導航:首頁 > 小學全識 > 小學圖形與幾何知識點

小學圖形與幾何知識點

發布時間:2020-11-29 06:37:57

A. 初二數學幾何知識點歸納

重點:四邊形的有關概念及內角和定理.因為四邊形的有關概念及內角和定理是本章的基礎知識,對後繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩定性的理解和應用.在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限於我們現在研究的是平面圖形,所以在四邊形的定義中加上「在同一平面內」這個條件,這幾個字的意思學生不好理解,所以是難點。
1.使學生掌握四邊形的有關概念及四邊形的內角和定理;
2.通過引導學生觀察氣象站的實例,培養學生從具體事物中抽象出幾何圖形的能力;
3.通過推導四邊形內角和定理,對學生滲透化歸轉化的數學思想;
4.講解四邊形的有關概念時,聯系三角形的有關概念向學生滲透類比思想.
教學重點:
四邊形的內角和定理.
教學難點:
四邊形的概念
教學過程:
(一)復習
在小學里,我們學過長方形、正方形、平行四邊形和梯形的有關知識.請同學們回憶一下這些圖形的概念.找學生說出四種幾何圖形的概念,教師作評價.
(二)提出問題,引入新課
利用這些圖形的定義,你能在下圖中找出長方形、正方形、平行四邊形和梯形嗎?教師說完就打開多媒體課件.(先看畫面一)
問題:你能類比三角形的概念,說出四邊形的概念嗎?
(三)理解概念
1.四邊形:在平面內,由不在同一條直線的四條線段首尾順次相接組成的圖形叫做四邊形.
在定義中要強調「在同一平面內」這個條件,或為學生稍微說明一下.其次,要給學生講清楚「首尾」和「順次」的含義.
2.類比三角形的邊、頂點、內角、外角的概念,找學生答出四邊形的邊、頂點、內角、外交的概念.
3.四邊形的記法:對照圖形向學生講明四邊形的記法與三角形不同,表示四邊形必須按頂點的順序書寫,可以按順時針或逆時針的順序.
練習:課本124頁1、2題.
4.四邊形的分類:凸四邊形、凹四邊形(不必向學生講它的概念),只要學生會辨認一個四邊形是不是凸四邊形就可以了.
5.四邊形的對角線:
(四)四邊形的內角和定理
定理:四邊形的內角和等於 .
注意:在研究四邊形時,常常通過作它的對角線,把關於四邊形的問題化成關於三角形的問題來解決.
(五)應用、反思
例1 已知:如圖,直線 ,垂足為B, 直線 , 垂足為C.
求證:(1) ;(2)
證明:(1) (四邊形的內角和等於 ),

(2)
.
練習:
1.課本124頁3題.
2.如果四邊形有一個角是直角,另外三個角之比是1:3:6,那麼這三個角的度數分別是多少?
小結:
知識:四邊形的有關概念及其內角和定理.
能力:向學生滲透類比和轉化的思想方法.
作業: 課本130頁 2、3、4題.

B. 圖形與幾何知識點整理。

圖形於幾何包含:圖形的認識,圖形的運動,測量,圖形與位置。

圖形是指在二維空間中以內輪廓為界限的空間碎片,在一個二維空間中可以用輪廓劃分出若乾的空間形狀,圖形是空間的一部分,不具有空間的延展性,它是局限的可識別的形狀。圖容形區別於標記、標志與圖案,它既不是一種單純的符號,更不是單一以審美為目的的一種裝飾,而是在特定的思想意識支配下的某一個或多個視覺元素組合的一種蓄意的刻畫和表達形式。

C. 求關於初一數學幾何圖形的知識點

一、知識點回顧
1、幾何圖形
從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。
立體圖形:有些幾何圖形的各個部分不都在同一平面內,它們是立體圖形。
平面圖形:有些幾何圖形的各個部分都在同一平面內,它們是平面圖形。
2、點、線、面、體
(1)幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
(2)點動成線,線動成面,面動成體。
3、生活中的立體圖形
圓柱(圓柱的側面是曲面,底面是圓)

