1. 人教版1~6年級數學概念匯總
六年級數學概念整理:
整數部分:
(一) 整數
1. 正整數、零與負整數統稱為整數。0既不是正數也不是負數。
2、自然數:用來表示物體個數0.1.2.3.4.5,…叫做自然數。一個物體也沒有,用「0」表示,「0」是最小的自然數,沒有最大的自然數,自然數的個數是無限的。
3、自然數的基本單位:任何非「0」的自然數都是由若干個「1」組成,所以「1」是自然數的基本單位。自然數不僅表示事物的多少,還表示事物的次序。
4、「0」的含義:一個物體也沒有,用「0」表示,但並不是說「0」只表示沒有物體,它還有多方面的含義。比如在表示溫度時,它是正、負溫度的分界線;在刻度尺上,它是起點;在數軸上它是整數和負數的劃分點;在計數中,「0」起佔位作用。還可以從運算的角度認識「0」,如任何數加「0」都等於原數;0和任何數相乘得0;0不能做除數……
5、計數單位:數數時用的單位就叫做計數單位。計數單位有:個(一),十,百,千,萬,十萬,百萬,千萬,億,十億,百億,千億,……
6、數位:把計數單位按一定的順序排列起來,它們所佔的位置就叫做數位。數位有:個位、十位、百位、千位、萬位、十萬位、百萬位、千萬位、億位、十億位、百億位、千億位……
7、多位數的讀法:從高位到低位,一級一級地讀,每一級末尾的0都讀不出來,其它數位有一個0或連續有幾個0都只讀一個零。
8、多位數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
9、比較正整數大小的方法:如果數位不同,那麼數位多的數就大。如果位數相同,左起第一位上數大的那個數就大;如果左起第一位上的數相同,就比較左起第二位上的數。依次類推直到比較出數的大小。十進制計數法;一(個)、十、百、千、萬……都叫做計數單位。其中「一」是計數的基本單位。10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是十。這種計數方法叫做十進制計數法
整數的讀法:從高位一級一級讀,讀出級名(億、萬),每級末尾0都不讀。其他數位一個或連續幾個0都只讀一個「零」。
整數的寫法:從高位一級一級寫,哪一位一個單位也沒有就寫0。
四捨五入法:求近似數,看尾數最高位上的數是幾,比5小就捨去,是5或大於5捨去尾數向前一位進1。這種求近似數的方法就叫做四捨五入法。
整數大小的比較:位數多的數較大,數位相同最高位上數大的就大,最高位相同比看第二位較大就大,以此類推。
小數部分:
把整數1平均分成10份、100份、1000份……這樣的一份或幾份是十分之幾、百分之幾、千分之幾……這些分數可以用小數表示。如1/10記作0.1,7/100記作0.07。
小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)……小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數
小數的讀法:整數部分整數讀,小數點讀點,小數部分順序讀。
小數的寫法:小數點寫在個位右下角。
小數的性質:小數末尾添0去0大小不變。
小數點位置移動引起大小變化:右移擴大左縮小,1十2百3千倍。
小數大小比較:整數部分大就大;整數相同看十分位大就大;以此類推。
分數和百分數
■分數和百分數的意義
1、 分數的意義:把單位「 1」 平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位「 1」 平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
2、 百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的「%」來表示。百分數一般只表示兩個數量關系之間的倍數關系,後面不能帶單位名稱。
3、 百分數表示兩個數量之間的倍比關系,它的後面不能寫計量單位。
4、 成數:幾成就是十分之幾。
■分數的種類
按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數
■分數和除法的關系及分數的基本性質
1、 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當於分子,而不能說成被除數就是分子。
2、 由於分數和除法有密切的關系,根據除法中「商不變」的性質可得出分數的基本性質。
3、 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
■約分和通分
1、 分子、分母是互質數的分數,叫做最簡分數。
2、 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。
3、 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
4、 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
5、 通分的方法:先求出原來幾個分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
■倒 數
1、 乘積是1的兩個數互為倒數。
2、 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。
3、 1的倒數是1,0沒有倒數
■分數的大小比較
1、 分母相同的分數,分子大的那個分數就大。
2、 分子相同的分數,分母小的那個分數就大。
3、 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。
4、 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。
■百分數與折數、成數的互化:
例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是10%,六成五就是65%。
■納稅和利息:
稅率:應納稅額與各種收入的比率。
利率:利息與本金的百分率。由銀行規定按年或按月計算。
利息的計算公式:利息=本金×利率×時間
百分數與分數的區別主要有以下三點:
1.意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。如:可以說 1米 是 5米 的 20%,不可以說「一段繩子長為20%米。」因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數不僅 可以表示兩數之間的倍數關系,
2.應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
3.書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數 的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分 數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。
數的整除
整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b整除(也可以說b能整除a)
除盡的意義 甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。
二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
■因數和倍數
1、自然數a(a≠0)乘自然數b(b≠0),所得積c,c就是a和b的倍數,a和b就是c的因數.例如:4×5=20,4和5是20的因數,20是4和5的倍數。、2、一個數的因數的個數是有限的,其中最小的因數是1,最大的因數是它本身。3、一個數的倍數的個數是無限的,其中最小的是它本身,它沒有最大的倍數。
■奇數和偶數
1、能被2整除的數叫偶數。例如:0、2、4、6、8、10……註:0也是偶數 2、不能被2整除的數叫基數。例如:1、3、5、7、9……
■整除的特徵
1、能被2整除的數的特徵:個位上是0、2、4、6、8。
2、能被5整除的數的特徵:個位上是0或5。
3、能被3整除的數的特徵:一個數的各個數位上的數之和能被3整除,這個數就能被3 整除。
■質數和合數
