⑴ 小學數學容易混淆的知識點有哪些類
加,減,乘,除,三角形來的源認識,三角形的面積計算公式,三角形的周長計算公式,長方形的周長計算公式,長方形的面積計算公式,圓的認識,圓的
面積計算公式,圓的周長計算公式,圓柱的表面積計算公式,小數,分數(帶分數,假分數,真分數),百分數的認識,百分數的運用,比的認識,化簡比,求比
值,正方形的面積計算公式,正方形的周長計算公式,可能性(一定,可能,不可能),圖形的轉換(平移,對稱,旋轉).克,千克,噸的認識,單位轉換,厘
米,米,千米的認識,數(個位),雞兔同籠的問題,圓錐體積計算公式,元,角,分的認識,
⑵ 小學數學教學中難以解決的重難點問題有哪些
小學數學教學內容包羅萬象,每堂課都有它自己的教學重點和教學難點.教學難點是學生在課堂上最容易疑惑不解的知識點,是學生認知矛盾的焦點,它猶如學生學習途中的絆腳石,阻礙著學生進一步獲取新知.化解難點、解除疑惑,是教學過程順暢有效的重要保證.因此,在一定意義上來說,教學難點本身也屬於教學重點.教學重點就是指在教學過程中學生必須掌握的基礎知識和基本技能,如概念、性質、法則、計算等等.為了幫助學生解決重點、理解難點,使感性知識理性化,實現知識的長久記憶和靈活運用,教師在突破重難點時要講究教法的直觀、形象和具體,要講究新舊知識之間的前後聯系,要補充相關的感性素材.教師的教學只有結合學生實際,抓住重點,突破難點,教學效果才能得到提高.
下面談談筆者在教學實踐中突破教學重難點的幾點做法:
一、抓住強化感知參與,運用直觀的方法突出重點、突破難點
直觀教學在小學數學教學中具有重要的地位.鑒於小學生的思維一般地還處在具體形象思維階段,而在小學數學教學中,他們要接觸並必須掌握的數學知識卻是抽象的,這就需要在具體與抽象之間架設一座橋梁.直觀正是解決從具體到抽象這個矛盾的有效手段.在教學中,教師應多給學生用學具擺一擺、拼一拼、分一分等動手操作的機會,使學生在動手操作中感知新知、獲得表象,理解和掌握有關概念的本質特徵.如在教學中,可讓學生通過動手畫、量、折疊、剪拼幾何圖形,做一些立方體模型,使學生感知幾何形體的形成過程、特徵和數量關系.如學生在用圓規畫圓時,通過固定一點、確定不變距離、旋轉一周等操作,對圓心、圓的半徑、圓的特徵和怎樣畫圓就會有較深刻的感性認識.
二、抓住數學來源於生活,運用聯系生活的方法突出重點、突破難點
現代教育觀指出:「數學教學,應從學生已有的知識經驗出發,讓學生親身經歷參與特定的教學活動,使學生感受數學與日常生活的密切聯系,從中獲得一些體驗,並且通過自主探索、合作交流,將實際問題抽象成數學模型,並對此進行理解和應用.」所以,我們數學應從小學生已有的生活體驗出發,從生活中「找」數學素材並多讓學生到生活中去「找」數學、「想」數學,使學生真切感受到「生活中處處有數學」.如我們都知道「利息」知識源於生活,在日常生活中應用廣泛.我在教學「利息」時,讓學生通過5000元存入銀行,計算整存整取三年期、整存整取五年期,體會到期後會取得多少利息等.這樣從學生的實際出發,在課堂中充分讓學生「做主」,引導學生從生活實際中理解了有關利息、利率、本金的含義,體會了數學的真實.只有讓數學走進生活,學生才會願學、樂學,從而激發起學生學數學、用數學的熱情.
三、抓住小學生的特點,運用游戲的方法突出重點、突破難點
小學生的特點是好奇好動,對游戲有很大的興趣.一般情況下,他們的注意只能保持15分鍾左右.在教學中,如果組織學生通過靈活多變的游戲活動來學習數學知識,他們就會對數學學習產生濃厚的興趣,把注意力長時間地穩定在學習對象上來,使教學收到很好的效果,而且課堂氣氛妙趣橫生,師生情感融為一體.如:學習「倍」的概念時,和學生一起做拍手游戲.教師首先拍2下,然後拍4個2下,讓學生回答第二次拍的是第一次的幾倍.接著,按要求師生對拍,進而同桌同學互拍.這樣的教學過程,學生始終精神集中、情緒高漲.這種簡單易行的游戲,深受學生喜愛,從而達到了教學的目的.
