『壹』 求小學1到6年級所有的數學概念
小學1-6年級數學概念、公式
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 c周長 s面積 a邊長 周長=邊長×4 c=4a 面積=邊長×邊長 s=a×a
2 、正方體 v:體積 a:棱長 表面積=棱長×棱長×6 s表=a×a×6 體積=棱長×棱長×棱長 v=a×a×a
3 、長方形
c周長 s面積 a邊長
周長=(長+寬)×2
c=2(a+b)
面積=長×寬
s=ab
4 、長方體
v:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長×寬×高
v=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
s面積 c周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100=(售出價÷成本-1)×100
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何計算公式
1、長方形的周長=(長+寬)×2 c=(a+b)×2
2、正方形的周長=邊長×4 c=4a
3、長方形的面積=長×寬 s=ab
4、正方形的面積=邊長×邊長 s=a.a= a
5、三角形的面積=底×高÷2 s=ah÷2
6、平行四邊形的面積=底×高 s=ah
7、梯形的面積=(上底+下底)×高÷2 s=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
21
一、 整數和小數
1.最小的一位數是1,最小的自然數是0
2.小數的意義:把整數「1」平均分成10份、100份、1000份……這樣的一份 或幾份分別是十分之幾、百分之幾、千分之幾……可以用小數來表示。
3.小數點左邊依次是整數部分,小數點右邊是小數部分,依次是十分位、百分位、千分位……
4.小數的分類:小數 有限小數
無限小數 無限循環小數
無限不循環小數
5.整數和小數都是按照十進制計數法寫出的數。阿
6.小數的性質:小數的末尾添上0或者去掉0,小數的大小不變。
7.小數點向右移動一位、二位、三位……原來的數分別擴大10倍、100倍、1000倍……
小數點向左移動一位、二位、三位……原來的數分別縮小10倍、100倍、1000倍……
一. 數的整除
1.整除:整數a除以整數b(b≠0),除得的商正好是整數而且沒有餘數,我們就說a能被b整除,或者說b能整除a。
2.約數、倍數:如果數a能被數b整除,a就叫做b的倍數,b就叫做a的約數。
3.一個數倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數。
一個數約數的個數是有限的,最小的約數是1,最大的約數是它本身。
4.按能否被2整除,非0的自然數分成偶數和奇數兩類,能被2整除的數叫做偶數,不能被2整除的數叫做奇數。
5.按一個數約數的個數,非0自然數可分為1、質數、合數三類。
質數:一個數,如果只有1和它本身兩個約數,這樣的數叫做質數。質數都有2個約數。
合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。合數至少有3個約數。
最小的質數是2,最小的合數是4
1~20以內的質數有:2、3、5、7、11、13、17、19
1~20以內的合數有「4、6、8、9、10、12、14、15、16、18
6.能被2整除的數的特徵:個位上是0、2、4、6、8的數,都能被2整除。
能被5整除的數的特徵:個位上是0或者5的數,都能被5整除。
能被3整除的數的特徵:一個數的各位上 數的和能被3整除,這個數就能被3整除。
7.質因數:如果一個自然數的因數是質數,這個因數就叫做這個自然數的質因數。
8.分解質因數:把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
9.公約數、公倍數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
10.一般關系的兩個數的最大公約數、最小公倍數用短除法來求;互質關系的兩個數最大公約數是1,最小公倍數是兩數之積;倍數關系的兩個數的最大公約數是小數,最小公倍數是大數。
11.互質數:公約數只有1的兩個數叫做互質數。
12.兩數之積等於最小公倍數和最大公約數的積。
三.四則運算
1.一個加數=和-另一個加數 被減數=差+減數 減數=被減數-差
一個因數=積÷另一個因數 被除數=商×除數 除數=被除數÷商
2.在四則運算中,加、減法叫做第一級運算,乘、除法叫做第二級運算。
3.運算定律:
(1)加法交換律:a+b=b+a 乘法交換律:a×b=b×a
兩個數相加,交換加數的位置,它們的和不變。
兩個數相加,交換因數的位置,它們的積不變。
(2)加法結合律:(a+b)+c=a+(b+c) 乘法結合律:(a×b)×c=a×(b×c)
三個數相加,先把前兩個數相加,再同第三個數相加;或者先把後兩個數相加,再同第一個數相加,它們的和不變。
三個數相乘,先把前兩個數相乘,再同第三個數相乘;或者先把後兩個數相乘,再同第一個數相乘,它們的積不變。
(3)乘法分配律:(a+b)×c=a×c+b×c
兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
(4)減法的性質:a-b-c=a-(b+c) 除法的性質:a÷b÷c=a÷(b×c)
從一個數里連續減去兩個數,等於從這個數里減去兩個減數的和。
一個數連續除以兩個數,等於這個數除以兩個除數的積。
四.關系式
1.速度×時間=路程 路程÷時間=速度 路程÷速度=時間
工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
單價×數量=總價 總價÷數量=單價 總價÷單價=數量
五.方程
1.方程:含有未知數的等式叫做方程。
2.方程的解:使方程左右兩邊相等的未知數的值,叫做方程的解。
3.解方程:求方程解的過程叫做解方程。
六.分數和百分數
1.分數的意義:把單位「1」平均分成若干份,表示這樣的一份或幾份的數叫做分數。
2.分數單位:把單位「1」平均分成若干份,表示其中一份的數,叫做分數單位。
3.分數和除法的聯系:分數的分子就是除法中的被除數,分母就是除法中的除數。
分數和小數的聯系:小數實際上就是分母是10、100、1000……的分數。
分數和比的聯系:分數的分子就是比的前項,分數的分母就是比的後項
4.分數的分類:分數可以分為真分數和假分數。
5.真分數:分子小於分母的分數叫做真分數。真分數小於1。
假分數:分子大於或等於分母的分數叫做假分數。假分數大於或者等於1。
6.最簡分數:分子與分母互質的分數叫做最簡分數。
7.分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。
8.這樣的分數可以化成有限小數:前提是這個分數要是最簡分數,如果分母只含有2、5這2個質因數,這樣的分數就能化成有限小數。
9.百分數:表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫做百分率或者百分比。百分數通常用「%」來表示。