1、一個數只有1和它本身兩個因數,這個數叫做質數(素數)。
2、一個數除了1和它本身外,還有別的因數,這個數叫做合數。
3、1既不是質數,也不是合數。
4、自然數按因數的個數可分為:質數、合數 、 1
5、自然數按能否被2整除分為:奇數、偶數
■分解質因數
1、每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。例如:18=3×3×2,3和2叫做18的質因數。
2、把一個合數用幾個質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。
3、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。公因數只有1的兩個數,叫做互質數。幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。
4、特殊情況下幾個數的最大公因數和最小公倍數。(1)如果幾個數中,較大數是較小數的倍數,較小數是較大數的約數,則較大數是它們的最小公倍數,較小數是它們的最大公因數。(2)如果幾個數兩兩互質,則它們的最大公因數是1,小公倍數是這幾個數連乘的積。
■奇數和偶數的運算性質:
1、相鄰兩個自然數之和是奇數,之積是偶數。
2、奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,
奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。
整數、小學、分數四則混合運算
■四則運算的法則
1、加法a、整數和小數:相同數位對齊,從低位加起,滿十進一b、同分母分數:分母不變,分子相加;異分母分數:先通分,再相加
2、減法a、整數和小數:相同數位對齊,從低位減起,哪一位不夠減,退一當十再減b、同分母分數:分母不變,分子相減;異分母分數:先通分,再相減
3、乘法a、整數和小數:用乘數每一位上的數去乘被乘數,用哪一位上的數去乘,得數的末位就和哪一位對起,最後把積相加,因數是小數的,積的小數位數與兩位因數的小數位數相同b、分數:分子相乘的積作分子,分母相乘的積作分母。能約分的先約分,結果要化簡
4、除法a、整數和小數:除數有幾位,先看被除數的前幾位,(不夠就多看一位),除到被除數的哪一位,商就寫到哪一位上。除數是小數是,先化成整數再除,商中的小數點與被除數的小數點對齊b、甲數除以乙數(0除外),等於甲數除以乙數的倒數
■運算定律
加法交換律 a+b=b+a
結合律 (a+b)+c=a+(b+c)
減法性質 a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交換律 a×b=b×a
結合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性質 a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。
推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍。
一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍。
■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍。
被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍。
■利用積的變化規律和商不變規律性質可以使一些計算簡便。但在有餘數的除法中要注意余數。
如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被後的,所以還原成原來的余數應該是100。
簡易方程
■用字母表示數
用字母表示數是代數的基本特點。既簡單明了,又能表達數量關系的一般規律。
■用字母表示數的注意事項
1、數字與字母、字母和字母相乘時,乘號可以簡寫成「•「或省略不寫。數與數相乘,乘號不能省略。
2、當1和任何字母相乘時,「 1」 省略不寫。
3、數字和字母相乘時,將數字寫在字母前面。
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式
■等式與方程
表示相等關系的式子叫等式。
含有未知數的等式叫方程。
判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式。所以,方程一定是等式,但等式不一定是方程。
■方程的解和解方程
使方程左右兩邊相等的未知數的值,叫方程的解。
求方程的解的過程叫解方程。
■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x。
■解方程的方法
1、直接運用四則運算中各部分之間的關系去解。如x-8=12
加數+加數=和 一個加數=和-另一個加數
被減數-減數=差 減數=被減數-差 被減數=差+減數
被乘數×乘數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=除數×商
2、先把含有未知數x的項看作一個數,然後再解。如3x+20=41
先把3x看作一個數,然後再解。
3、按四則運算順序先計算,使方程變形,然後再解。如2.5×4-x=4.2,
要先求出2.5×4的積,使方程變形為10-x=4.2,然後再解。
4、利用運算定律或性質,使方程變形,然後再解。如:2.2x+7.8x=20
先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然後計算括弧裡面使方程變形為10x=20,最後再解。
比和比例
1.比的意義:兩個數相除又叫作兩個數的比。
2.比的意義的應用:根據比的意義可以求比值,用前項除以後項,得到的結果是一個數(分數或小數,有時是整數)。
3.比的基本性質:比的前項和後項都乘或除以相同的數(0除外),比值不變。
4.比的基本性質的應用:應用比的基本性質,可以化簡比,把比的前項和後項,同時乘(或除以)相同的數(0除外),使結果是兩個互質的整數比(最簡整數比),這個化簡後的比可以用比號寫成整數比的形式,也可以用分數寫成比的分數形式(但不是分數)。
5、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
6、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
7、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
8、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)
9、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。如:x×y = k( k一定)
■比和比例應用題
在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫「按比例分配」。
■解題策略
按比例分配的有關習題,在解答時,要善於找准分配的總量和分配的比,然後把分配的比轉化成分數或份數來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯的兩個量
2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系。
3、設未知數,列比例式
4、解比例式
5、檢驗,寫答語
量的計算
■事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
■數+單位名稱=名數
只帶有一個單位名稱的叫做單名數。
帶有兩個或兩個以上單位名稱的叫做復名數
高級單位的數如把米改成厘米 低級單位的數如把厘米改成米
■只帶有一個單位名稱的數叫做單名數。如:5小時, 3千克 (只有一個單位的)
帶有兩個或兩個以上單位名稱的叫做復名數。如:5小時6分,3千克500克(有兩個單位的)
56平方分米=(0.56)平方米 就是單名數轉化成單名數
560平方分米=(5)平方米(60平方分米) 就是單名數轉化成復名數的例子.
■高級單位與低級單位是相對的.比如,"米"相對於分米,就是高級單位,相對於千米就是低級單位.