四、抓住知識間的異同,運用比較的方法突出重點、突破難點
著名教育家烏申斯基認為:「比較是一切理解和思維的基礎,我們正是通過比較來了解世界上的一切的.」小學數學中有許多內容既有聯系又有區別,在教學中充分運用比較的方法,有助於突出教學重點、突破教學難點,使學生容易接受新知識,防止知識的混淆,提高辨別能力,從而扎實地掌握數學知識,發展邏輯思維能力.如:課堂教學中,對學生回答問題或板演,有些教師總是想方設法使之不出一點差錯,即使是一些容易產生典型錯誤的稍難問題,教者也有「高招」使學生按教師設計的正確方法去解決,造成上課一聽就懂、課後一做就錯的不良後果.這樣其實是教師對教學難點沒吃透、教學中教學難點沒突破的反映.教師在教學中,可通過一兩個典型的例題,讓學生暴露錯解,師生共同分析出錯誤的原因,比較正、誤兩種解法,從正反兩個方面吸取經驗教訓,使學生真正理解重難點,靈活運用新知.
五、抓住知識間的聯系,採用轉化的策略突破重點和難點
轉化的方法就是利用已有的知識和經驗,將復雜的轉化為簡單的,將未知的轉化為已知的,將看來不能解答的轉化成能解答的,簡單地說就是化未知為已知、化繁為簡、化曲為直等.在教學中,教師如能做到「化新為舊」,抓住知識間的「縱橫聯系」,幫助學生形成知識網路,逐步教給學生一些轉化的思考方法,讓學生掌握多種轉化途徑,就能掌握解題策略,提高解題能力.以六年級上冊「解決問題的策略――替換」為例,「替換」是一種應用於特定問題情境下的解題策略,從學生的認知結構上看,掌握這一解題策略的過程是順應的過程.因此,這節課的教學重點就是教學難點,即會用「替換」的策略理解題意、分析數量關系.除此以外,這節課的另一個教學難點是,在用「替換」的策略解決相差關系的問題時,要找准總數與份數的對應數量,理解總數的變化,從而達到突出重點、突破難點的目的.
「教學有法,但無定法.教無定法,貴在得法.」總之,在數學教學中如何突出重點、突破難點,並沒有固定不變的模式.教師的教服務於學生的學,只要我們每一位數學教師在備課上多動腦筋,多花心血,認真研究大綱,努力鑽研教材,結合學生實際,弄清重點、難點,合理安排教學環節,精心設計課堂提問,全身心投入到教學工作中去,就能找到關於突出重點、突破難點的「錦囊妙計」,從而實現教學效果的最優化.
⑶ 如何認識小學數學教學過程中的主要矛盾
現實生活是學前兒童數學概念形成的源泉
數學既來源於現實生活,又是對現實生活的抽象。現實生活是數學的來源。對於兒童來說,現實生活更是他們形成數學概念的源泉。現實生活對於兒童形成數學概念的重要性主要表現在兩個方面:
(一)現實生活為兒童積累了豐富的數學經驗
兒童在數學概念形成的過程中所依賴的具體經驗越豐富,他們對數學概念的理解就越具有概括性。因此,豐富多樣的數學經驗,能幫助兒童更好地理解數學概念的抽象意義。
在兒童的日常生活中,很多事情都和數學有關。例如,兒童都想玩拼圖玩具,他們在選擇玩具時就會考慮,一共有幾個拼圖玩具,有多少小朋友想玩,是玩具比人多,還是人比玩具多,是不是每一個人都能如願以償。這是幼兒就會自發的進行多少比較。再如兩個兒童在分食品時,他們會自覺地考慮如何平分。
這些實際上正是一種隱含的數學學習活動。類似的事情,在兒童的生活中會經常發生。兒童常常在不自覺之中,就積累了豐富的數學經驗。而這些經驗又為兒童學習數學知識提供了廣泛的基礎。
(二)現實生活幫助兒童理解抽象的數學概論
