① 小數的初步認識知識點10字
小數初步的認識:抄
小數的初步認識是在學生熟練地掌握了億以內的四則運算、初步認識分數的基礎上進行學習的。本課內容包括認識一位小數、兩位小數和它的讀、寫法。認識一位小數和兩位小數是小數的初步認識中最基礎的知識,它的學習,不僅為學生准確清晰地理解小數的含義,也為今後系統地學習小數的知識打下初步基礎。同時,小數的知識在實際生活中應用較廣泛,利於學生運用所學知識技能來解決一些實際的問題。
② 小學數學的所有知識點 要詳細
常用的數量關系式
1、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長 )
周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b) 面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh) (2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2 三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr (2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側面積=底面周長×高=ch(2лr或лd) (2)表面積=側面積+底面積×2
(3)體積=底面積×高 (4)體積=側面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式:(和+差)÷2=大數 (和-差)÷2=小數
13、和倍問題: 和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
14、差倍問題: 差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
15、相遇問題
相遇路程=速度和×相遇時間; 相遇時間=相遇路程÷速度和; 速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本; 利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比; 利息=本金×利率×時間; 稅後利息=本金×利率×時間×(1-20%)
常用單位換算
長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算:
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
體(容)積單位換算:
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算: 1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算: 1元=10角 1角=10分 1元=100分
時間單位換算:
1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
基本概念
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義: 自然數和0都是整數。
2 自然數:
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位: 計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數
1 分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2 分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
運算定律
1. 加法交換律:
兩個數相加,交換加數的位置,它們的和不變,即a+b=b+a 。
2. 加法結合律:
三個數相加,先把前兩個數相加,再加上第三個數;或者先把後兩個數相加,再和第一個數相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數相乘,交換因數的位置它們的積不變,即a×b=b×a。
4. 乘法結合律:
三個數相乘,先把前兩個數相乘,再乘以第三個數;或者先把後兩個數相乘,再和第一個數相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數的和與一個數相乘,可以把兩個加數分別與這個數相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質:
從一個數里連續減去幾個數,可以從這個數里減去所有減數的和,差不變,即a-b-c=a-(b+c)
③ 小學數學分數&小數的50條知識點
小數乘以整數的意義和整數乘法的意義相同。一個數乘以小數的意義是整數乘法意義的延伸。是求這個數的十分之幾、百分之幾、千分之幾是多少? □ 小數乘法法則:先按照整數乘法法則算出積;再看因數中一共有幾位小數;從積的右邊起數出幾位,點上小數點。 商的小數點要和被除數的小數點對齊。 □ 被除數末尾有餘數,余數後添0繼續除。 □ 被除數擴大(或縮小)若干倍(0除外),除數不變,商也擴大(或縮小)同樣的倍數。 □ 除數擴大(或縮小)若干倍(0除外),被除數不變,商反而縮小(或擴大)同樣的倍數。 □ 被除數、除數擴大(或縮小)同樣的倍數(0除外)商不變。 求商的近似值一般要求除到比需要保留的小數位數多一位,再取近似值。 ☆ 用余數和除數的關系取商的近似值時,可以不多除一位。余數小於除數的一半,下一位的商一定小於5,捨去(把余數看作整數)。余數大於除數的一半,下一位的商一定大於或等於5,進一。 ☆ 只寫出循環小數的部分的第一個循環節。在循環節的最左和最右的數字上面各記上一個點(循環點)。 ☆ 循環小數的大小比較:首先要必須寫成相同位數的小數,然後再作比較。 ☆ 把循環小數不寫成簡便記法,多寫出幾個循環節後,按照需要求出近似值。 ☆ 同級運算,從左至右按順序計算。二級計算按照先乘除後加減的順序進行計算,在有括弧的算式中先算括弧里的,後算括弧外的。 ☆ 兩個數或幾個數的和除以一個數,可以把和里的各個數分別除以這個數,再把它們的商相加。如果是兩個數或幾個數的差除以一個數,可以用被減數、減數分別除以這個數,再把所得的商相減
麻煩採納,謝謝!