■常用計算公式表
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
4)正方形周長=邊長× 4,計算公式s= 4a
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
(11)長方體和正方體的體積都可以寫成底面積×高,計算公式v=sh
(12)圓柱的體積=底面積×高,計算公式v=s h
■1年12個月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,閏年2月29天
■閏年年份是4的倍數,整百年份須是400的倍數。
■平年一年365天,閏年一年366天。
■公元1年—100年是第一世紀,公元1901—2000是第二十世紀。
平面圖形的認識和計算
■三角形
1、三角形是由三條線段圍成的圖形。它具有穩定性。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。一個三角形有三條高。
2、三角形的內角和是180度
3、三角形按角分,可以分為:銳角三角形、直角三角形、鈍角三角形
4、三角形按邊分,可以分為:等腰三角形、等邊三角形、不等邊三角形
■四邊形
1、四邊形是由四條線段圍成的圖形。
2、任意四邊形的內角和是360度。
3、只有一組對邊平行的四邊形叫梯形。
4、兩組對邊分別平行的四邊形叫平行四邊形,它容易變形。長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形。
■圓
圓是平面上的一種曲線圖形。同圓或等圓的直徑都相等,直徑等於半徑的2倍。圓有無數條對稱軸。圓心確定圓的位置,半徑確定圓的大小。
■扇形 由圓心角的兩條半徑和它所對的弧圍成的圖形。扇形是軸對稱圖形。
■軸對稱圖形
1、如果一個圖形沿著一條直線對折,兩邊的圖形能夠完全重合,這個圖形叫做軸對稱圖形;這條直線叫做它的對稱軸。
2、線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等。
■周長和面積
1、平面圖形一周的長度叫做周長。
2、平面圖形或物體表面的大小叫做面積。
3、常見圖形的周長和面積計算公式如下:
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)直徑 :d = 2r 半徑 :r = d÷2
圓的周長:C圓= πd d = C÷π
C圓= 2πr r = C÷π÷2
圓的面積 :S 圓= πr2 圓環的面積:S環 = π×(R2–r2)
半圓的周長:C半圓 =πr+2r
半圓的面積:S半圓=πr2÷2
■組合圖形的面積
1、 由兩個或兩個以上的簡單圖形組合而成的比較復雜的圖形,叫做組合圖形。
2、 解題方法:合並求和法,去空求差法
2. 小學1至6年級全部數學進率、公式、概念
2012畢業班小學數學總復習資料
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義
自然數和0都是整數。
2 自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數
1 分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2 分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
二 方法
(一)數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。
(五) 約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
三 性質和規律
(一)商不變的規律
商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
(二)小數的性質
小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。
(三)小數點位置的移動引起小數大小的變化
1. 小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……
2. 小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……
3. 小數點向左移或者向右移位數不夠時,要用「0"補足位。
(四)分數的基本性質
分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。
(五)分數與除法的關系
1. 被除數÷除數= 被除數/除數
2. 因為零不能作除數,所以分數的分母不能為零。
3. 被除數 相當於分子,除數相當於分母。
四 運算的意義
(一)整數四則運算
1整數加法:
把兩個數合並成一個數的運算叫做加法。
在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
加數+加數=和 一個加數=和-另一個加數
2整數減法:
已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。
加法和減法互為逆運算。
3整數乘法:
求幾個相同加數的和的簡便運算叫做乘法。
在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。
一個因數× 一個因數 =積 一個因數=積÷另一個因數
4 整數除法:
已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
3. 人教版小學六年級數學上冊概念都是有哪些
人教版小學六年級數學上冊概念如下:
第一單元位置:
1、找位置:先列後行。格式為:(列,行)。例如:(a,b)。
2、位置的表示方法:兩邊小括弧,中間是逗號,先寫列,再寫行。
3、平移方法:左右平移,列變行不變;上下平移,行變列不變。
第二單元分數乘法:
1、分數乘整數的意義和整數乘法的意義相同:就是求幾個相同加數的和的簡便運算。
2、分數乘整數的計演算法則:分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
3、整數乘分數:分數乘以整數,可以看作是求幾個分數相加的和是多少。整數乘以分數,可以看作是求整數的幾分之幾是多少。
4、分數乘分數的計演算法則:分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。
5、乘積是1的兩個數叫互為倒數。
6、求一個數(0除外)的倒數的方法:把這個分數的分子、分母調換位置。1的倒數是1。0沒有倒數。真分數的倒數大於1;假分數的倒數小於或等於1;帶分數的倒數小於1。
7、一個數(0除外)乘以一個真分數,所得的積小於它本身。
8、一個數(0除外)乘以一個假分數,所得的積等於或大於它本身。
9、一個數(0除外)乘以一個帶分數,所得的積大於它本身。
第三單元分數除法:
1、分數除法的意義:分數除法的意義與整數除法的意義相同,都是已知兩個因數的積與其中一個因數,求另一個因數的運算。
2、分數除以整數(0除外),等於分數乘這個整數的倒數。
3、整數除以分數等於整數乘以這個分數的倒數。