數學概念本身是抽象的,如果不藉助於具體的事物,兒童就很難理解。現實生活為兒童提供了通向抽象概念的橋梁。舉例來說,有些兒童不能理解加減運算的抽象意義,而實際上他們可能在生活中經常會用加減運算解決問題,只不過沒有把這種「生活中的數學」和「學校里的數學『聯系起來。如果教師不是」從概念到概念「地教育兒童,而是聯系兒童的實際生活,藉助兒童已有的生活經驗,就完全能夠使這些抽象的數學概念建立在兒童熟悉的生活經驗基礎上。如讓兒童在游戲角中做商店買賣的游戲,甚至請家長帶兒童到商店去購物,給兒童自己計算錢物的機會,可以使兒童認識到抽象的加減運算在現實生活中的運用,同時也幫助兒童理解這些抽象的數學概念。
兒童通過自己的活動主動建構數學概念
數學知識是一種邏輯知識。這種知識不是通過簡單的「教」傳遞給兒童的,而是通過兒童自己的活動主動建構起來的。正如兒童的邏輯思維要通過兒童對自己的動作加以協調、反省和內化而獲得一樣,數學知識也是來源於兒童自己的活動:他們在具體的操作活動中協調自己的動作,同時也努力在頭腦中協調它們的關系。這些關系最終建構成兒童頭腦中的數學概念。
兒童建構數學知識的過程,也是兒童發展思維能力的過程。兒童在對具體的事物進行抽象的同時,也鍛煉了抽象的能力。如果教師過於注重讓兒童獲得某種結果,而「教」給兒童很多知識,或者希望兒童能「記住」什麼數學知識,實際上就剝奪了他們自己主動獲得發展的機會。事實上,無論是數學知識,還是思維能力,都不可能通過單方面的「教」得到發展,而必須依賴兒童自己的活動,也就是和環境之間的相互作用才能獲得。
兒童的活動過程就是和環境之間的主動的相互作用的過程。它既包括和物(學習材料)的相互作用,也包括和人(教師、同伴等)的相互作用;既包括外在的擺弄、操作學習資料的過程,也包括內在的思考和反思的活動。在活動過程中,兒童不斷吸收、同化新的經驗,同時不斷改變自己已有的知識經驗,以完成新知識的建構過程。
教師「教」的作用,其實並不是在於給兒童一個結果,而在於為他們提供學習的環境:和材料相互作用的環境、和人相互作用的環境。當然,教師自己也是環境的一部分,也可以和兒童交往,但必須是在兒童的水平上和他們進行平等的相互作用。也只有在這樣的相互作用過程中,兒童才能獲得主動的發展。
教學是促進兒童發展的重要因素
在強調讓兒童自己建構數學概念的同時,也不應該忽視教學的作用。學前教學對於兒童數學概念的發展起著重要的作用,教學是促進兒童發展的重要因素。
⑷ 小學數學小常識
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑸ 小學數學解決問題的知識點
小學數學概念教學中應注意的問題:
1、要注重數學概念的引入、形成與鞏固
數學概念的教學一般也分為三個階段:①引入概念,使學生感知概念,形成表象;②通過分析、抽象和概括,使學生理解和明確概念;③通過例題、習題使學生鞏固和應用概念。
概念的引入有四種:以感性材料為基礎引入新概念;以新、舊概念之間的關系引入新概念;、以「問題」的形式引入新概念;從概念的發生過程引入新概念。比如《百分數的意義》一課中是這樣引入入概念的……,《認識整萬數》是這樣引入入概念的……。
概念的形成有三種:對比與類比;恰當運用反例;合理運用變式。比如今天的課中……
概念的鞏固有三種:及時復習;重視應用;注重辨析。如……
2、要把握好概念教學的目標,處理好概念教學的發展性與階段性之間的矛盾。
概念本身有自己嚴密的邏輯體系。在一定條件下,一個概念的內涵和外延是固定不變的,這是概念的確定性。由於客觀事物的不斷發展和變化,同時也由於人們認識的不斷深化,因此,作為人們反映客觀事物本質屬性的概念,也是在不斷發展和變化的。在小學階段的概念教學,考慮到小學生的接受能力,往往是分階段進行的。如對「數」這個概念來說,在不同的階段有不同的要求。開始只是認識1、2、3、……,以後逐漸認識了零,隨著學生年齡的增大,又引進了分數(小數),以後又逐漸引進正、負數,有理數和無理數,把數擴充到實數、復數的范圍等。又如,對「0」的認識,開始時只知道它表示沒有,然後知道又可以表示該數位上一個單位也沒有,還知道「0」可以表示界限等。