七.量的計量
1.長度單位有:千米、米、分米、厘米、毫米,寫出它們之間的進率
面積單位有:平方千米、公頃、平方米、平方分米、平方厘米,寫出它們之間的進率。
體積(容積)單位有:立方米、立方分米(升)、立方厘米(毫升),寫出它們之間的進率。
質量單位有:噸、千克、克,寫出它們之間的進率。
時間單位有:世紀、年、月、日、時、分、秒,寫出它們之間的進率。
2.一年中的大月有:1、3、5、7、8、10、12月,共7個,每月31天。
小月有:4、6、9、11月,共4個,每月30天。
二月平年是28天,閏年是29天。
左拳記月法
3.一年有4個季度,每個季度3個月。
4.平年閏年:公歷年份是4的倍數的一般是閏年,公歷年份是整百數的,必須是400的倍數才是閏年。
5.名數:把計量得到的數和單位名稱合起來叫做名數。
單名數:只帶有一個單位名稱的叫做單名數。
復名數:帶有兩個或兩個以上單位名稱的叫做復名數。
6.名數的改寫:高級單位的名數化成低級單位的名數乘進率,低級單位的名數化成高級單位的名數除以進率。
八.幾何初步知識
1.線段、射線、直線的聯系與區別:聯系是三者都是直的,區別是線段有兩個端點,可以量出長度;射線只有一個端點,可以無限延長;直線沒有端點,兩端都可以無限延長。射線和直線是無限長的。
2.角:從一點引出兩條射線所組成的圖形叫做角。
3.角的大小:角的大小看兩條邊叉開的大小,叉開的越大,角越大。
4.計量角的大小的單位:度,用符號「°」表示。
5.小於90°的角叫做銳角;大於90°而小於180°的角叫做鈍角。角的兩邊在一條直線上的角叫做平角。平角180°。
6.垂線:兩條直線相交成直角時,這兩條直線互相垂直,其中一條直線是另一條直線的垂線,這兩條直線的交點叫做垂足。(畫圖說明)
7.平行線:在同一平面內不相交的兩條直線叫做平行線。也可以說這兩條直線互相平行。
(畫圖說)平行線之間垂直線段的長度都相等。
8.三角形:有三條線段圍成的圖形叫做三角形。
9.三角形的分類:
(1)按角分:銳角三角形、鈍角三角形、直角三角形。
(2)按邊分:一般三角形、等腰三角形、等邊三角形。
10.三角形三個內角和是180°。
11.四邊形:由四條線段圍成的圖形。
12.圓是一種曲線圖形。圓上任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。
13.圓的半徑、直徑都有無數條。在同一個圓里,直徑是半徑的2倍,半徑是直徑的二分之一。
14.軸對稱圖形:如果一個圖形沿著一條直線對折,直線兩惻的圖形能夠完全重合,這個圖形就是軸對稱圖形。摺痕所在的這條直線叫做對稱軸。
15.學過的圖形中的軸對稱圖形有:圓、等腰三角形、等邊三角形、長方形、正方形、等腰梯形
16.周長:圍成一個圖形的所有邊長的總和就是這個圖形的周長。
面積:物體的表面或圍成的平面圖形的大小,叫做它們的面積。
17。表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。
體積:物體所佔空間的大小叫做物體的體積。
18.長方體、正方體都有12條棱,6個面,8個頂點。
正方體是特殊的長方體,等邊三角形是特殊的等腰三角形。
19.圓柱的三個特點:(1)上下一樣粗細(2)側面是曲面(3)兩個底面是相同的圓
20.圓柱的高:圓柱兩個底面之間的距離叫做圓柱的高。圓柱的高有無數條,這些高都平行且相等。
21.把圓柱的側面展開,得到一個長方形,這個長方形的長等於圓柱的底面的周長,寬等於圓柱的高。
22.圓周率π是一個無限不循環小數。π=3.141592653……
23.把圓等份成若干份,拼成的圖形接近於長方形。這個長方形的長相當於圓周長的一半,寬就是圓的半徑。
24.圓錐的高:從圓錐的頂點到底面圓心的距離是圓錐的高。
25.等底等高的圓錐的體積是圓柱的 ,等底等高的圓柱的體積是圓錐的三倍。
體積和底面積相等的圓柱和圓錐,圓柱的高是圓錐的 ,圓錐的高是圓柱的3倍。
九.比和比例
1.比的意義:兩個數相除又叫做兩個數的比。
比例的意義:表示兩個比相等的式子叫做比例。
2.求比值:比的前項除以比的後項所得的商叫做比值。
3.比的基本性質:比的前項和後項都乘或除以相同的數(0除外),比值不變。
比例的基本性質:在比例里,兩個外項的積等於兩個內項的積。
4.應用比的基本性質可以化簡比;
應用比例的基本性質可以判斷兩個比是否能組成比例,也可以求比例里的未知項,也就是解比例。
5.用字母表示比與除法和分數的關系。
a:b=a÷b= (b≠0)
6.比例尺:我們把圖上距離和實際距離的比,叫做這幅圖的比例尺。
7.圖上距離:實際距離=比例尺
或 =比例尺
實際距離=圖上距離÷比例尺 圖上距離=實際距離×比例尺
8.求比值的方法:根據比值的意義,用前項除以後項,結果是一個數。
化簡比的方法:根據比的基本性質,把比的前項和後項都乘或除以相同的數(零除外),結果是一個最簡整數比。
9.正比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們之間的關系叫做正比例關系。
用式子表示: =k(一定),用圖表示正比例關系是一條直線。
10.反比例關系:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們之間的關系叫做反比例關系。
用式子表示:x×y=k(一定),用圖表示反比例關系是一條曲線。
十.簡單的統計
1.常見的統計圖有條形統計圖、折線統計圖和扇形統計圖。
2.條形統計圖特點:(1)用一個單位長度表示一定的數量。(2)用直條的長短來表示數量的多少。 作用:從圖中能清楚地看出各數量的多少,便於相互比較。
折線統計圖的特點:(1)用一個單位長度表示一定的數量。(2)用折線的起伏來表示數量的增減變化。 作用:從圖中能清楚地看出數量的增減變化情況,也能看出數量的多少。
十一 公式的整理
平面圖形:
1.長方形:
周長=(長+寬)×2 C長=(a+b)×2
面積=長×寬 S長=a ×b
2.正方形:
周長=邊長×4 C正=a×4
面積=邊長×邊長 S正=a×a
3.平行四邊形的面積=底×高 S平=ah
4.三角形的面積=底×高÷2 S三=ah÷2
5.梯形的面積=(上底+下底)×高÷2 S梯=(a+b)×h÷2
6.圓的周長=直徑×3.14 C圓=πd
圓的周長=半徑×2×3.14 C圓=2πr
圓的面積=半徑的平方×圓周率 S圓=πr2
立體圖形:
1.長方體
表面積=(長×寬+長×高+寬×高)×2 S長表=(ab+ah+bh)×2
體積=長×寬×高 V長=abh
2.正方體
表面積=棱長×棱長×6 S正表=a×a×6
體積=棱長×棱長×棱長 V正=a3
3.圓柱
側面積=底面周長×高
表面積=側面積+兩個底面積
體積=底面積×高
4.以上立體圖形的表面積、體積可以統一成公式為:
表面積=底面周長×高+兩個底面積 體積=底面積×高
側面積
5.圓錐的體積=圓柱的體積÷3 V=sh÷3
『貳』 1至6年級數學定義,概念,公式。(冀教版)
常用的數量關系式
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
常用的數量關系式
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
