻雞兔腳數之差)〕÷2=兔數。
例如,「有一些雞和兔,共有腳44隻,若將雞數與兔數互換,則共有腳52隻。雞兔各是多少只?」
解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2
=20÷2=10(只)……………………………雞
〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2
=12÷2=6(只)…………………………兔(答略)
***【植樹問題公式】
(1)不封閉線路的植樹問題:
間隔數+1=棵數;(兩端植樹)
路長÷間隔長+1=棵數。
或 間隔數-1=棵數;(兩端不植)
路長÷間隔長-1=棵數;
路長÷間隔數=每個間隔長;
每個間隔長×間隔數=路長。
(2)封閉線路的植樹問題:
路長÷間隔數=棵數;
路長÷間隔數=路長÷棵數
=每個間隔長;
每個間隔長×間隔數=每個間隔長×棵數=路長。
(3)平面植樹問題:
佔地總面積÷每棵佔地面積=棵數
【求分率、百分率問題的公式】
比較數÷標准數=比較數的對應分(百分)率;
增長數÷標准數=增長率;
減少數÷標准數=減少率。
或者是
兩數差÷較小數=多幾(百)分之幾(增);
兩數差÷較大數=少幾(百)分之幾(減)。
【增減分(百分)率互求公式】
增長率÷(1+增長率)=減少率;
減少率÷(1-減少率)=增長率。
比甲丘面積少幾分之幾?」
解 這是根據增長率求減少率的應用題。按公式,可解答為
百分之幾?」
解 這是由減少率求增長率的應用題,依據公式,可解答為
【求比較數應用題公式】
標准數×分(百分)率=與分率對應的比較數;
標准數×增長率=增長數;
標准數×減少率=減少數;
標准數×(兩分率之和)=兩個數之和;
標准數×(兩分率之差)=兩個數之差。
【求標准數應用題公式】
比較數÷與比較數對應的分(百分)率=標准數;
增長數÷增長率=標准數;
減少數÷減少率=標准數;
兩數和÷兩率和=標准數;
兩數差÷兩率差=標准數;
【方陣問題公式】
(1)實心方陣:(外層每邊人數)2=總人數。
(2)空心方陣:
(最外層每邊人數)2-(最外層每邊人數-2×層數)2=中空方陣的人數。
或者是
(最外層每邊人數-層數)×層數×4=中空方陣的人數。
總人數÷4÷層數+層數=外層每邊人數。
例如,有一個3層的中空方陣,最外層有10人,問全陣有多少人?
解一 先看作實心方陣,則總人數有
10×10=100(人)
再算空心部分的方陣人數。從外往裡,每進一層,每邊人數少2,則進到第四層,每邊人數是
10-2×3=4(人)
所以,空心部分方陣人數有
4×4=16(人)
故這個空心方陣的人數是
100-16=84(人)
解二 直接運用公式。根據空心方陣總人數公式得
(10-3)×3×4=84
原價等於現價除以打幾折
打幾折等於原價除以現價
現價等於原價乘以打幾折
③ 小學六年級上冊圓的認識一試一試的數學日記
圓的認識
圓形在生活中常常與我們打招呼,它與其他圖形不同,長方形、正方形的邊長是直的,有兩個端點,可以度量,而圓是一種優美的曲線圖形。在建築設計中應用廣泛如:圓形花壇、圓形裝飾物,圓形還便於滾動,所以車輪都是圓的。
圓是怎樣畫成的呢?當然要用圓規了,可是教具不好使喚,想固定的那隻腳不停移動,用力過猛又使圓規兩腳的距離發生變化,無法畫出圓,經過幾次努力,終於在我面前呈現出了一個象樣的。
用圓規畫圓時,針尖固定的這一點叫圓心,一般用字母「O」來表示,我們畫出的圓有些大有些小,這是為什麼呢?原來與圓規兩腳分開的大小有關,圓規兩腳間的距離長時,畫出來的圓大,距離短時,圓就小。圓規的一隻腳,固定在圓心「O」上,直線延伸到任意一點,畫出兩條直線,這兩條直線的長短是相等的,可以畫無數條這樣的線段,這就是圓的半徑,一般用字母「r」來表示,從「O」點向兩邊延伸到邊上,就是直徑,所有直徑的長短都相等,可以畫出無數條,直徑一般用字母「d」來表示。
因為在同一圓里,半徑的兩倍等於直徑,所以用字母公式表示d=2r;直徑除以2等於半徑,所以用字母表示為:r=d/2。因為圓曲線上的每一點到圓心的距離都相等,車軸裝在圓心上,車軸到地面的距離永遠是半徑,這樣車才行駛的平穩。
原來,圓的世界這么奇妙!