4、分數除法的計演算法則:甲數除以乙數(0除外),等於甲數乘乙數的倒數。
5、兩個數相除又叫做兩個數的比。
6、「:」是比號,讀做「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。比的前項除以後項所得的商,叫做比值。
7、比同除法比較:比的前項相當於被除數,後項相當於除數,比值相當於商。
8、根據分數與除法的關系,比的前項相當於分子,比的後項相當於分母,比值相當於分數的值。
9、比的基本性質:比的前項和後項同時乘上或者同時除以相同的數(0除外),比值不變。
10、在工農業生產中和日常生活中,常常需要把一個數量按照一定的比來進行分配。這種方法通常叫做按比例分配。
11、一個數(0除外)除以一個真分數,所得的商大於它本身。
12、一個數(0除外)除以一個假分數,所得的商小於或等於它本身。
13、一個數(0除外)除以一個帶分數,所得的商小於它本身。
第四單元圓
1、圓的定義:平面上的一種曲線圖形。
2、將一張圓形紙片對折兩次,摺痕相交於圓中心的一點,這一點叫做圓心。圓心一般用字母O表示。它到圓上任意一點的距離都相等。
3、半徑:連接圓心到圓上任意一點的線段叫做半徑。半徑一般用字母r表示。把圓規兩腳分開,兩腳之間的距離就是圓的半徑。
4、圓心確定圓的位置,半徑確定圓的大小。
5、直徑:通過圓心並且兩端都在圓上的線段叫做直徑。直徑一般用字母d表示。
6、在同一個圓內,所有的半徑都相等,所有的直徑都相等。
7、在同一個圓內,有無數條半徑,有無數條直徑。
8、在同一個圓內,直徑的長度是半徑的2倍,半徑的長度是直徑的一半。
9、圓的周長:圍成圓的曲線的長度叫做圓的周長,用「C」表示。
10、圓的周長總是直徑的3倍多一些,這個比值是一個固定的數。我們把圓的周長和直徑的比值叫做圓周率,用字母「π」表示。圓周率是一個無限不循環小數。在計算時,取π≈3.14。
11、圓的周長公式:C=πd或C=2πr
12、圓的面積:圓所佔面積的大小叫圓的面積。
13、在一個正方形里畫一個最大的圓,圓的直徑等於正方形的邊長。
14、在一個長方形里畫一個最大的圓,圓的直徑等於長方形的寬。
15、一個環形,外圓的半徑是R,內圓的半徑是r,它的面積是S=πR²-πr²或S=π(R²-r²)。
16、環形的周長=外圓周長+內圓周長。
17、半圓的周長等於圓的周長的一半加直徑。半圓的周長公式:C=πd÷2+d或C=πr+2r
18、在同一個圓里,半徑擴大或縮小多少倍,直徑和周長也擴大或縮小相同的倍數。而面積擴大或縮小以上倍數的平方倍。
19、兩個圓的半徑比等於直徑比等於周長比,而面積比等於以上比的平方。
20、當一個圓的半徑增加a厘米時,它的周長就增加2πa厘米;
21、當一個圓的直徑增加a厘米時,它的周長就增加πa厘米。
22、在同一圓中,圓心角占圓周角的幾分之幾,它所在扇形面積就占圓面積的幾分之幾;所對的弧就占圓周長的幾分之幾。
23、當長方形,正方形,圓的周長相等時,圓的面積最大,長方形的面積最小。
24、軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
25、只有1一條對稱軸的圖形有:角、等腰三角形、等腰梯形、扇形、半圓。
26、只有2條對稱軸的圖形是:長方形。
27、只有3條對稱軸的圖形是:等邊三角形。
28、只有4條對稱軸的圖形是:正方形。
29、有無數條對稱軸的圖形是:圓、圓環。
30、直徑所在的直線是圓的對稱軸。
第五單元百分數
1、百分數的定義:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
2、百分數的意義:表示一個數是另一個數的百分之幾。百分數表示兩個數之間的比率關系,不表示具體的數量,無單位名稱。
3、百分數通常不寫成分數形式,而在原來分子後面加上「%」來表示。分子部分可為小數、整數,可以大於100,小於100或等於100。
4、小數與百分數互化的方法:把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;把百分數化成小數,只要把百分號去掉,同時把數點向左移動兩位。
5、百分數與分數互化的方法:把分數化成百分數,通常先把分數化成小數(除不盡的保留三位小數),再把小數化成百分數。
6、百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
7、百分率公式:
合格率=合格人數÷總人數100%發芽率=發芽數量÷總數量100%
出勤率=出勤人數÷總人數100%
8、應納稅額:繳納的稅款叫應納稅額。
9、應納稅額的計算:應納稅額=各種收入×稅率。
10、本金:存入銀行的錢叫做本金。
11、利息:取款時銀行多支付的錢叫做利息。
12、利率:利息與本金的比值叫做利率。
13、國債利息的計算公式:利息=本金×利率×時間。
13、本息:本金與利息的總和叫做本息。
單位換算:
1、長度單位換算
1千米=1000米1米=10分米1分米=10厘米1米=100厘米1厘米=10毫米
2、面積單位換算
1平方千米=100公頃1公頃10000平方米1平方米=100平方分米
1平方分米=100平方厘米
3、體(容)積單位換算
1立方米=1000立方分米1立方分米=1升1立方分米=1000立方厘米
1立方厘米=1毫升
4、重量單位換算:1噸=1000千克1千克=1000克
運算定律:
1、加法交換律:兩數相加交換加數的位置,和不變。a+b=b+a
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。如:a+b+c=a+c+b=a+(b+c)
3、乘法交換律:兩數相乘,交換因數的位置,積不變。ab=ba
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。如:a×b×c=a×c×b=a×(b×c)
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(ab)×c=acbc
6、加、減法性質:一個數連續減去幾個數,可以改寫成減去這幾個數的和。如:a-b-c=a-(b+c)
7、乘、除法性質:一個數連續除以幾個數,可以改寫成乘以這幾個數的積。a÷b÷c=a÷(b×c)
(3)小學6年級數學全年概念大全擴展閱讀:
小學六年級數學學習方法
1、抓住課堂
平日學習最重要的是課堂學習,聽課要認真,思維要跟著老師,總結老師所講的數學思想、數學方法。
2、高質量完成作業
不僅要高速度,還要高正確率。寫作業時,如果同一類型的題重復練習,就要多注意速度和准確率,並且在每做完一次要對此類題目進行思考總結,進一步提升自己,解題的規律、技巧等。
3、勤思考,多提問
對於老師給出的規律、定理,不僅要知其然還要知其所以然,對於老師的講解,課本的內容,有疑問應盡管提出,清除學習隱患。
4、總結比較,理清思緒
要進行知識點總結比較。每學完一個章節都應要本章內容在腦中過一遍,對於相似易混淆的知識點應分項歸納比較,將其區分開來。
要對題目進行比較。平時作業或者考試的錯題,選擇性地記下來,並用在一旁記下注意事項,經常翻看,這對數學學習有極大的幫助。
5、有選擇地做課外練習
課余時間並不充足,因此在做課外練習時要少而精,多反思
4. 小學1~6年級所有數學公式概念(人教版)要全!