數學概念的系統性和發展性與概念教學的階段性成了教學中需要解決的一對矛盾。解決這一矛盾的關鍵是要切實把握概念教學的階段性目標。如《認識整萬數》
因此,教學概念,既要重視概念的階段性,又要注意到概念發展的連續性,不要在一個知識段中把概念講「死」,以免影響概念的發展和提高,也不要把後面的要求提到前面,超越學生的認識能力;又要注意教學的連續性,教前面的概念要留有餘地,為後繼教學打下埋伏。從而處理好掌握概念的階段性與連續性的關系。
3、加強直觀教學,處理好具體與抽象的矛盾
對於小學生來說,數學概念還是抽象的,他們形成數學概念,一般都要求有相應的感性經驗為基礎,而且要經歷一番把感性材料在腦子里來回往復,從模糊到逐漸分明,從許多有一定聯系的材料中,通過自己操作、思維活動逐步建立起事物一般的表象,分出事物的主要的本質特徵或屬性,這是形成概念的基礎。因此,在教學中,必須加強直觀,以解決數學概念的抽象性與學生思維形象性之間的矛盾。
(1)通過演示、操作進行具體與抽象的轉化
(2)結合學生的生活實際進行具體與抽象的轉化
運用直觀並不是目的,它只是引起學生積極思維的一種手段。因此概念教學不能只停留在感性認識上,在學生獲得豐富的感性認識後,要對所觀察的事物進行抽象概括,揭示概念的本質屬性,使認識產生飛躍,從感性上升到理性,形成概念。
4、在概念的形成過程中,要讓學生積極參與,充分發揮教師的主導作用和學生的主體作用。讓學生參與形成概念的分析、比較、歸納、綜合、抽象、概括等一系列思維活動,學生的學習積極性就會很高,而且對形成的概念記憶深刻,理解透徹。
5、建立概念系統。
在學生理解和形成概念之後,引導學生對學過的概念進行歸納整理,把有關的概念溝通起來,形成知識網路,使其系統化,如《認識整萬數》以後的幾課時。
小學數學常考題型:
小學數學應用題綜合訓練(01)
1. 甲、乙、丙三人在A、B兩塊地植樹,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分別能植樹24,30,32棵,甲在A地植樹,丙在B地植樹,乙先在A地植樹,然後轉到B地植樹.兩塊地同時開始同時結束,乙應在開始後第幾天從A地轉到B地?
2. 有三塊草地,面積分別是5,15,24畝.草地上的草一樣厚,而且長得一樣快.第一塊草地可供10頭牛吃30天,第二塊草地可供28頭牛吃45天,問第三塊地可供多少頭牛吃80天?
3. 某工程,由甲、乙兩隊承包,2.4天可以完成,需支付1800元;由乙、丙兩隊承包,3+3/4天可以完成,需支付1500元;由甲、丙兩隊承包,2+6/7天可以完成,需支付1600元.在保證一星期內完成的前提下,選擇哪個隊單獨承包費用最少?
4. 一個圓柱形容器內放有一個長方形鐵塊.現打開水龍頭往容器中灌水.3分鍾時水面恰好沒過長方體的頂面.再過18分鍾水已灌滿容器.已知容器的高為50厘米,長方體的高為20厘米,求長方體的底面面積和容器底面面積之比.
5. 甲、乙兩位老闆分別以同樣的價格購進一種時裝,乙購進的套數比甲多1/5,然後甲、乙分別按獲得80%和50%的利潤定價出售.兩人都全部售完後,甲仍比乙多獲得一部分利潤,這部分利潤又恰好夠他再購進這種時裝10套,甲原來購進這種時裝多少套?
6. 有甲、乙兩根水管,分別同時給A,B兩個大小相同的水池注水,在相同的時間里甲、乙兩管注水量之比是7:5.經過2+1/3小時,A,B兩池中注入的水之和恰好是一池.這時,甲管注水速度提高25%,乙管的注水速度不變,那麼,當甲管注滿A池時,乙管再經過多少小時注滿B池?