BAIDU_CLB_fillSlot( '920314' );
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
BAIDU_CLB_fillSlot( '920966' );
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
1
、每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
、
1
倍數×倍數=幾倍數
幾倍數÷1
倍數=倍數
幾倍數÷倍數=
1
倍數
3
、速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
、單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
、
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時
間=工作效率
6
、加數+加數=和
和-一個加數=另一個加數
7
、被減數-減數=差
被減數-差=減數
差+減數=被減數
8
、因數×因數=積
積÷一個因數=另一個因數
9
、被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
、正方形
(
C
:周長
S
:面積
a
:邊長
)
周長=邊長×4 C=4a
面積
=
邊長×邊長
S=a×a
2
、正方體
(
V:
體積
a:
棱長
)
BAIDU_CLB_fillSlot( '920314' );
表面積
=
棱長×棱長×6
S
表=a×a×6
體積
=
棱長×棱長×棱長
V=a×a×a
3
、長方形(
C
:周長
S
:面積
a
:邊長
)
周長
=(
長
+
寬)×2 C=2(a+b)
面積
=
長×寬
S=ab
4
、長方體
(
V:
體積
s:
面積
a:
長
b:
寬
h:
高)
(1)
表面積
(
長×寬
+
長×高
+
寬×高)×2 S=2(ab+ah+bh)
(2)
體積
=
長×寬×高
V=abh
5
、三角形
(
s
:面積
a
:底
h
:高)
面積
=
底×高÷2 s=ah÷2
三角形高
=
面積
×2÷底
三角形底
=
面積
×2÷高
6
、平行四邊形
(
s
:面積
a
:底
h
:高)
面積
=
底×高
s=ah
7
、梯形
(
s
:面積
a
:上底
b
:下底
h
:高)
面積
=(
上底
+
下底)×高÷2 s=(a+b)× h÷2
8
、圓形
(
S
:面積
C
:周長
л
d=
直徑
r=
半徑)
(1)
周長
=
直徑×
л
=2×
л
×半徑
C=
л
d=2
л
r
(2)
面積
=
半徑×半徑×
л
9
、圓柱體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑
c:
底面周長)
(1)
側面積
=
底面周長×高
=ch(2
л
r
或
л
d) (2)
表面積
=
側面積
+
底面積×2
(3)
體積
=
底面積×高
(
4
)體積=側面積÷2×半徑
10
、圓錐體
(
v:
體積
h:
高
s
:底面積
r:
底面半徑)
體積
=
底面積×高÷3
11
、總數÷總份數=平均數
12
、和差問題的公式
(
和+差)÷2=大數
(
和-差)÷2=小數
13
、和倍問題
和÷(倍數-
1)
=小數
小數×倍數=大數
(
或者
和-小數=大數
)
14
、差倍問題
差÷(倍數-
1)
=小數
小數×倍數=大數
(
或
小數+差=大數
)
15
、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16
、濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
17
、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=
(
售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
BAIDU_CLB_fillSlot( '920966' );
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-
20%)
常用單位換算
長度單位換算
1
千米
=1000
米
1
米
=10
分米
1
分米
=10
厘米
1
米
=100
厘米
1
厘米
=10
毫米
面積單位換算
1
平方千米
=100
公頃
1
公頃
=10000
平方米
1
平方米
=100
平方分米
1
平方分米
=100
平方厘米
1
平方厘米
=100
平方毫米
體
(
容
)
積單位換算
1
立方米
=1000
立方分米
1
立方分米
=1000
立方厘米
1
立方分米
=1
升
1
立方厘米
=1
毫升
1
立方米
=1000
升
重量單位換算
1
噸
=1000
千克
1
千克
=1000
克
1
千克
=1
公斤
人民幣單位換算
1
元
=10
角
1
角
=10
分
1
元
=100
分
時間單位換算
1
世紀
=100
年
1
年
=12
月
大月
(31
天
)
有
:1\3\5\7\8\10\12
月
小月
(30
天
)
的有
:4\6\9\11
月
平年
2
月
28
天
,
閏年
2
月
29
天
平年全年
365
天
,
閏年全年
366
天
1
日
=24
小時
1
時
=60
分
1
分
=60
秒
1
時
=3600
秒
『叄』 16個小學數學問題 急~~~~~~~~~
1、2*72/(2-0.2)=80(天)
2、設六年級有人。
X+X*4/5-30=510
X=300
X*4/5-30=210
五年級有210人,六年級有300人。
3、設邊長為40厘米的方磚要用X塊。
(30*30):(40*40)=X:1600
X=900
4、80/{(1/8-1/10)*[1/(1/8+1/10)]}
=80/[(1/40)*(40/9)]
=720
這批零件共有720個
5、 2000*(1+40%)=2800
2800/(1250-10)=2.26
每千克梨的出售價應該約為2.26元。
(6)
設深X米
30*6*X*1=720
X=4
(7)
(12.56*18*1/3)/9.42=8
這個零件的高是8厘米
(8)
900/(900/15-10)=18
15+18=33
小紅這天到家是11:33
(9)設這艘船最多駛出X千米就應該反航。
X/30+X/24=6
X=80
(10)做這個水桶需鐵皮:
3.14*[6.28/(2*3.14)]*[6.28/(2*3.14)]+3*6.28
=21.98平方分米
水桶能盛水:
3.14*[6.28/(2*3.14)]*[6.28/(2*3.14)]*3=9.42升
(11)
[60*12*(1/2)]/(12-6-1)=72
餘下的路程每小時必須行72千米
(12)
1.5*3.14*(1.2/2)*(1.2/2)*120=246.672平方米。
(13)生產同樣的數量的零件,甲需要3小時,乙需要4小時。現在兩人在同一段時間里共生產了零件630個。甲乙兩人各生產了多少個零件?