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
讀懂理解會應用以下定義定理性質公式
一、算術方面
1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第三個數相加,和不變。
3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)×5=2×5+4×5
6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。
7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子
叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,
等式仍然成立。
8、什麼叫方程式?答:含有未知數的等式叫方程式。
9、 什麼叫一元一次方程式?答:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10、分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等於分數乘以這個整數的倒數。
16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數
(0除外),分數的大小不變。
20、一個數除以分數,等於這個數乘以分數的倒數。
21、甲數除以乙數(0除外),等於甲數乘以乙數的倒數。數量關系計算公式方面
1、單價×數量=總價 2、單產量×數量=總產量
3、速度×時間=路程 4、工效×時間=工作總量
5、加數+加數=和 一個加數=和+另一個加數
被減數-減數=差 減數=被減數-差 被減數=減數+差
因數×因數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
有餘數的除法: 被除數=商×除數+余數
一個數連續用兩個數除,可以先把後兩個數相乘,再用它們的積去除這個數,結果不變。例:90÷5÷6=90÷(5×6)
6、 1公里=1千米 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
1平方米=100平方分米 1平方分米=100平方厘米
1平方厘米=100平方毫米
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方厘米=1000立方毫米
1噸=1000千克 1千克= 1000克= 1公斤= 1市斤
1公頃=10000平方米。 1畝=666.666平方米。
1升=1立方分米=1000毫升 1毫升=1立方厘米
7、什麼叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3
比的前項和後項同時乘以或除以一個相同的數(0除外),比值不變。
8、什麼叫比例:表示兩個比相等的式子叫做比例。如3:6=9:18
9、比例的基本性質:在比例里,兩外項之積等於兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k( k一定)或kx=y
12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。 如:x×y = k( k一定)或k / x = y
百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。其實,把分數化成百分數,要先把分數化成小數後,再乘以100%就行了。
把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化發。
16、最大公約數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數: 公約數只有1的兩個數,叫做互質數。
18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)
20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。(約分用最大公約數)
21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。
分數計算到最後,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整除,即能用2進行
約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。在約分時應注意利用。
22、偶數和奇數:能被2整除的數叫做偶數。不能被2整除的數叫做奇數。
23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金×利率×時間(時間一般以年或月為單位,應與利率的單位相對應)
29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。一月的利息與本金的比值叫做月利率。
30、自然數:用來表示物體個數的整數,叫做自然數。0也是自然數。
31、循環小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環小數。如3. 141414
32、不循環小數:一個小數,從小數部分起,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做不循環小數。
如3. 141592654
33、無限不循環小數:一個小數,從小數部分起到無限位數,沒有一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做無限不循環小數。如3. 141592654……
34、什麼叫代數? 代數就是用字母代替數。
35、什麼叫代數式?用字母表示的式子叫做代數式。如:3x =(a+b
5. 小學人教版數學1-6年級所有的概念 ,公式。
小學人教版數學1-6年級所有的概念 ,公式。
推薦內容
小學人教版數學1-6年級所有的概念 ,公式。
小學人教版數學1-6年級所有的概念 ,公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2 2、正方形的周長=邊長×4 C=4a 3、長方形的面積=長×寬 S=ab 4、正方形的面積=邊長×邊長 S=a.a= a 5、三角形的面積=底×高÷2 S=ah÷2 6、平行四邊形的面積=底×高 S=ah 7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2 8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2 9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr 10、圓的面積=圓周率×半徑×半徑 ?