7. 小明早上從家步行去學校,走完一半路程時,爸爸發現小明的數學書丟在家裡,隨即騎車去給小明送書,追上時,小明還有3/10的路程未走完,小明隨即上了爸爸的車,由爸爸送往學校,這樣小明比獨自步行提早5分鍾到校.小明從家到學校全部步行需要多少時間?
8. 甲、乙兩車都從A地出發經過B地駛往C地,A,B兩地的距離等於B,C兩地的距離.乙車的速度是甲車速度的80%.已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾,甲車則不停地駛往C地.最後乙車比甲車遲4分鍾到C地.那麼乙車出發後幾分鍾時,甲車就超過乙車.
9. 甲、乙兩輛清潔車執行東、西城間的公路清掃任務.甲車單獨清掃需要10小時,乙車單獨清掃需要15小時,兩車同時從東、西城相向開出,相遇時甲車比乙車多清掃12千米,問東、西兩城相距多少千米?
10. 今有重量為3噸的集裝箱4個,重量為2.5噸的集裝箱5個,重量為1.5噸的集裝箱14個,重量為1噸的集裝箱7個.那麼最少需要用多少輛載重量為4.5噸的汽車可以一次全部運走集裝箱?
小學數學應用題綜合訓練(02)
11. 師徒二人共同加工170個零件,師傅加工零件個數的1/3比徒弟加工零件個數的1/4還多10個,那麼徒弟一共加工了幾個零件?
12. 一輛大轎車與一輛小轎車都從甲地駛往乙地.大轎車的速度是小轎車速度的80%.已知大轎車比小轎車早出發17分鍾,但在兩地中點停了5分鍾,才繼續駛往乙地;而小轎車出發後中途沒有停,直接駛往乙地,最後小轎車比大轎車早4分鍾到達乙地.又知大轎車是上午10時從甲地出發的.那麼小轎車是在上午什麼時候追上大轎車的.
13. 一部書稿,甲單獨打字要14小時完成,,乙單獨打字要20小時完成.如果甲先打1小時,然後由乙接替甲打1小時,再由甲接替乙打1小時.......兩人如此交替工作.那麼打完這部書稿時,甲乙兩人共用多少小時?
14. 黃氣球2元3個,花氣球3元2個,學校共買了32個氣球,其中花氣球比黃氣球少4個,學校買哪種氣球用的錢多?
15. 一隻帆船的速度是60米/分,船在水流速度為20米/分的河中,從上游的一個港口到下游的某一地,再返回到原地,共用3小時30分,這條船從上游港口到下游某地共走了多少米?
16. 甲糧倉裝43噸麵粉,乙糧倉裝37噸麵粉,如果把乙糧倉的麵粉裝入甲糧倉,那麼甲糧倉裝滿後,乙糧倉里剩下的麵粉占乙糧倉容量的1/2;如果把甲糧倉的麵粉裝入乙糧倉,那麼乙糧倉裝滿後,甲糧倉里剩下的麵粉占甲糧倉容量的1/3,每個糧倉各可以裝麵粉多少噸?
17. 甲數除以乙數,乙數除以丙數,商相等,余數都是2,甲、乙兩數之和是478.那麼甲、乙丙三數之和是幾?
18. 一輛車從甲地開往乙地.如果把車速減少10%,那麼要比原定時間遲1小時到達,如果以原速行駛180千米,再把車速提高20%,那麼可比原定時間早1小時到達.甲、乙兩地之間的距離是多少千米?
19. 某校參加軍訓隊列表演比賽,組織一個方陣隊伍.如果每班60人,這個方陣至少要有4個班的同學參加,如果每班70人,這個方陣至少要有3個班的同學參加.那麼組成這個方陣的人數應為幾人?
20. 甲、乙、丙三台車床加工方形和圓形的兩種零件,已知甲車床每加工3個零件中有2個是圓形的;乙車床每加工4個零件中有3個是圓形的;丙車床每加工5個零件中有4個是圓形的.這天三台車床共加工了58個圓形零件,而加工的方形零件個數的比為4:3:3,那麼這天三台車床共加工零件幾個?