甲生產了:630*4/(3+4)=360
乙生產了:630*3/(3+4)=270
(14)
設甲車行了X千米,乙車行了X+36千米。
X:(X+36)=5:6
X=180
X+36=180+36=216
180+216+264=660
兩車相距660千米
(15)
設買來的蘋果是X千克
(X-35)(5.6-4.2)=1484
X=1095
(16)
X/6+X/5+X/7.5=1500
X=3000
甲應分到:300/6=500個
乙應分到:3000/5=600個
丙應分到:3000/7.5=400個。
『肆』 小學數學概念大全
你好!你是教師可到新華書店去買這方面的書,你是學生或家長,就把小學數學書拿出來,一本一本的從頭把有關概念抄一遍,抄在採集本上。到開校還來得及,也算是復習一遍。祝:好好學習,天天向上。
『伍』 小學1至6年級全部數學進率、公式、概念
2012畢業班小學數學總復習資料
第一章 數和數的運算
一 概念
(一)整數
1 整數的意義
自然數和0都是整數。
2 自然數
我們在數物體的時候,用來表示物體個數的1,2,3……叫做自然數。
一個物體也沒有,用0表示。0也是自然數。
3計數單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。
每相鄰兩個計數單位之間的進率都是10。這樣的計數法叫做十進制計數法。
4 數位
計數單位按照一定的順序排列起來,它們所佔的位置叫做數位。
5數的整除
整數a除以整數b(b ≠ 0),除得的商是整數而沒有餘數,我們就說a能被b整除,或者說b能整除a 。
如果數a能被數b(b ≠ 0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。倍數和約數是相互依存的。
因為35能被7整除,所以35是7的倍數,7是35的約數。
一個數的約數的個數是有限的,其中最小的約數是1,最大的 約數是它本身。例如:10的約數有1、2、5、10,其中最小的約數是1,最大的約數是10。
一個數的倍數的個數是無限的,其中最小的倍數是它本身。3的倍數有:3、6、9、12……其中最小的倍數是3 ,沒有最大的倍數。
個位上是0、2、4、6、8的數,都能被2整除,例如:202、480、304,都能被2整除。。
個位上是0或5的數,都能被5整除,例如:5、30、405都能被5整除。。
一個數的各位上的數的和能被3整除,這個數就能被3整除,例如:12、108、204都能被3整除。
一個數各位數上的和能被9整除,這個數就能被9整除。
能被3整除的數不一定能被9整除,但是能被9整除的數一定能被3整除。
一個數的末兩位數能被4(或25)整除,這個數就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數的末三位數能被8(或125)整除,這個數就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。
0也是偶數。自然數按能否被2 整除的特徵可分為奇數和偶數。
一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數),100以內的質數有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數,例如 4、6、8、9、12都是合數。
1不是質數也不是合數,自然數除了1外,不是質數就是合數。如果把自然數按其約數的個數的不同分類,可分為質數、合數和1。
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數,例如15=3×5,3和5 叫做15的質因數。
把一個合數用質因數相乘的形式表示出來,叫做分解質因數。
例如把28分解質因數
幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做這幾個數的最大公約數,例如12的約數有1、2、3、4、6、12;18的約數有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數,6是它們的最大公約數。
公約數只有1的兩個數,叫做互質數,成互質關系的兩個數,有下列幾種情況:
1和任何自然數互質。
相鄰的兩個自然數互質。
兩個不同的質數互質。
當合數不是質數的倍數時,這個合數和這個質數互質。
兩個合數的公約數只有1時,這兩個合數互質,如果幾個數中任意兩個都互質,就說這幾個數兩兩互質。
如果較小數是較大數的約數,那麼較小數就是這兩個數的最大公約數。
如果兩個數是互質數,它們的最大公約數就是1。
幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個,叫做這幾個數的最小公倍數,如2的倍數有2、4、6 、8、10、12、14、16、18 ……
3的倍數有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數,6是它們的最小公倍數。。
如果較大數是較小數的倍數,那麼較大數就是這兩個數的最小公倍數。
如果兩個數是互質數,那麼這兩個數的積就是它們的最小公倍數。
幾個數的公約數的個數是有限的,而幾個數的公倍數的個數是無限的。
(二)小數
1 小數的意義
把整數1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數表示。
一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……
一個小數由整數部分、小數部分和小數點部分組成。數中的圓點叫做小數點,小數點左邊的數叫做整數部分,小數點左邊的數叫做整數部分,小數點右邊的數叫做小數部分。
在小數里,每相鄰兩個計數單位之間的進率都是10。小數部分的最高分數單位「十分之一」和整數部分的最低單位「一」之間的進率也是10。