生活中的立體圖形 球 稜柱:三稜柱、四稜柱(長方體、正方體)、五稜柱、……
(稜柱的側面是若干個小長方形構成,底面是多邊形)
(按名稱分) 錐 圓錐(圓錐的側面是曲面,底面的圓)
棱錐(棱錐的側面是若干個三角形構成,底面是多邊形)

4、稜柱及其有關概念:
棱:在稜柱中,任何相鄰兩個面的交線,都叫做棱。
側棱:相鄰兩個側面的交線叫做側棱。
n稜柱有兩個底面,n個側面,共(n+2)個面;3n條棱,n條側棱;2n個頂點。
5、正方體的平面展開圖:11種

截一個正方體:用一個平面去截一個正方體,截出的面可能是三角形,四邊形,五邊形,六邊形。
可能出現的:銳角三角型、等邊、等腰三角形, 正方形、矩形、非矩形的平行四邊形、 非等腰梯形、 等腰梯形、
五邊形、六邊形、正六邊形
不可能出現:鈍角三角形、直角三角形、直角梯形、正五邊形、七邊形或更多邊形
8 三視圖
物體的三視圖指主視圖、俯視圖、左視圖。
主視圖:從正面看到的圖,叫做主視圖。
左視圖:從左面看到的圖,叫做左視圖。
俯視圖:從上面看到的圖,叫做俯視圖。
注意:從立體圖得到它的三視圖是唯一的,但從三視圖復原回它的立體圖卻不一定唯一。
9 多邊形:由一些不在同一條直線上的線段依次首尾相連組成的封閉平面圖形,叫做多邊形。
1.從一個n邊形的同一個頂點出發,分別連接這個頂點與其餘各頂點,可以把這個n邊形分割成(n-2)個三角形。
2.若用f表示正多面體的面數,e表示棱數,v表示頂點數,則有:f+v-e=2
弧:圓上A、B兩點之間的部分叫做弧。
扇形:由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫做扇形。

D. 圖形與幾何知識點整理

認識立體圖形
(1)幾何圖形:從實物中抽象出的各種圖形叫幾何圖形.幾何圖形分為立體圖形和平面圖形.
(2)立體圖形:有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一個平面內,這就是立體圖形.
(3)重點和難點突破:
結合實物,認識常見的立體圖形,如:長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等.能區分立體圖形與平面圖形,立體圖形佔有一定空間,各部分不都在同一平面內.
點、線、面、體
1)體與體相交成面,面與面相交成線,線與線相交成點.
(2)從運動的觀點來看 點動成線,線動成面,面動成體.點、線、面、體組成幾何圖形,點、線、面、體的運動組成了多姿多彩的圖形世界.
(3)從幾何的觀點來看 點是組成圖形的基本元素,線、面、體都是點的集合. (4)長方體、正方體、圓柱、圓錐、球、稜柱、棱錐等都是幾何體,幾何體簡稱體. (5)面有平面和曲面之分,如長方體由6個平面組成,球由一個曲面組成.
歐拉公式
(1)簡單多面體的頂點數V、面數F及棱數E間的關系為:V+F-E=2.這個公式叫歐拉公式.公式描述了簡單多面體頂點數、面數、棱數特有的規律. (2)V+F-E=X(P),V是多面體P的頂點個數,F是多面體P的面數,E是多面體P的棱的條數,X(P)是多面體P的歐拉示性數.
幾何體的表面積
(1) 幾何體的表面積=側面積+底面積(上、下底的面積和) (2) 常見的幾種幾何體的表面積的計算公式
①圓柱體表面積:2πR2+2πRh (R為圓柱體上下底圓半徑,h為圓柱體高)
②圓錐體表面積:πr2+nπ(h2+r2)360(r為圓錐體低圓半徑,h為其高,n為圓錐側面展開圖中扇形的圓心角)
③長方體表面積:2(ab+ah+bh) (a為長方體的長,b為長方體的寬,h為長方體的高) ④正方體表面積:6a2 (a為正方體棱長
認識平面圖形
(1)平面圖形: 一個圖形的各部分都在同一個平面內,如:線段、角、三角形、正方形、圓等. (2)重點難點突破:
通過以前學過的平面圖形:三角形、長方形、正方形、梯形、圓,了解它們的共性是在同一平面內.
幾何體的展開圖
(1)多數立體圖形是由平面圖形圍成的.沿著棱剪開就得到平面圖形,這樣的平面圖形就是相應立體圖形的展開圖.同一個立體圖形按不同的方式展開,得到的平面展開圖是不一樣的,同時也可看出,立體圖形的展開圖是平面圖形.
(2)常見幾何體的側面展開圖:
①圓柱的側面展開圖是長方形.②圓錐的側面展開圖是扇形.③正方體的側面展開圖是長方形.④三稜柱的側面展開圖是長方形.
(3)立體圖形的側面展開圖,體現了平面圖形與立體圖形的聯系.立體圖形問題可以轉化為平面圖形問題解決. 從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.
展開圖折疊成幾何提體
通過結合立體圖形與平面圖形的相互轉化,去理解和掌握幾何體的展開圖,要注意多從實物出發,然後再從給定的圖形中辨認它們能否折疊成給定的立體圖形 正方體相對兩個面上的文字