=πr 11、長方體的表面積=(長×寬+長×高+寬×高)×2 12、長方體的體積 =長×寬×高 V =abh 13、正方體的表面積=棱長×棱長×6 S =6a 14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a 15、圓柱的側面積=底面圓的周長×高 S=ch 16、圓柱的表面積=上下底面面積+側面積 S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17、圓柱的體積=底面積×高 V=Sh V=πr h=π(d÷2) h=π(C÷2÷π) h 18、圓錐的體積=底面積×高÷3 V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19、長方體(正方體、圓柱體)的體積=底面積×高 V=Sh 4 、長方體 V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh 5 三角形 s面積 a底 h高 面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高 6 平行四邊形 s面積 a底 h高 面積=底×高 s=ah 7 梯形 s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2 8 圓形 S面積 C周長 ∏ d=直徑 r=半徑 (1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r (2)面積=半徑×半徑×∏ 9 圓柱體 v:體積 h:高 s;底面積 r:底面半徑 c:底面周長 (1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高
6. 小學人教版數學1-6年級所有的概念
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑 ?=πr
11、長方體的表面積=(長×寬+長×高+寬×高)×2
12、長方體的體積 =長×寬×高 V =abh
13、正方體的表面積=棱長×棱長×6 S =6a
14、正方體的體積=棱長×棱長×棱長 V=a.a.a= a
15、圓柱的側面積=底面圓的周長×高 S=ch
16、圓柱的表面積=上下底面面積+側面積
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch
17、圓柱的體積=底面積×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h
18、圓錐的體積=底面積×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
19、長方體(正方體、圓柱體)的體積=底面積×高 V=Sh
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
定義定理公式
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 1市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
數量關系計算公式方面
1.單價×數量=總價
2.單產量×數量=總產量
3.速度×時間=路程
4.工效×時間=工作總量
小學數學定義定理公式(二)
一、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。 21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
7. 小學6年級數學上冊比的概念。
比是由一個前項和一個後項組成的除法算式,只不過把「÷」(除號)改成了「:」(比號)而已,但除法算式表示的是一種運算,而比則表示兩個數的關系。和分數的分數線類似。
舉一個例子,比如6÷4用比的形式寫作6:4。「:」是比號,讀作「比」。比號前面的數叫做比的前項,比號後面的數叫做比的後項。而本例中6是這個比的前項,4是這個比的後項。
(7)小學6年級數學全年概念大全擴展閱讀:
一、比值
比前項除以後項得到這個數就叫做比值。比值可以用分數表示,也可以用小數或整數表示。
例如:1:3的比值=1÷3=1/3;1/3也是一種寫法,作比時讀作一比三,做分數時讀作三分之一。
兩個比值相等的比可以組成比例,用=號連接,當比值里的分母為1時,可以寫作整數。
例如:50:25=2或者2/1或者2
二、基本性質
1、比的前項和後項同時乘或除以相同的數(0除外),比值不變。
2、最簡比的前項和後項互質,且比的前項、後項都為整數。
3、比值通常整數表示,也可以用分數或小數表示。
4、比的後項不能為0 。
5、比的後項乘以比值等於比的前項。
8. 小學4、5、6年級數學概念及公式
你在網路里搜「小學數學概念、公式」很多的。
9. 六年級數學概念大全
數學概念整理:
整數部分:
十進制計數法;一(個)、十、百、千、萬……都叫做計數單位。其中「一」是計數的基本單位。10個1是10,10個10是100……每相鄰兩個計數單位之間的進率都是十。這種計數方法叫做十進制計數法
整數的讀法:從高位一級一級讀,讀出級名(億、萬),每級末尾0都不讀。其他數位一個或連續幾個0都只讀一個「零」。
整數的寫法:從高位一級一級寫,哪一位一個單位也沒有就寫0。
四捨五入法:求近似數,看尾數最高位上的數是幾,比5小就捨去,是5或大於5捨去尾數向前一位進1。這種求近似數的方法就叫做四捨五入法。
整數大小的比較:位數多的數較大,數位相同最高位上數大的就大,最高位相同比看第二位較大就大,以此類推。
小數部分:
把整數1平均分成10份、100份、1000份……這樣的一份或幾份是十分之幾、百分之幾、千分之幾……這些分數可以用小數表示。如1/10記作0.1,7/100記作0.07。
小數點右邊第一位叫十分位,計數單位是十分之一(0.1);第二位叫百分位,計數單位是百分之一(0.01)……小數部分最大的計數單位是十分之一,沒有最小的計數單位。小數部分有幾個數位,就叫做幾位小數。如0.36是兩位小數,3.066是三位小數
小數的讀法:整數部分整數讀,小數點讀點,小數部分順序讀。
小數的寫法:小數點寫在個位右下角。
小數的性質:小數末尾添0去0大小不變。化簡
小數點位置移動引起大小變化:右移擴大左縮小,1十2百3千倍。
小數大小比較:整數部分大就大;整數相同看十分位大就大;以此類推。
分數和百分數
■分數和百分數的意義
1、 分數的意義:把單位「 1」 平均分成若干份,表示這樣的一份或者幾份的數,叫做分數。在分數里,表示把單位「 1」 平均分成多少份的數,叫做分數的分母;表示取了多少份的數,叫做分數的分子;其中的一份,叫做分數單位。
2、 百分數的意義:表示一個數是另一個數的百分之幾的數,叫做百分數。也叫百分率或百分比。百分數通常不寫成分數的形式,而用特定的「%」來表示。百分數一般只表示兩個數量關系之間的倍數關系,後面不能帶單位名稱。
3、 百分數表示兩個數量之間的倍比關系,它的後面不能寫計量單位。
4、 成數:幾成就是十分之幾。
■分數的種類
按照分子、分母和整數部分的不同情況,可以分成:真分數、假分數、帶分數
■分數和除法的關系及分數的基本性質
1、 除法是一種運算,有運算符號;分數是一種數。因此,一般應敘述為被除數相當於分子,而不能說成被除數就是分子。
2、 由於分數和除法有密切的關系,根據除法中「商不變」的性質可得出分數的基本性質。
3、 分數的分子和分母都乘以或者除以相同的數(0除外),分數的大小不變,這叫做分數的基本性質,它是約分和通分的依據。
■約分和通分
1、 分子、分母是互質數的分數,叫做最簡分數。
2、 把一個分數化成同它相等但分子、分母都比較小的分數,叫做約分。
3、 約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
4、 把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
5、 通分的方法:先求出原來幾個分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
■倒 數
1、 乘積是1的兩個數互為倒數。