2小數的分類
純小數:整數部分是零的小數,叫做純小數。例如: 0.25 、 0.368 都是純小數。
帶小數:整數部分不是零的小數,叫做帶小數。 例如: 3.25 、 5.26 都是帶小數。
有限小數:小數部分的數位是有限的小數,叫做有限小數。 例如: 41.7 、 25.3 、 0.23 都是有限小數。
無限小數:小數部分的數位是無限的小數,叫做無限小數。 例如: 4.33 …… 3.1415926 ……
無限不循環小數:一個數的小數部分,數字排列無規律且位數無限,這樣的小數叫做無限不循環小數。 例如:∏
循環小數:一個數的小數部分,有一個數字或者幾個數字依次不斷重復出現,這個數叫做循環小數。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環小數的小數部分,依次不斷重復出現的數字叫做這個循環小數的循環節。 例如: 3.99 ……的循環節是「 9 」 , 0.5454 ……的循環節是「 54 」 。
純循環小數:循環節從小數部分第一位開始的,叫做純循環小數。 例如: 3.111 …… 0.5656 ……
混循環小數:循環節不是從小數部分第一位開始的,叫做混循環小數。 3.1222 …… 0.03333 ……
寫循環小數的時候,為了簡便,小數的循環部分只需寫出一個循環節,並在這個循環節的首、末位數字上各點一個圓點。如果循環 節只有 一個數字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
(三)分數
1 分數的意義
把單位「1」平均分成若干份,表示這樣的一份或者幾份的數叫做分數。
在分數里,中間的橫線叫做分數線;分數線下面的數,叫做分母,表示把單位「1」平均分成多少份;分數線下面的數叫做分子,表示有這樣的多少份。
把單位「1」平均分成若干份,表示其中的一份的數,叫做分數單位。
2 分數的分類
真分數:分子比分母小的分數叫做真分數。真分數小於1。
假分數:分子比分母大或者分子和分母相等的分數,叫做假分數。假分數大於或等於1。
帶分數:假分數可以寫成整數與真分數合成的數,通常叫做帶分數。
3 約分和通分
把一個分數化成同它相等但是分子、分母都比較小的分數 ,叫做約分。
分子分母是互質數的分數,叫做最簡分數。
把異分母分數分別化成和原來分數相等的同分母分數,叫做通分。
(四)百分數
1 表示一個數是另一個數的百分之幾的數 叫做百分數,也叫做百分率 或百分比。百分數通常用"%"來表示。百分號是表示百分數的符號。
二 方法
(一)數的讀法和寫法
1. 整數的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在後面加一個「億」或「萬」字。每一級末尾的0都不讀出來,其它數位連續有幾個0都只讀一個零。
2. 整數的寫法:從高位到低位,一級一級地寫,哪一個數位上一個單位也沒有,就在那個數位上寫0。
3. 小數的讀法:讀小數的時候,整數部分按照整數的讀法讀,小數點讀作「點」,小數部分從左向右順次讀出每一位數位上的數字。
4. 小數的寫法:寫小數的時候,整數部分按照整數的寫法來寫,小數點寫在個位右下角,小數部分順次寫出每一個數位上的數字。
5. 分數的讀法:讀分數時,先讀分母再讀「分之」然後讀分子,分子和分母按照整數的讀法來讀。
6. 分數的寫法:先寫分數線,再寫分母,最後寫分子,按照整數的寫法來寫。
7. 百分數的讀法:讀百分數時,先讀百分之,再讀百分號前面的數,讀數時按照整數的讀法來讀。
8. 百分數的寫法:百分數通常不寫成分數形式,而在原來的分子後面加上百分號「%」來表示。
(二)數的改寫
一個較大的多位數,為了讀寫方便,常常把它改寫成用「萬」或「億」作單位的數。有時還可以根據需要,省略這個數某一位後面的數,寫成近似數。
1. 准確數:在實際生活中,為了計數的簡便,可以把一個較大的數改寫成以萬或億為單位的數。改寫後的數是原數的准確數。 例如把 1254300000 改寫成以萬做單位的數是 125430 萬;改寫成 以億做單位 的數 12.543 億。
2. 近似數:根據實際需要,我們還可以把一個較大的數,省略某一位後面的尾數,用一個近似數來表示。 例如: 1302490015 省略億後面的尾數是 13 億。
3. 四捨五入法:要省略的尾數的最高位上的數是4 或者比4小,就把尾數去掉;如果尾數的最高位上的數是5或者比5大,就把尾數捨去,並向它的前一位進1。例如:省略 345900 萬後面的尾數約是 35 萬。省略 4725097420 億後面的尾數約是 47 億。
4. 大小比較
1. 比較整數大小:比較整數的大小,位數多的那個數就大,如果位數相同,就看最高位,最高位上的數大,那個數就大;最高位上的數相同,就看下一位,哪一位上的數大那個數就大。
2. 比較小數的大小:先看它們的整數部分,,整數部分大的那個數就大;整數部分相同的,十分位上的數大的那個數就大;十分位上的數也相同的,百分位上的數大的那個數就大……
3. 比較分數的大小:分母相同的分數,分子大的分數比較大;分子相同的數,分母小的分數大。分數的分母和分子都不相同的,先通分,再比較兩個數的大小。
(三)數的互化
1. 小數化成分數:原來有幾位小數,就在1的後面寫幾個零作分母,把原來的小數去掉小數點作分子,能約分的要約分。
2. 分數化成小數:用分母去除分子。能除盡的就化成有限小數,有的不能除盡,不能化成有限小數的,一般保留三位小數。
3. 一個最簡分數,如果分母中除了2和5以外,不含有其他的質因數,這個分數就能化成有限小數;如果分母中含有2和5 以外的質因數,這個分數就不能化成有限小數。
4. 小數化成百分數:只要把小數點向右移動兩位,同時在後面添上百分號。
5. 百分數化成小數:把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。