(1)對於此類問題一般方法是用紙按圖的樣子折疊後可以解決,或是在對展開圖理解的基礎上直接想像.
(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況後再認真確定哪兩個面的對面.
截一個幾何體
(1) 截面:用一個平面去截一個幾何體,截出的面叫做截面.
(2) 截面的形狀隨截法的不同而改變,一般為多邊形或圓,也可能是不規則圖形,一般的截面與幾何體的幾個
面相交就得到幾條交線,截面就是幾邊形,因此,若一個幾何體有幾個面,則截面最多為幾邊形
第二節 直線 射線 線段
直線 射線 線段 的表示
(1) 直線、射線、線段的表示方法
①直線:用一個小寫字母表示,如:直線l,或用兩個大些字母(直線上的)表示,如直線AB.
②射線:是直線的一部分,用一個小寫字母表示,如:射線l;用兩個大寫字母表示,端點在前,如:射線OA.注意:用兩個字母表示時,端點的字母放在前邊.
③線段:線段是直線的一部分,用一個小寫字母表示,如線段a;用兩個表示端點的字母表示,如:線段
AB(或線段BA).
(2) 點與直線的位置關系:①點經過直線,說明點在直線上;②點不經過直線,說明點在直線外
直線的性質
(1)直線公理:經過兩點有且只有一條直線. 簡稱:兩點確定一條直線. (2)經過一點的直線有無數條,過兩點就唯一確定,過三點就不一定了.
線段的性質
線段公理 兩點的所有連線中,可以有無數種連法,如折線、曲線、線段等,這些所有的線中,線段最短. 簡單說成: 兩點之間,線段最短.
兩點間的距離
(1) 兩點間的距離連接兩點間的線段的長度叫兩點間的距離.
(2) 平面上任意兩點間都有一定距離,它指的是連接這兩點的線段的長度,學習此概念時,注意強調最後的兩
個字「長度」,也就是說,它是一個量,有大小,區別於線段,線段是圖形.線段的長度才是兩點的距離.可以說畫線段,但不能說畫距離
比較線段的長短
(1)比較兩條線段長短的方法有兩種:度量比較法、重合比較法. 就結果而言有三種結果:AB>CD、AB=CD、AB<CD. (2)線段的中點:把一條線段分成兩條相等的線段的點. (3)線段的和、差、倍、分及計算
做一條線段等於已知線段,可以通過度量的方法,先量出已知線段的長度,再利用刻度尺畫條等於這個長度的線段,也可以利用圓規在射線上截取一條線段等於已知線段.
如圖,AC=BC,C為AB中點,AC=12AB,AB=2AC,D 為CB中點,則CD=DB=12CB=14AB,AB=4CD,這就是線段的和、差、倍、分.