2、 求一個數(0除外)的倒數,只要把這個數的分子、分母調換位置。
3、 1的倒數是1,0沒有倒數
■分數的大小比較
1、 分母相同的分數,分子大的那個分數就大。
2、 分子相同的分數,分母小的那個分數就大。
3、 分母和分子都不同的分數,通常是先通分,轉化成通分母的分數,再比較大小。
4、 如果被比較的分數是帶分數,先要比較它們的整數部分,整數部分大的那個帶分數就大;如果整數部分相同,再比較它們的分數部分,分數部分大的那個帶分數就大。
■百分數與折數、成數的互化:
例如:三折就是30%,七五折就是75%,成數就是十分之幾,如一成就是牐 闖砂俜質 褪?0%,則六成五就是65%。
■納稅和利息:
稅率:應納稅額與各種收入的比率。
利率:利息與本金的百分率。由銀行規定按年或按月計算。
利息的計算公式:利息=本金×利率×時間
百分數與分數的區別主要有以下三點:
1.意義不同。百分數是「表示一個數是另一個數的百分之幾的數。」它只能表示兩數之間的倍數關系,不能表示某一具體數量。如:可以說 1米 是 5米 的 20%,不可以說「一段繩子長為20%米。」因此,百分數後面不能帶單位名稱。分數是「把單位『1』平均分成若干份,表示這樣一份或幾份的數」。分數不僅 可以表示兩數之間的倍數關系,如:甲數是3,乙數是4,甲數是乙數的?;還可以表示一定的數量,如:犌Э恕 米等。
2.應用范圍不同。百分數在生產、工作和生活中,常用於調查、統計、分析與比較。而分數常常是在測量、計算中,得不到整數結果時使用。
3.書寫形式不同。百分數通常不寫成分數形式,而採用百分號「%」來表示。如:百分之四十五,寫作:45%;百分數的分母固定為100,因此,不論百分數 的分子、分母之間有多少個公約數,都不約分;百分數的分子可以是自然數,也可以是小數。而分數的分子只能是自然數,它的表示形式有:真分數、假分數、帶分 數,計算結果不是最簡分數的一般要通過約分化成最簡分數,是假分數的要化成帶分數。
數的整除
■整除的意義
整數a除以整數b(b≠0),除得的商正好是整數而沒有餘數,我們就說a能被b整除(也可以說b能整除a)
除盡的意義 甲數除以乙數,所得的商是整數或有限小數而余數也為0時,我們就說甲數能被乙數除盡,(或者說乙數能除盡甲數)這里的甲數、乙數可以是自然數,也可以是小數(乙數不能為0)。
■約數和倍數
1、如果數a能被數b整除,a就叫b的倍數,b就叫a的約數。2、一個數的約數的個數是有限的,其中最小的約數是1,最大的約數是它本身。3、一個數的倍數的個數是無限的,其中最小的是它本身,它沒有最大的倍數。
■奇數和偶數
1、能被2整除的數叫偶數。例如:0、2、4、6、8、10……註:0也是偶數 2、不能被2整除的數叫基數。例如:1、3、5、7、9……
■整除的特徵
1、能被2整除的數的特徵:個位上是0、2、4、6、8。
2、能被5整除的數的特徵:個位上是0或5。
3、能被3整除的數的特徵:一個數的各個數位上的數之和能被3整除,這個數就能被3 整除。
■質數和合數
1、一個數只有1和它本身兩個約數,這個數叫做質數(素數)。
2、一個數除了1和它本身外,還有別的約數,這個數叫做合數。
3、1既不是質數,也不是合數。
4、自然數按約數的個數可分為:質數、合數
5、自然數按能否被2整除分為:奇數、偶數
■分解質因數
1、每個合數都可以寫成幾個質數相乘的形式,這幾個質數叫做這個合數的質因數。例如:18=3×3×2,3和2叫做18的質因數。
2、把一個合數用幾個質因數相乘的形式表示出來,叫做分解質因數。通常用短除法來分解質因數。
3、幾個數公有的因數叫做這幾個數的公因數。其中最大的一個叫這幾個數的最大公因數。公因數只有1的兩個數,叫做互質數。幾個數公有的倍數叫做這幾個數的公倍數。其中最大的一個叫這幾個數的最大公倍數。
4、特殊情況下幾個數的最大公約數和最小公倍數。(1)如果幾個數中,較大數是較小數的倍數,較小數是較大數的約數,則較大數是它們的最小公倍數,較小數是它們的最大公約數。(2)如果幾個數兩兩互質,則它們的最大公約數是1,小公倍數是這幾個數連乘的積。
■奇數和偶數的運算性質:
1、相鄰兩個自然數之和是奇數,之積是偶數。
2、奇數+奇數=偶數,奇數+偶數=奇數,偶數+偶數=偶數;奇數-奇數=偶數,
奇數-偶數=奇數,偶數-奇數=奇數,偶數-偶數=偶數;奇數×奇數=奇數,奇數×偶數=偶數,偶數×偶數=偶數。
整數、小學、分數四則混合運算
■四則運算的法則
1、加法a、整數和小數:相同數位對齊,從低位加起,滿十進一b、同分母分數:分母不變,分子相加;異分母分數:先通分,再相加
2、減法a、整數和小數:相同數位對齊,從低位減起,哪一位不夠減,退一當十再減b、同分母分數:分母不變,分子相減;異分母分數:先通分,再相減
3、乘法a、整數和小數:用乘數每一位上的數去乘被乘數,用哪一位上的數去乘,得數的末位就和哪一位對起,最後把積相加,因數是小數的,積的小數位數與兩位因數的小數位數相同b、分數:分子相乘的積作分子,分母相乘的積作分母。能約分的先約分,結果要化簡
4、除法a、整數和小數:除數有幾位,先看被除數的前幾位,(不夠就多看一位),除到被除數的哪一位,商就寫到哪一位上。除數是小數是,先化成整數再除,商中的小數點與被除數的小數點對齊b、甲數除以乙數(0除外),等於甲數除以乙數的倒數
■運算定律
加法交換律 a+b=b+a
結合律 (a+b)+c=a+(b+c)
減法性質 a-b-c=a-(b+c)
a-(b-c)=a-b+c
乘法交換律 a×b=b×a
結合律 (a×b)×c=a×(b×c)
分配律 (a+b)×c=a×c+b×c
除法性質 a÷(b×c)=a÷b÷c
a÷(b÷c)=a÷b×c
(a+b)÷c=a÷c+b÷c
(a-b)÷c=a÷c-b÷c
商不變性質m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m)
■積的變化規律:在乘法中,一個因數不變,另一個因數擴大(或縮小)若干倍,積也擴大(或縮小)相同的倍數。
推廣:一個因數擴大A倍,另一個因數擴大B倍,積擴大AB倍。
一個因數縮小A倍,另一個因數縮小B倍,積縮小AB倍。
■商不變規律:在除法中,被除數和除數同時擴大(或縮小)相同的倍數,商不變。
推廣:被除數擴大(或縮小)A倍,除數不變,商也擴大(或縮小)A倍。
被除數不變,除數擴大(或縮小)A倍,商反而縮小(或擴大)A倍。
■利用積的變化規律和商不變規律性質可以使一些計算簡便。但在有餘數的除法中要注意余數。
如:8500÷200= 可以把被除數、除數同時縮小100倍來除,即85÷2= ,商不變,但此時的余數1是被縮小100被後的,所以還原成原來的余數應該是100。
簡易方程
■用字母表示數
用字母表示數是代數的基本特點。既簡單明了,又能表達數量關系的一般規律。
■用字母表示數的注意事項
1、數字與字母、字母和字母相乘時,乘號可以簡寫成「·「或省略不寫。數與數相乘,乘號不能省略。
2、當1和任何字母相乘時,「 1」 省略不寫。
3、數字和字母相乘時,將數字寫在字母前面。
■含有字母的式子及求值
求含有字母的式子的值或利用公式求值,應注意書寫格式
■等式與方程
表示相等關系的式子叫等式。
含有未知數的等式叫方程。
判斷一個式子是不是方程應具備兩個條件:一是含有未知數;二是等式。所以,方程一定是等式,但等式不一定是方程。
■方程的解和解方程
使方程左右兩邊相等的未知數的值,叫方程的解。
求方程的解的過程叫解方程。
■在列方程解文字題時,如果題中要求的未知數已經用字母表示,解答時就不需要寫設,否則首先演將所求的未知數設為x。
■解方程的方法
1、直接運用四則運算中各部分之間的關系去解。如x-8=12
加數+加數=和 一個加數=和-另一個加數
被減數-減數=差 減數=被減數-差 被減數=差+減數
被乘數×乘數=積 一個因數=積÷另一個因數