6. 分數化成百分數:通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
7. 百分數化成小數:先把百分數改寫成分數,能約分的要約成最簡分數。
(四)數的整除
1. 把一個合數分解質因數,通常用短除法。先用能整除這個合數的質數去除,一直除到商是質數為止,再把除數和商寫成連乘的形式。
2. 求幾個數的最大公約數的方法是:先用這幾個數的公約數連續去除,一直除到所得的商只有公約數1為止,然後把所有的除數連乘求積,這個積就是這幾個數的的最大公約數 。
3. 求幾個數的最小公倍數的方法是:先用這幾個數(或其中的部分數)的公約數去除,一直除到互質(或兩兩互質)為止,然後把所有的除數和商連乘求積,這個積就是這幾個數的最小公倍數。
4. 成為互質關系的兩個數:1和任何自然數互質 ; 相鄰的兩個自然數互質; 當合數不是質數的倍數時,這個合數和這個質數互質; 兩個合數的公約數只有1時,這兩個合數互質。
(五) 約分和通分
約分的方法:用分子和分母的公約數(1除外)去除分子、分母;通常要除到得出最簡分數為止。
通分的方法:先求出原來的幾個分數分母的最小公倍數,然後把各分數化成用這個最小公倍數作分母的分數。
三 性質和規律
(一)商不變的規律
商不變的規律:在除法里,被除數和除數同時擴大或者同時縮小相同的倍,商不變。
(二)小數的性質
小數的性質:在小數的末尾添上零或者去掉零小數的大小不變。
(三)小數點位置的移動引起小數大小的變化
1. 小數點向右移動一位,原來的數就擴大10倍;小數點向右移動兩位,原來的數就擴大100倍;小數點向右移動三位,原來的數就擴大1000倍……
2. 小數點向左移動一位,原來的數就縮小10倍;小數點向左移動兩位,原來的數就縮小100倍;小數點向左移動三位,原來的數就縮小1000倍……
3. 小數點向左移或者向右移位數不夠時,要用「0"補足位。
(四)分數的基本性質
分數的基本性質:分數的分子和分母都乘以或者除以相同的數(零除外),分數的大小不變。
(五)分數與除法的關系
1. 被除數÷除數= 被除數/除數
2. 因為零不能作除數,所以分數的分母不能為零。
3. 被除數 相當於分子,除數相當於分母。
四 運算的意義
(一)整數四則運算
1整數加法:
把兩個數合並成一個數的運算叫做加法。
在加法里,相加的數叫做加數,加得的數叫做和。加數是部分數,和是總數。
加數+加數=和 一個加數=和-另一個加數
2整數減法:
已知兩個加數的和與其中的一個加數,求另一個加數的運算叫做減法。
在減法里,已知的和叫做被減數,已知的加數叫做減數,未知的加數叫做差。被減數是總數,減數和差分別是部分數。
加法和減法互為逆運算。
3整數乘法:
求幾個相同加數的和的簡便運算叫做乘法。
在乘法里,相同的加數和相同加數的個數都叫做因數。相同加數的和叫做積。
在乘法里,0和任何數相乘都得0. 1和任何數相乘都的任何數。
一個因數× 一個因數 =積 一個因數=積÷另一個因數
4 整數除法:
已知兩個因數的積與其中一個因數,求另一個因數的運算叫做除法。
在除法里,已知的積叫做被除數,已知的一個因數叫做除數,所求的因數叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數。因為0和任何數相乘都得0,所以任何一個數除以0,均得不到一個確定的商。
被除數÷除數=商 除數=被除數÷商 被除數=商×除數
『陸』 小學數學概念1至6年級
1到6年級數學公式
1
.每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2.
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3.
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4.
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5.
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6
加數+加數=和
和-一個加數=另一個加數
7
被減數-減數=差
被減數-差=減數
差+減數=被減數
8
因數×因數=積
積÷一個因數=另一個因數
9
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1.
正方形
c周長
s面積
a邊長
周長=邊長×4
c=4a
面積=邊長×邊長
s=a×a
2.
正方體
v:體積
a:棱長
表面積=棱長×棱長×6
s表=a×a×6
體積=棱長×棱長×棱長
v=a×a×a
3.
長方形
c周長
s面積
a邊長
周長=(長+寬)×2
c=2(a+b)
面積=長×寬
s=ab
4
.長方體
v:體積
s:面積
a:長
b:
寬
h:高
(1)表面積=(長×寬+長×高+寬×高)×2
s=2(ab+ah+bh)
(2)體積=長×寬×高
v=abh
5
.三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6.
平行四邊形
s面積
a底
h高
面積=底×高
s=ah
7.
梯形
s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圓形
s面積
c周長
∏
d=直徑
r=半徑
(1)周長=直徑×∏=2×∏×半徑
c=∏d=2∏r
(2)面積=半徑×半徑×∏
9.
圓柱體
v:體積
h:高
s;底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10.
圓錐體
v:體積
h:高
s;底面積
r:底面半徑
體積=底面積×高÷3
和差問題的公式;
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
植樹問題
:
1.