第三節 角
一:角
(1)角的定義:有公共端點是兩條射線組成的圖形叫做角,其中這個公共端點是角的頂點,這兩條射線是角的兩條邊.
(2)角的表示方法:角可以用一個大寫字母表示,也可以用三個大寫字母表示.其中頂點字母要寫在中間,唯有在頂點處只有一個角的情況,才可用頂點處的一個字母來記這個角,否則分不清這個字母究竟表示哪個角.角還可以用一個希臘字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯數字(∠1,∠2…)表示.

(3)平角、周角:角也可以看作是由一條射線繞它的端點旋轉而形成的圖形,當始邊與終邊成一條直線時形成平角,當始 邊與終邊旋轉重合時,形成周角.
(4)角的度量:度、分、秒是常用的角的度量單位.1度=60分,即1°=60′,1分=60秒,即1′=60″.
鍾面角 (1)鍾面一周平均分60格,相鄰兩格刻度之間的時間間隔是1分鍾,時針1分鍾走112格,分針1分鍾走1格.鍾面上每一格的度數為360°÷12=30°.
(2)計算鍾面上時針與分針所成角的度數,一般先從鍾面上找出某一時刻分針與時針所處的位置,確定其夾角,再根據表面上每一格30°的規律,計算出分針與時針的夾角的度數.
(3)鍾面上的路程問題 分針:60分鍾轉一圈,每分鍾轉動的角度為:360°÷60=6° 時針:12小時轉一圈,每分鍾轉動的角度為:360°÷12÷60=0.5°. 方向角
(1)方位角是表示方向的角;以正北,正南方向為基準,來描述物體所處的方向.
(2)用方位角描述方向時,通常以正北或正南方向為角的始邊,以對象所處的射線為終邊,故描述方位角時,一般先敘述北或南,再敘述偏東或偏西.(注意幾個方向的角平分線按日常習慣,即東北,東南,西北,西南.) (3)畫方位角 以正南或正北方向作方位角的始邊,另一邊則表示對象所處的方向的射線.
二:角的比較與運算
度分秒的換 (1)度、分、秒是常用的角的度量單位.1度=60分,即1°=60′,1分=60秒,即1′=60″.
(2)具體換算可類比時鍾上的時、分、秒來說明角的度量單位度、分、秒之間也是60進制,將高級單位化為低級單位時,乘以60,反之,將低級單位轉化為高級單位時除以60.同時,在進行度、分、秒的運算時也應注意借位和進位的方法. 角平分線的定義
(1)角平分線的定義 從一個角的頂點出發,把這個角分成相等的兩個角的射線叫做這個角的平分線. (2)性質:若OC是∠AOB的平分線 則∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC. (3)平分角的方法有很多,如度量法、折疊法、尺規作圖法等,要注意積累,多動手實踐.

具體的地址 http://wenku..com/link?url=s_-UhjnnVY3dxyN-186kqfyWUbojHg0_cbJsjAHdPNBdF1s2XaLqqLO