小學數學應用題綜合訓練(03)
21. 圈金屬線長30米,截取長度為A的金屬線3根,長度為B的金屬線5根,剩下的金屬線如果再截取2根長度為B的金屬線還差0.4米,如果再截取2根長度為A的金屬線則還差2米,長度為A的等於幾米?
22. 某公司要往工地運送甲、乙兩種建築材料.甲種建築材料每件重700千克,共有120件,乙種建築材料每件重900千克,共有80件,已知一輛汽車每次最多能運載4噸,那麼5輛相同的汽車同時運送,至少要幾次?
23. 從王力家到學校的路程比到體育館的路程長1/4,一天王力在體育館看完球賽後用17分鍾的時間走到家,稍稍休息後,他又用了25分鍾走到學校,其速度比從體育館回來時每分鍾慢15米,王力家到學校的距離是多少米?
24. 師徒兩人合作完成一項工程,由於配合得好,師傅的工作效率比單獨做時要提高1/10,徒弟的工作效率比單獨做時提高1/5.兩人合作6天,完成全部工程的2/5,接著徒弟又單獨做6天,這時這項工程還有13/30未完成,如果這項工程由師傅一人做,幾天完成?
25. 六年級五個班的同學共植樹100棵.已知每個班植樹的棵數都不相同,且按數量從多到少的排名恰好是一、二、三、四、五班.又知一班植的棵數是二、三班植的棵數之和,二班植的棵數是四、五班植的棵數之和,那麼三班最多植樹多少棵?
26. 甲每小時跑13千米,乙每小時跑11千米,乙比甲多跑了20分鍾,結果乙比甲多跑了2千米.乙總共跑了多少千米?
27. 有高度相等的A,B兩個圓柱形容器,內口半徑分別為6厘米和8厘米.容器A中裝滿水,容器B是空的,把容器A中的水全部倒入容器B中,測得容器B中的水深比容器高的7/8還低2厘米.容器的高度是多少厘米?
28. 有104噸的貨物,用載重為9噸的汽車運送.已知汽車每次往返需要1小時,實際上汽車每次多裝了1噸,那麼可提前幾小時完成.
29. 師、徒二人第一天共加工零件225個,第二天採用了新工藝,師傅加工的零件比第一天增加了24%,徒弟增加了45%,兩人共加工零件300個,第二天師傅加工了多少個零件?徒弟加工了幾個零件?
30. 奮斗小學組織六年級同學到百花山進行野營拉練,行程每天增加2千米.去時用了4天,回來時用了3天,問學校距離百花山多少千米?
小學數學應用題綜合訓練(04)
31. 某地收取電費的標準是:每月用電量不超過50度,每度收5角;如果超出50度,超出部分按每度8角收費.每月甲用戶比乙用戶多交3元3角電費,這個月甲、乙各用了多少度電?
32. 王師傅計劃用2小時加工一批零件,當還剩160個零件時,機器出現故障,效率比原來降低1/5,結果比原計劃推遲20分鍾完成任務,這批零件有多少個?
33. 媽媽給了紅紅一些錢去買賀年卡,有甲、乙、丙三種賀年卡,甲種卡每張1.20元.用這些錢買甲種卡要比買乙種卡多8張,買乙種卡要比買丙種卡多買6張.媽媽給了紅紅多少錢?乙種卡每張多少錢?
34. 一位老人有五個兒子和三間房子,臨終前立下遺囑,將三間房子分給三個兒子各一間.作為補償,分到房子的三個兒子每人拿出1200元,平分給沒分到房子的兩個兒子.大家都說這樣的分配公平合理,那麼每間房子的價值是多少元?
35. 小明和小燕的畫冊都不足20本,如果小明給小燕A本,則小明的畫冊就是小燕的2倍;如果小燕給小明A本,則小明的畫冊就是小燕的3倍.原來小明和小燕各有多少本畫冊?
36. 有紅、黃、白三種球共160個.如果取出紅球的1/3,黃球的1/4,白球的1/5,則還剩120個;如果取出紅球的1/5,黃球的1/4,白球的1/3,則剩116個,問(1)原有黃球幾個?(2)原有紅球、白球各幾個?
37. 爸爸、哥哥、妹妹三人現在的年齡和是64歲,當爸爸的年齡是哥哥年齡的3倍時,妹妹是9歲.當哥哥的年齡是妹妹年齡的2倍時,爸爸是34歲.現在三人的年齡各是多少歲?