非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2
封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
:
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
:
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
:
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
:
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
『柒』 小學1到6年級數學知識重點
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
北師:
小學數學四年級前四個單元知識點總結
1、路程速度時間公式:s=vt v=s÷t t=s÷v
2、正方形周長公式:C=4a
3、正方形面積公式:S=a2
4、長方形周長公式:C=2(a+b)
5、長方形面積公式:S=ab
6、加法交換律:a+b=b+a
7、加法結合律:a+b+c=a+(b+c)
8、乘法交換律:a·b=b·a
9、乘法結合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分類,從小到大是:銳角、直角、鈍角、平角、周角
12、銳角是小於90度的角,直角是90度,鈍角是大於90度而小於平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分類:銳角三角形,直角三角形,鈍角三角形
14、三個角都是銳角是銳角的三角形叫銳角三角形;有一個角是直角的三角形叫直角三角形;有一個角是鈍角的三角形叫鈍角三角形。
15、三角形按邊分類有:不等邊三角形,等腰三角形,等邊三角形
16、從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
17、小數的計數單位是十分之一,百分之一,千分之一--------記作0.1,0.01,0.001-----
18、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有穩定性
22、三角形任意兩邊之和大於第三邊
23、三角形的內角和是180度
24、學會畫角
25、會比較小數的大小
26、單位換算
長度單位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
質量單位:1千克=1000克 1噸=1000千克=1000000克
錢的換算:1元=10角=100分 1角=10分
時間單位:1時=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小時
一三五七八十臘,三十一天永不差。四六九十一三十,平年二月二十八,閏年二月二十九。
面積單位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公頃=10000平方米 1平方千米=100公頃=1000000平方米
周長公式:長方形周長=(長+寬)×2 C=2(a+b)
正方形周長=邊長×4 C=4a
圓的周長=圓周率×直徑 C=πd C =2πr
半圓的周長=圓周長的一半+直徑 πr+d
面積公式:長方形面積=長×寬 S=ab
正方形面積=邊長×邊長 S=a2
平行四邊形面積=底×高 S=ah
三角形面積=底×高÷2 S=ah÷2
梯形面積=(上底+下底)×高÷2 S=(a+b)h÷2
圓的面積=圓周率×半徑的平方 S=πr2
圓柱的側面積=底面周長×高 S=Ch
表面積公式:長方體表面積=(長×寬+長×高+寬×高)×2
S=(ab+ah+bh)×2
正方體表面積=邊長×邊長×6 S=6a2
圓柱體側面積=底面周長×高 S=C h
圓柱體表面積=側面積+底面積×2 S=S側+2 S底
體積公式:長方體體積=長×寬×高 V=abh
正方體體積=棱長×棱長×棱長 V=a3
圓柱體體積=底面積×高 V=Sh
(將近似長方體平放得到:圓柱體體積=側面積的一半×半徑 V=Ch÷2×r=2πr÷2×r=πr×r)
圓錐體體積=底面積×高÷3 V=Sh÷3或1/3Sh
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
『捌』 人教版小學數學1到6年級定義
長方形的周長=(長+寬)×2
正方形的周長=邊長×4
長方形的面積=長×寬
正方形的面積=邊長×邊長
三角形的面積=底×高÷2
平行四邊形的面積=底×高
梯形的面積=(上底+下底)×高÷2
直徑=半徑×2 半徑=直徑÷2
圓的周長=圓周率×直徑=
圓周率×半徑×2
圓的面積=圓周率×半徑×半徑
長方體的表面積=
(長×寬+長×高+寬×高)×2
長方體的體積 =長×寬×高
正方體的表面積=棱長×棱長×6
正方體的體積=棱長×棱長×棱長
圓柱的側面積=底面圓的周長×高
圓柱的表面積=上下底面面積+側面積
圓柱的體積=底面積×高
圓錐的體積=底面積×高÷3
長方體(正方體、圓柱體)
的體積=底面積×高
平面圖形
名稱 符號 周長C和面積S
正方形 a—邊長 C=4a
S=a2
長方形 a和b-邊長 C=2(a+b)
S=ab
三角形 a,b,c-三邊長
h-a邊上的高
s-周長的一半
A,B,C-內角
其中s=(a+b+c)/2 S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四邊形 d,D-對角線長
α-對角線夾角 S=dD/2·sinα
平行四邊形 a,b-邊長
h-a邊的高
α-兩邊夾角 S=ah
=absinα
菱形 a-邊長
α-夾角
D-長對角線長
d-短對角線長 S=Dd/2
=a2sinα
梯形 a和b-上、下底長
h-高
m-中位線長 S=(a+b)h/2
=mh
圓 r-半徑
d-直徑 C=πd=2πr
S=πr2
=πd2/4
扇形 r—扇形半徑
a—圓心角度數
C=2r+2πr×(a/360)
S=πr2×(a/360)
弓形 l-弧長
b-弦長
h-矢高
r-半徑
α-圓心角的度數 S=r2/2·(πα/180-sinα)
=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2
=παr2/360 - b/2·[r2-(b/2)2]1/2
=r(l-b)/2 + bh/2
≈2bh/3
圓環 R-外圓半徑
r-內圓半徑
D-外圓直徑
d-內圓直徑 S=π(R2-r2)
=π(D2-d2)/4
橢圓 D-長軸
d-短軸 S=πDd/4
立方圖形
名稱 符號 面積S和體積V
正方體 a-邊長 S=6a2
V=a3
長方體 a-長
b-寬
c-高 S=2(ab+ac+bc)
V=abc
稜柱 S-底面積
h-高 V=Sh
棱錐 S-底面積
h-高 V=Sh/3
稜台 S1和S2-上、下底面積
h-高 V=h[S1+S2+(S1S1)1/2]/3
擬柱體 S1-上底面積
S2-下底面積
S0-中截面積
h-高 V=h(S1+S2+4S0)/6
圓柱 r-底半徑
h-高
C—底面周長
S底—底面積
S側—側面積
S表—表面積 C=2πr
S底=πr2
S側=Ch
S表=Ch+2S底
V=S底h
=πr2h
空心圓柱 R-外圓半徑
r-內圓半徑
h-高 V=πh(R2-r2)
直圓錐 r-底半徑
h-高 V=πr2h/3
圓台 r-上底半徑
R-下底半徑
h-高 V=πh(R2+Rr+r2)/3
球 r-半徑
d-直徑 V=4/3πr3=πd2/6
球缺 h-球缺高
r-球半徑
a-球缺底半徑 V=πh(3a2+h2)/6
=πh2(3r-h)/3
a2=h(2r-h)
球台 r1和r2-球台上、下底半徑
h-高 V=πh[3(r12+r22)+h2]/6
圓環體 R-環體半徑
D-環體直徑
r-環體截面半徑
d-環體截面直徑 V=2π2Rr2
=π2Dd2/4
桶狀體 D-桶腹直徑
d-桶底直徑
h-桶高 V=πh(2D2+d2)/12
(母線是圓弧形,圓心是桶的中心)
V=πh(2D2+Dd+3d2/4)/15
(母線是拋物線形)
『玖』 小學數學1到6年級全部重點
小學生數學復習考試全圖
這些知識歸結了小學全部數學重點。這些知識可能在每次考試中以不同形式(填空、選擇、判斷、連線、解答應用題等)出現,也是學生將來進入初中、高中的基礎,所以一定要牢固掌握。
一、 小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條:
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條:
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則:
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序去處;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法:
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;末位不管有幾個0都不讀。
(五)四位數寫法:
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條:
1、相同數位對齊;
2、從個位減起;
3、位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則:
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則:
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則:
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則:
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,再試除前三位數;
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則:
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。
(十二)多位數的讀法法則:
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個「零」。
(十三)小數大小的比較:
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則:
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數簡潔的計演算法則:
計算小數乘法,先按照簡潔的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則:
除數是整數的小數除法,按照整數除法的法則卻除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則:
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足),然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟:
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟:
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;檢驗、寫出答案。
(二十)同分母分數加減的法則:
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則:
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則:
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則:
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則:
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則:
一個數除以,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法:
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、 小學教學口訣定義歸類
1、 什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、 什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、 加法各部分之間的關系:
一個加數=和-另一個加數
4、 減法各部分之間的關系:
差數=被減數-差,被減數=差數+差
5、 乘法各部分之間的關系:
一個因數=積÷另一個因數
6、 除法各部分之間的關系:
除數=被除數÷商,被除數=商×除數
7、 角:
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角叫直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角叫銳角。
(7)什麼是鈍角?