④ 小學六年級的數學題第一單元圓的認識一練習題
圓的練習
一、填空。
1、用圓規畫圓,圓規兩腳間張開的距離是所畫圓的( )。在同一個圓內,直徑與半徑的比是( )。
2、一個半圓形陽台,直徑是4米,它的面積是( )。
3、一個大圓的半徑與小圓的直徑相等,小圓的周長是大圓的周長的( )分之( ),小圓的面積是大圓的面積的( )分之( )。
4、一個圓的半徑是18厘米,半徑擴大5倍,圓的直徑擴大( )倍,周長擴大( )倍,面積擴大( )倍。
5、有一個半徑為4分米的圓,它的面積是( )平方分米,這個圓的面積的 是( )平方分米, 是( )平方厘米。
6、一個圓的直徑是3厘米,半圓的面積是( )。
7、兩個圓的半徑比是2:3,則它們的周長比是( ),面積比是( )。
8、把一個圓分成若乾等份,然後把它剪拼成一個近似的長方形。已知長方形的寬是2厘米,長方形的長是( )。
二、判斷題。
1、經過一點可以畫無數個圓。( )2、兩個半圓可以拼成一個整圓。( )
3、從圓心到圓上的任意一點的線段都是這個圓的半徑。( )
4、r=2厘米時,圓的周長和面積相等。( )
5、在一個長方形內,正好剪取2個半徑為1.5厘米的圓。這個長方形面積至少是18平方厘米。( ) 6、半圓的周長正好是圓周長的一半。( )
7、r2 表示r×2。( ) 8、一個圓的周長是a厘米,半圓的周長就是 厘米。
9、一個半圓,半徑是r,它的周長是()。
三、選擇題。
1、大小不同的兩個圓,它們的半徑各增加2厘米,哪個圓的周長增加得多?( ) ①大圓 ②小圓 ③同樣多
2、把圓切拼成近似的長方形,下面第( )種說法是對的。
①周長變了,面積不變 ②周長不變,面積變了 ③周長和面積都不變
3、兩個連在一起的皮帶輪,其中一個輪子的直徑是6分米,當另一個輪子轉一周時,它要轉3周,另一個輪子的直徑是( )分米。①2 ②3 ③6 ④18
4、把一根6厘米長的鐵絲圍成一個正方形,後又改為一個圓形,它們的面積關系是( )。①相等 ②正方形面積大 ③圓的面積大
5、沿著圓的直徑把一個圓形切成兩個半圓,這時兩個半圓的周長與原來圓形相比( ),而兩個半圓的面積與原來圓形的面積( )。
①減少了 ②增加了 ③相等 ④無法比較
6、一台拖拉機,後輪直徑是前輪的2倍,如後輪滾動6圈,那麼,前輪要滾動( )圈。 ①3 ②6 ③9 ④12
7、在一個邊長5厘米的正方形中畫一個最大的圓,圓面積占正方形的( )
① ② ③ ④
8、周長是15.7厘米的圓,畫圓時圓規兩腳間的距離是( )。
①2厘米 ②2.5厘米 ③4厘米 ④5厘米
圓單元練習題 2009-12-05 09:38:25| 分類: 六年級試題 | 標簽: |字型大小大中小 訂閱 .
一、完成下表。
圓的半徑r
圓的直徑d
圓的周長C
圓的面積S
2cm
2cm
18.84cm
8cm
二、想一想,填一填。
1、當圓規兩腳間的距離為4厘米時,畫出圓的周長是( )厘米。
2、在一張長8厘米,寬12厘米的長方形紙上畫一個最大的圓,這個圓的直徑是( ),面積是( ),周長是( )。
3、一個車輪的直徑是55厘米,車輪轉動一周,大約前進( )米。
4、一個環形的外圓直徑是10cm,內圓直徑是8cm,它的面積( ) cm2。
5、一個圓的半徑擴大2倍,它的周長擴大( )倍,面積擴大( )倍。
三、請你來當小裁判。
1、圓心決定圓的位置,半徑決定圓的大小。 ( )
2、當圓的半徑等於2分米時,這個圓的周長和面積相等。 ( )
3、一個圓的面積和一個正方形的面積相等,它們的周長一定也相等. ()
4、同一個圓的直徑一定是半徑的2倍。 ( )
5、兩端都在圓上的線段,直徑是最長的一條。 ( )
6、半圓的周長是圓周長的一半。 ( )
四、選一選。(選擇正確答案的序號填在括弧里)
1、圓周率π( )3.14。 A、大於 B、等於 C、小於
2、下面各圖形中,對稱軸最多的是( )。
A、等腰三角形 B、正方形 C、圓
3、一個圓的周長是31.4分米,這個圓的面積是( )分米2。
A、314 B、78.5 C、15.7
4、一個半圓,半徑是r,它的周長是( )。
A、πr + 2r B、πr C、π/4
5、周長相等的正方形、長方形和圓,( )的面積最大。
A、正方形 B、長方形 C、圓
五、按要求做一做。
1、請你用圓規畫一個直徑是3厘米的圓。
2、請你畫出下面圖形的對稱軸。
六、計算下面圖形的面積。
七、解決問題。
1、一種鍾表的分針長5cm,2小時分針尖端走過的距離是多少?