被除數÷除數=商 除數=被除數÷商 被除數=除數×商
2、先把含有未知數x的項看作一個數,然後再解。如3x+20=41
先把3x看作一個數,然後再解。
3、按四則運算順序先計算,使方程變形,然後再解。如2.5×4-x=4.2,
要先求出2.5×4的積,使方程變形為10-x=4.2,然後再解。
4、利用運算定律或性質,使方程變形,然後再解。如:2.2x+7.8x=20
先利用運算定律或性質使方程變形為(2.2+7.8)x=20,然後計算括弧裡面使方程變形為10x=20,最後再解。
比和比例
■比和比例應用題
在工業生產和日常生活中,常常要把一個數量按照一定的比例來進行分配,這種分配方法通常叫「按比例分配」。
■解題策略
按比例分配的有關習題,在解答時,要善於找准分配的總量和分配的比,然後把分配的比轉化成分數或份數來進行解答
■正、反比例應用題的解題策略
1、審題,找出題中相關聯的兩個量
2、分析,判斷題中相關聯的兩個量是成正比例關系還是成反比例關系。
3、設未知數,列比例式
4、解比例式
5、檢驗,寫答語
數感和符號感
■在數學教學中發展學生的數感主要指,使學生具有應用數字表示具體的數據和數量關系的能力;能夠判定不同的算術運算,有能力進行計算,並具有選擇適當方法(心算、筆算、使用計算器)實施計算的經驗;能根據數據進行推論,並對數據和推論的精確性和可靠性進行檢驗,等等。
■培養學生的數感的目的就在於使學生學會數學地思考,學會用數學的方法理解和解釋現實問題。
■ 數感的培養有利於學生提出問題和解決問題能力的提高。學生在遇到問題時,自覺主動地與一定的數學知識和技能建立起聯系,這樣才有可能建構與具體事物相聯系 的數學模型。具備一定的數感是完成這類任務的重要條件。如,怎樣為參加學校運動會的全體運動員編號?這是一個實際問題,沒有固定的解法,你可以用不同的方 式編,而不同的編排方案可能在實用性和便捷性上是不同的。如,從號碼上就可以分辨出年級和班級,區分出男生和女生,或很快的知道一名隊員是參加哪類項目。
■ 數概念本身是抽象的,數概念的建立不是一次完成的,學生理解和掌握數的概念要經歷一個過程。讓學生在認識數的過程中,更多地接觸和經歷有關的情境和實例, 在現實的背景下感受和體驗會使學生更具體更深刻地把握數的概念,建立數感。在認識數的過程中,讓學生說一說自己身邊的數,生活中用到的數,如何用數表示周 圍的事物等,會讓學生感覺到數就在自己身邊,運用數可以簡單明了地表示許多現象。估計一頁書的字數,一本書有多少頁,一把黃豆有多少粒等,這些對具體數量 的感知與體驗,是學生建立數感的基礎,這對學生理解數的意義會有很大的幫助。
■無論在哪個學段,都應鼓勵學生用自己獨特的方式表示具體的情境中的數量關系和變化規律,這是發展學生符號感的決定性因素。
■引進字母表示,是學習數學符號、學會用符號表示具體情境中隱含的數量關系和變化規律的重要一步。盡可能從實際問題中引入,使學生感受到字母表示的意義。
第一,用字母表示運演算法則、運算定律以及計算公式。演算法的一般化,深化和發展了對數的認識。
第二,用字母表示現實世界和各門學科中的各種數量關系。例如,勻速運動中的速度v、時間t和路程s的關系是s=vt。
第三,用字母表示數,便於從具體情境中抽象出數量關系和變化規律,並確切地表示出來,從而有利於進一步用數學知識去解決問題。例如,我們用字母表示實際問題中的未知量,利用問題中的相等關系列出方程。
■字母和表達式在不同場合有不同的意義。如:
5=2x+1表示x所滿足的一個條件,事實上,x這里只佔一個特殊數的位置,可以利用解方程找到它的值;
Y=2x表示變數之間的關系,x是自變數,可以取定義域內任何數,y是因變數,y隨x的變換而變化;
(a+b)(a-b)=a-b表示一個一般化的演算法,表示一個恆等式;
如果a和b分別表示矩形的長和寬,S表示矩形的面積,那麼S=ab表示計算矩形面積公式,同時也表示矩形的面積隨長和寬的變化而變化。
■如何培養學生的符號感
要盡可能在實際問題情境中幫助學生理解符號以及表達式、關系式意義,在解決實際問題中發展學生的符號感。
必須要對符號運算進行訓練,要適當地、分階段地進行一定數量的符號運算。但是並不主張進行過繁的形式運算訓練。
學生的符號感的發展不是一朝一夕就可以完成的,而是應該貫穿於數學學習的全過程,伴隨著學生數學思維的提高逐步發展。
量的計算
■事物的多少、長短、大小、輕重、快慢等,這些可以測定的客觀事物的特徵叫做量。把一個要測定的量同一個作為標準的量相比較叫做計量。用來作為計量標準的量叫做計量單位。
■數+單位名稱=名數
只帶有一個單位名稱的叫做單名數。
帶有兩個或兩個以上單位名稱的叫做復名數
高級單位的數如把米改成厘米 低級單位的數如把厘米改成米
■只帶有一個單位名稱的數叫做單名數。如:5小時, 3千克 (只有一個單位的)
帶有兩個或兩個以上單位名稱的叫做復名數。如:5小時6分,3千克500克(有兩個單位的)
56平方分米=(0.56)平方米 就是單名數轉化成單名數
560平方分米=(5)平方米(60平方分米) 就是單名數轉化成復名數的例子.
■高級單位與低級單位是相對的.比如,"米"相對於分米,就是高級單位,相對於千米就是低級單位.
■常用計算公式表
(1)長方形面積=長×寬,計算公式s=a b
(2)正方形面積=邊長×邊長,計算公式s=a × a
(3)長方形周長:(長+寬)× 2,計算公式s=(a+b)× 2
(4)正方形周長=邊長× 4,計算公式s= 4a i
(5)平形四邊形面積=底×高,計算公式s=a h.
(6)三角形面積=底×高÷2,計算公式s=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式s=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式v=a bh
(9)圓的面積=圓周率×半徑平方,計算公式s=лr2
(10)正方體體積=棱長×棱長×棱長,計算公式v=a3
(11)長方體和正方體的體積都可以寫成底面積×高,計算公式v=sh
(12)圓柱的體積=底面積×高,計算公式v=s h
■1年12個月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,閏年2月29天
■閏年年份是4的倍數,整百年份須是400的倍數。
■平年一年365天,閏年一年366天。
■公元1年—100年是第一世紀,公元1901—2000是第二十世紀。
平面圖形的認識和計算
■三角形
1、三角形是由三條線段圍成的圖形。它具有穩定性。從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高。一個三角形有三條高。
2、三角形的內角和是180度
3、三角形按角分,可以分為:銳角三角形、直角三角形、鈍角三角形
4、三角形按邊分,可以分為:等腰三角形、等邊三角形、不等邊三角形
■四邊形
1、四邊形是由四條線段圍成的圖形。
2、任意四邊形的內角和是360度。
3、只有一組對邊平行的四邊形叫梯形。
4、兩組對邊分別平行的四邊形叫平行四邊形,它容易變形。長方形、正方形是特殊的平行四邊形;正方形是特殊的長方形。
■圓
圓是平面上的一種曲線圖形。同圓或等圓的直徑都相等,直徑等於半徑的2倍。圓有無數條對稱軸。圓心確定圓的位置,半徑確定圓的大小。
■扇形 由圓心角的兩條半徑和它所對的弧圍成的圖形。扇形是軸對稱圖形。
■軸對稱圖形
1、如果一個圖形沿著一條直線對折,兩邊的圖形能夠完全重合,這個圖形叫做軸對稱圖形;這條窒息那叫做對稱軸。
2、線段、角、等腰三角形、長方形、正方形等都是軸對稱圖形,他們的對稱軸條數不等。
■周長和面積
1、平面圖形一周的長度叫做周長。
2、平面圖形或物體表面的大小叫做面積。
3、常見圖形的周長和面積計算公式