大於90°而小於180°的角叫做鈍角。
(8)什麼是周角?
一條射線繞它的閃電戰旋轉一周所在的角叫周角,一個周角是360°。
8、
(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、 三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
在等腰三角形里,相等的兩個邊叫等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫做等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?
什麼叫三角形的底?從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形的內角和是180°。
10、 四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平行四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平行的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平行的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、 什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、 什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。
這種求近似數的方法,叫做四捨五入法。
13、 加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、 什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、 什麼是被減數?
什麼是減數?什麼叫差?在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、 加法各部分之間的關系:
和=加數+加數,加數=和-另一加數
17、 減法各部分之間的關系:
差=被減數-減數,減數=被減數-差,被減數=減數+差
18、 乘法:
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、 除法:
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中已知的一個因數叫除數。
(4)什麼是商?
在除法中求出的未知因數叫商。
20、 乘法各部分之間的關系:
積=因數×因數,一個因數=積÷另一個因數。
21、(1)除法各部分之間的關系:
商=被除數÷除數,除數=被除數÷商,被除數=商×除數。
(2)有餘數的除法各部分之間的關系:
被除數=商×除數+余數。
22、 什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、 什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、 什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、 什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、 什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、 什麼是而有限小數?
小數部分的位數是有限的小數叫有限小數。
28、 什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、 什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、 什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、 什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、 什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、 什麼是方程?
含有未知數的等式叫方程。
34、 什麼是解方程?
求方程解的過程叫解方程。
35、 什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數。b就叫a的約數(或a的因數)。
36、 什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、 什麼是偶數?
能被2整除的數叫偶數。
38、 什麼是奇數?
不能被2整除的數叫奇數。
39、 什麼樣的數能被5整除?
個位上是「0」或是「5」的數能被5整除。
40、 什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、 什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、 什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、 什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、 什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、 什麼是公約數?
什麼叫最大公約數?幾個數公有的約數叫公約數,其中最大的一個叫最大公約數。
46、 什麼是互質數?
公約數只有1的兩個數叫互質數。
47、 什麼是公倍數?
什麼叫最小公倍數?幾個數公有的倍數叫這幾個數的公倍數,其中最小的一個叫這幾個數的最小公倍數。
48、 分數:
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、 怎麼比較分數大小?
(1)分母相同兩個分數,
分子大的分數比較大。
(2)分子相同的兩個分數,
分母小的分數較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、 比:
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、 長方體和正方體:
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體的體積?
物體所佔空間的大小叫做物體的體積。
52、 圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心,並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是弧?
在圓上兩點之間的部分叫弧。
(8)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、 什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、 比例:
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、 圓柱:
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、 小學數學量的計算單位及進率歸類
(1)長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里,
1千米=1000米,
1米=10分米,
1分米=10厘米,
1厘米=10毫米
(2)面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃,
1平方千米=1000000平方米
1公頃=10000平方米,
1平方米=100平方分米,
1平方分米=100平方厘米
(3)體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米,
1立方分米=1000立方厘米,
1升=1000毫升
1立方分米=1升,
1立方厘米=1毫升
(4)質量單位及進率:噸、千克、公斤、克
1噸=1000千克,
1千克=1公斤,
1千克=1000克
(5)時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年,
1年=12個月
(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,閏年2月29天),
1天=24小時,
1小時=60分,
1分=60秒
四、 常用計算公式表
(1)長方形面積=長×寬,計算公式:S=a×b
(2)正方形面積=邊長×邊長,計算公式:S=a×a
(3)長方形周長=(長+寬)×2,計算公式:C=(a+b)×2
(4)正方形周長=邊長×4,計算公式:C=4a
(5)平行四邊形面積=底×高,計算公式:S=ah
(6)三角形面積=底×高÷2,計算公式:S=a×h÷2
(7)梯形面積=(上底+下底)×高÷2,計算公式:S=(a+b)×h÷2
(8)長方體體積=長×寬×高,計算公式:V=abh
(9)圓的面積=圓周率×半徑平方,計算公式:S=πr2
(10)正方體體積=棱長×棱長×棱長,計算公式:V=a3
(11)長方體和正方體的體積都可以寫成:底面積×高,計算公式:V=sh
(12)圓柱的體積=底面積×高,計算公式:V=sh
(13)圓錐的體積=底面積×高÷3,計算公式:V=s×h÷3
等底等高的圓柱體積是圓錐體積的3倍。