2、保齡球的半徑大約是1dm,球道的長度約為18m,保齡球從一端滾到另一端,最少要滾動多少周?
3、一個花壇,直徑5米,在它的周圍有一條寬1米的環形小路,小路的面積是多少平方米?
4、有一個周長62.8米的圓形草坪,准備為它安裝自動旋轉噴灌裝置進行噴灌,現有射程為20米、15米、10米的三種裝置,你認為應選哪種比較合適?安裝在什麼地方?
※八、試一試。
廣場的中央有一個梅花形的花壇,外圈是五個半圓形,每個半圓形的半徑都是2米,這個花壇的周長是多少米?
⑤ 6年級圓的認識數學日記
圓
今天上數學課老師教我們如何畫圓。並告訴我們點O是圓心,用來確定圓的位置;線段OA是半徑,通常用字母r表示;線段BC是直徑,通常用字母d表示(注意:直經一點要經過圓心哦!)
老師還提問說:「有誰知道半徑、直徑之間、半徑與直徑之間有什麼關系?」有位同學回答說:「同一個圓里,直徑長是半徑的兩倍,用字母表示d等於2r」還有同學說:「同一個圓中所有的半徑都相等,所有的直徑都相等」
那我現在就來考考你你知道為什麼井蓋都是圓的嗎?圓有幾條對稱軸?恭喜你答對了,因為井蓋做成圓的,無論哪個方向都可以,圓有無數條對稱軸。
在學習圓的過程中,我們遇到了一個新的字母兀,它就是圓周率。在我國,現存有關圓周率的最早記載是2000多年前的《周髀算經》
公元前30集古希臘數學家阿靜的發型,當正多邊形的邊數增加時,它的形狀就越來越接近於,這一發現提供了計算圓周率的新途徑。在我國,首先是由魏晉時期傑出的數學家劉威得出了較精確的圓周率的值,他採用割圓術,一直算到圓內正街192邊形得到圓周率,近似值是3.14。但大家更熟悉的是祖沖之的貢獻吧!1500多年前,我國南北朝時期著名的數學家祖沖之得到了兀的兩個分數形式的近似值。並且算出pi的近似值在3.1415926和3.1415927之間。隨著數學的不斷發展,兀這小數點後面的精確數越來越多,2000年圓周率已經可以計算到小數點後12411億位。
⑥ 六年級數學圓的認識。為什麼水花是圓的
水波向四周散去當然是圓形,在一個平面內,一動點以一定點為中心,以一定長度為內距離旋轉一周所形成的容封閉曲線叫做圓。圓有無數個對稱軸。在同一平面內,到定點的距離等於定長的點的集合叫做圓。圓可以表示為集合{M||MO|=r},圓的標准方程是(x - a) ² + (y - b) ² = r ²。其中,o是圓心,r 是半徑。
圓形是一種圓錐曲線,由平行於圓錐底面的平面截圓錐得到。圓是一種幾何圖形。根據定義,通常用圓規來畫圓。 同圓內圓的直徑、半徑長度永遠相同,圓有無數條半徑和無數條直徑。圓是軸對稱、中心對稱圖形。對稱軸是直徑所在的直線。
切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:
(1)經過切點垂直於過切點的半徑的直線是圓的切線。
(2)經過切點垂直於切線的直線必經過圓心。
(3)圓的切線垂直於經過切點的半徑。
⑦ 小學六年級 圓的認識整理的資料
〖圓的定義〗
幾何說:平面上到定點的距離等於定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。
軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等於定長的點的集合叫做圓。
〖圓的相關量〗
圓周率:圓周長度與圓的直徑長度的比叫做圓周率,值是3.14159265358979323846…,通常用π表示,計算中常取3.1416為它的近似值。
圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。
圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
內心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。
〖圓和圓的相關量字母表示方法〗
圓—⊙ 半徑—r 弧—⌒ 直徑—d
扇形弧長/圓錐母線—l 周長—C 面積—S
〖圓和其他圖形的位置關系〗
圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線與圓有3種位置關系:無公共點為相離;有兩個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
【圓的平面幾何性質和定理】
〖有關圓的基本性質與定理〗
圓的確定:不在同一直線上的三個點確定一個圓。
圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的弧。
〖有關圓周角和圓心角的性質和定理〗
在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩條弧,兩條弦中有一組量相等,那麼他們所對應的其餘各組量都分別相等。
一條弧所對的圓周角等於它所對的圓心角的一半。
直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
〖有關外接圓和內切圓的性質和定理〗
一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。
最多就這么多。。。還有些是你沒學的。。你看著學吧
給我分哦