④ 小學數學小數除法的知識點。
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。
⑤ 小數數學知識點總結
【1】小數分類
有限小數,循環小數,無理數。
【2】小數化回成分數
有限答小數化成分數,
0.567=567/1000
純循環小數化成分數,
0.(567)=567/999
混循環小數化成分數,
0.5(67)=(567-5)/990,
0.56(7)=(5677-56)/9900
無理數不能化成分數。
【3】小數計算
小數計算需要確定小數點位置。
整數計算性質、運算律在小數適用。
【4】近似小數與近似計算。
三種近似法則:
進一近似,去尾近似,四捨五入。
近似計演算法則:
加減使用精確度,乘除使用有效數字。
科學計數法。
⑥ 小學數學的小數和分數要求掌握什麼知識點
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
⑦ 關於小數知識點
小數的認識和加減法的知識要點:
1、小數的意義:把一個整體平均分成10份,100份,1000份……這樣的幾份是十分之幾,百分之幾,千分之幾……可以用小數表示。一位小數表示十分之幾,二位小數表示百分之幾,三位小數表示千分之幾……
2、小數比較大小的方法:先比較整數部分,再一一比較十分位,百分位,千分位……
3、小數加減法的方法與乘法的區別:小數點對齊,相同數位相加減。而乘法是最右面對齊。所以小數加減法的對位一定要跟乘法區別開。
4、小數加減混合運算:小數加減混合運算的方法是一般有加有減按照從左到右的順序進行運算,有括弧的先運算括弧里的。碰到能簡算的要簡算。
有這樣四種情況能進行簡算:
(1)a+b+c,a和c能湊整,那麼要用到加法的結合律使a、c結合。a+b+c=a+c+b
(2)a-(b+c)或a-(b-c),a、b運算起來比較簡單,那麼這時就不一定要先運算括弧里的,可以應用去括弧變符號的方法,這樣就可以先運算a-b而使題目變得簡單。a-(b+c)=a-b-c或a-(b-c)=a-b+c。
(3)a-b-c,b、c進行加法運算比較簡單,這時要運用加括弧變符號的方法進行運算。a-b-c=a-(b+c)。
(4)a-b-c或a+b-c,a、c運算起來比較簡單,這時可以運用帶著符號搬家的方法進行運算。a-b-c=a-c-b或a+b-c=a-c+b
⑧ 小學階段學習小數分哪兩個階段
在每個人的人生過程中都會經歷數十年的數學學習時光,孩子們也都要學習十多年的數學課程。但是在漫長的數學學習中,有的孩子感受到了樂趣,發現了奧秘、獲得了自信、考出了好成績,贏在起跑線上,而與此同時卻也有孩子漸漸趕到枯燥、找不到方向,充滿自卑、考不出滿意的成績甚至輸在起跑線上。究竟是什麼原因導致了這樣截然不同的結果呢?
小學數學學習的三個階段
1-2年級:興趣培養3-4年級:思維拓展5-6年級:能力訓練
思維拓展三階段
思維訓練的黃金階段第一階段
三年級孩子人生進入人生的「第一次長大」階段。許多家長會感覺到,一二年級的時候孩子還真的很小,但是進入到三年級,隨著課程難度和課業難度的增大,家長難以想像自己一二年級的小寶貝竟然能肩負起那麼巨大的責任,承擔那麼沉重的壓力。原因其實在於孩子的思維在這個階段正在進行轉變,由具象思維向抽象思維轉化。簡單舉例來說,孩子小時候看到糖,自然而然就流口水了;而在經過這個階段之後,孩子的思維有具象思維轉化為抽象思維,就會變成一想到糖果就會流口水!思維的轉變會成為孩子在今後的數學學習中理解數形結合思想,字母代數思想的基礎根基。
習慣養成的關鍵期第二階段
三年級是會對任何一個孩子在任何學科上都起到承上啟下作用的一年,所以學校習慣成了孩子在這個時期成績出現兩極化的的「罪魁禍首」。好的學習習慣能夠決定孩子的人生!所以在這個階段,對孩子在一二年級養成的不好的學習習慣進行修正,對好的學習習慣進行深度發掘是重中之重。我們的數學課堂應該重點培養孩子的數學習得。
獨立思考的過渡期第三階段
好多家長反饋,一二年級孩子的功課還是可以輔導的,但是一到三年級許多孩子的功課家長也不一定能夠講清楚。原因在於,由於現在小學數學知識點以新穎為主,家長以一些比較陳舊的知識思路來輔助孩子的話,只會出現摩擦而不是提高。所以需要孩子獨立思考並獨立完成。簡單舉例說明何為獨立思考:一二年級孩子說出的話通常比較直接,要吃什麼會直截了當「媽媽,我想吃……」,而進入三年級的時候,他們通常會這樣表達「媽媽,你看….好看嗎?(實際是餓了)」在這個階段,孩子開始有了自己思考的意識,對表達自己的想法方面會有一些「小心思的設計」。這個時期養成孩子獨立思考的能力最佳。