38. B在A,C兩地之間.甲從B地到A地去送信,出發10分鍾後,乙從B地出發去送另一封信.乙出發後10分鍾,丙發現甲乙剛好把兩封信拿顛倒了,於是他從B地出發騎車去追趕甲和乙,以便把信調過來.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙從出發到把信調過來後返回B地至少要用多少時間?
39. 甲、乙兩個車間共有94個工人,每天共加工1998竹椅.由於設備和技術的不同,甲車間平均每個工人每天只能生產15把竹椅,而乙車間平均每個工人每天可以生產43把竹椅.甲車間每天竹椅產量比乙車間多幾把?
40. 甲放學回家需走10分鍾,乙放學回家需走14分鍾.已知乙回家的路程比甲回家的路程多1/6,甲每分鍾比乙多走12米,那麼乙回家的路程是幾米?
小學數學應用題綜合訓練(05)
41. 某商品每件成本72元,原來按定價出售,每天可售出100件,每件利潤為成本的25%,後來按定價的90%出售,每天銷售量提高到原來的2.5倍,照這樣計算,每天的利潤比原來增加幾元?
42. 甲、乙兩列火車的速度比是5:4.乙車先發,從B站開往A站,當走到離B站72千米的地方時,甲車從A站發車往B站,兩列火車相遇的地方離A,B兩站距離的比是3:4,那麼A,B兩站之間的距離為多少千米?
43. 大、小猴子共35隻,它們一起去採摘水蜜桃.猴王不在的時候,一隻大猴子一小時可採摘15千克,一隻小猴子一小時可採摘11千克.猴王在場監督的時候,每隻猴子不論大小每小時都可以採摘12千克.一天,採摘了8小時,其中只有第一小時和最後一小時有猴王在場監督,結果共採摘4400千克水蜜桃.在這個猴群中,共有小猴子幾只?
44. 某次數學競賽設一、二等獎.已知(1)甲、乙兩校獲獎的人數比為6:5.(2)甲、乙來年感校獲二等獎的人數總和占兩校獲獎人數總和的60%.(3)甲、乙兩校獲二等獎的人數之比為5:6.問甲校獲二等獎的人數占該校獲獎總人數的百分數是幾?
45. 已知小明與小強步行的速度比是2:3,小強與小剛步行的速度比是4:5.已知小剛10分鍾比小明多走420米,那麼小明在20分鍾里比小強少走幾米?
46. 加工一批零件,原計劃每天加工15個,若干天可以完成.當完成加工任務的3/5時,採用新技術,效率提高20%.結果,完成任務的時間提前10天,這批零件共有幾個?
47. 甲、乙二人在400米的圓形跑道上進行10000米比賽.兩人從起點同時同向出發,開始時甲的速度為8米/秒,乙的速度為6米/秒,當甲每次追上乙以後,甲的速度每秒減少2米,乙的速度每秒減少0.5米.這樣下去,直到甲發現乙第一次從後面追上自己開始,兩人都把自己的速度每秒增加0.5米,直到終點.那麼領先者到達終點時,另一人距離終點多少米?
48. 小明從家去學校,如果他每小時比原來多走1.5千米,他走這段路只需原來時間的4/5;如果他每小時比原來少走1.5千米,那麼他走這段路的時間就比原來時間多幾分幾之幾?
49. 甲、乙、丙、丁現在的年齡和是64歲.甲21歲時,乙17歲;甲18歲時,丙的年齡是丁的3倍.丁現在的年齡是幾歲?
50. 加工一批零件,原計劃每天加工30個.當加工完1/3時,由於改進了技術,工作效率提高了10%,結果提前了4天完成任務.問這批零件共有幾個?
小學數學應用題綜合訓練(06)
51. 自動扶梯以均勻的速度向上行駛,一男孩與一女孩同時從自動扶梯向上走,男孩的速度是女孩的2倍,已知男孩走了27級到達扶梯的頂部,而女孩走了18級到達頂部.問扶梯露在外面的部分有多少級?
52. 兩堆蘋果一樣重,第一堆賣出2/3,第二堆賣出50千克,如果第一堆剩下的蘋果比第二堆剩下的蘋果少,那麼兩堆剩下的蘋果至少有多少千克?
53. 甲、乙兩車同時從A地出發,不停的往返行駛於A、B兩地之間.已知甲車的速度比乙車快,並且兩車出發後第一次和第二次相遇都雜途中C地,甲車的速度是乙車的幾倍?
54. 一隻小船從甲地到乙地往返一次共用2小時,回來時順水,比去時的速度每小時多行8千米,因此第二小時比第一小時多行6千米.求甲、乙兩地的距離.
55. 甲、乙兩車分別從A、B兩地出發,並在A,B兩地間不斷往返行駛.已知甲車的速度是15千米/小時,甲、乙兩車第三次相遇地點與第四次相遇地點相差100千米.求A、B兩地的距離.
56. 某人沿著向上移動的自動扶梯從頂部朝底下用了7分30秒,而他沿著自動扶梯從底朝上走到頂部只用了1分30秒.如果此人不走,那麼乘著扶梯從底到頂要多少時間?如果停電,那麼此人沿扶梯從底走到頂要多少時間?
57. 甲、乙兩個圓柱體容器,底面積比為5:3,甲容器水深20厘米,乙容器水深10厘米.再往兩個容器中注入同樣多的水,使得兩個容器中的水深相等.這時水深多少厘米?
58. A、B兩地相距207千米,甲、乙兩車8:00同時從A地出發到B地,速度分別為60千米/小時,
54千米/小時,丙車8:30從B地出發到A地,速度為48千米/小時.丙車與甲、乙兩車距離相等時是幾點幾分?
59. 一個長方形的周長是130厘米,如果它的寬增加1/5,長減少1/8,就得到一個相同周長的新長方形.求原長方形的面積.
60. 有一長方形,它的長與寬的比是5:2,對角線長29厘米,求這個長方形的面積.
小學數學應用題綜合訓練(07)
61. 有一個果園,去年結果的果樹比不結果的果樹的2倍還多60棵,今年又有160棵果樹結了果,這時結果的果樹正好是不結果的果樹的5倍.果園里共有多少棵果樹?
62. 小明步行從甲地出發到乙地,李剛騎摩托車同時從乙地出發到甲地.48分鍾後兩人相遇,李剛到達甲地後馬上返回乙地,在第一次相遇後16分鍾追上小明.如果李剛不停地往返於甲、乙兩地,那麼當小明到達乙地時,李剛共追上小明幾次?
63. 同樣走100米,小明要走180步,父親要走120步.父子同時同方向從同一地點出發,如果每走一步所用的時間相同,那麼父親走出450米後往回走,還要走多少步才能遇到小明?
64. 一艘輪船在兩個港口間航行,水速為6千米/小時,順水航行需要4小時,逆水航行需要7小時,求兩個港口之間的距離.
65. 有甲、乙、丙三輛汽車,各以一定的速度從A地開往B地,乙比丙晚出發10分鍾,出發後40分鍾追上丙;甲比乙又晚出發10分鍾,出發後60分鍾追上丙,問甲出發後幾分鍾追上乙?
親,不滿意請追問O(∩_∩)O!
⑹ 小學數學知識有什麼
⑺ 小學數學知識點有哪些
數學作為一門具有很強邏輯性和連續性的學科,是每個小學生都應該掌握的基礎知識.小學數學重點是基礎知識的掌握基和學習,學習數學的標准就是能夠對該學籍范圍內的題目進行正確的解答.考察公式概念是小學數學重點要掌握的知識,下面這幾個學習方法帶你學好數學.
(同學們開講)
學習小學數學重點就是注重學習的方法,但是也需要學生有堅持不懈的精神.勤學多問不恥下問是學習的良好態度,他們會把你帶到一個更高的層次,掌握好學習方法,你會對每一天的新知識充滿興趣.
⑻ 小學數學知識有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑼ 小學數學的基礎知識有哪些
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
⑽ 有爭議的數學問題
0既不是正數也不是負數,所以同樣道理0既不是基數也不是偶數.別人認為0能被內2
整除,所以容0是偶數,但0不僅能被2整除 ... 判斷0到底是不是偶數之前,應該要先釐清「
偶數」的定義哦!如果「偶數」是「可以被2整除的任何『自然數』」的話,那0就是啦!