E. 圖形與幾何知識點整理

A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。②面與面相交得線,線與線相交得點。③點動成線,線動成面,面動成體。
展開與折疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。②N稜柱就是底面圖形有N條邊的稜柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。②將線段向一個方向無限延長就形成了射線。射線只有一個端點。③將線段的兩端無限延長就形成了直線。直線沒有端點。④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。②一度的1/60是一分,一分的1/60是一秒。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角。③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。②經過直線外一點,有且只有一條直線與這條直線平行。③如果兩條直線都與第3條直線平行,那麼這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那麼這兩條直線互相垂直。②互相垂直的兩條直線的交點叫做垂足。③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
3、相交線與平行線
角:①如果兩個角的和是直角,那麼稱和兩個角互為餘角;如果兩個角的和是平角,那麼稱這兩個角互為補角。②同角或等角的餘角/補角相等。③對頂角相等。④同位角相等/內錯角相等/同旁內角互補,兩直線平行,反之亦然。
4、三角形
三角形:①由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。②三角形任意兩邊之和大於第三邊。三角形任意兩邊之差小於第三邊。③三角形三個內角的和等於180度。④三角形分銳角三角形/直角三角形/鈍角三角形。⑤直角三角形的兩個銳角互余。⑥三角形中一個內角的角平分線與他的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。⑦三角形中,連接一個頂點與他對邊中點的線段叫做這個三角形的中線。⑧三角形的三條角平分線交於一點,三條中線交於一點。⑨從三角形的一個頂點向他的對邊所在的直線作垂線,頂點和垂足之間的線段叫做三角形的高。⑩三角形的三條高所在的直線交於一點。
圖形的全等:全等圖形的形狀和大小都相同。兩個能夠重合的圖形叫全等圖形。
全等三角形:①全等三角形的對應邊/角相等。
②條件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形兩直角邊的平方和等於斜邊的平方,反之亦然。
5、四邊形
平行四邊形的性質:①兩組對邊分別平行的四邊形叫做平行四邊形。②平行四邊形不相鄰的兩個頂點連成的線段叫他的對角線。③平行四邊形的對邊/對角相等。④平行四邊形的對角線互相平分。
平行四邊形的判定條件:兩條對角線互相平分的四邊形、一組對邊平行且相等的四邊形、兩組對邊分別相等的四邊形/定義。
菱形:①一組鄰邊相等的平行四邊形是菱形。②領心的四條邊相等,兩條對角線互相垂直平分,每一組對角線平分一組對角。③判定條件:定義/對角線互相垂直的平行四邊形/四條邊都相等的四邊形。
矩形與正方形:①有一個內角是直角的平行四邊形叫做矩形。②矩形的對角線相等,四個角都是直角。③對角線相等的平行四邊形是矩形。④正方形具有平行四邊形,矩形,菱形的一切性質。⑤一組鄰邊相等的矩形是正方形。
梯形:①一組對邊平行而另一組對邊不平行的四邊形叫梯形。②兩條腰相等的梯形叫等腰梯形。③一條腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的兩個內角相等,對角線星等,反之亦然。
多邊形:①N邊形的內角和等於(N-2)180度。②多邊心內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的外角,在每個頂點處取這個多邊形的一個外角,他們的和叫做這個多邊形的內角和(都等於360度)
平面圖形的密鋪:三角形,四邊形和正六邊形可以密鋪。
中心對稱圖形:①在平面內,一個圖形繞某個點旋轉180度,如果旋轉前後的圖形互相重合,那麼這個圖形叫做中心對稱圖形,這個點叫做他的對稱中心。②中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
B、圖形與變換:
1、圖形的軸對稱
軸對稱:如果一個圖形沿一條直線折疊後,直線兩旁的部分能夠互相重合,那麼這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
軸對稱圖形:①角的平分線上的點到這個角的兩邊的距離相等。②線段垂直平分線上的點到這條線段兩個端點的距離相等。③等腰三角形的「三線合一」。
軸對稱的性質:對應點所連的線段被對稱軸垂直平分,對應線段/對應角相等。
2、圖形的平移和旋轉
平移:①在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。②經過平移,對應點所連的線段平行且相等,對應線段平行且相等,對應角相等。
旋轉:①在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。②經過旋轉,圖形商店每一個點都繞旋轉中心沿相同方向轉動了相同的角度,任意一對對應點與旋轉中心的連線所成的角都是旋轉角,對應點到旋轉中心的距離相等。
3、圖形的相似
比:①A/B=C/D,那麼AD=BC,反之亦然。②A/B=C/D,那麼A土B/B=C土D/D。③A/B=C/D=。。。=M/N,那麼A+C+…+M/B+D+…N=A/B。
黃金分割:點C把線段AB分成兩條線段AC與BC,如果AC/AB=BC/AC,那麼稱線段AB被點C黃金分割,點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比(根號5-1/2)。
相似:①各角對應相等,各邊對應成比例的兩個多邊形叫做相似多邊形。②相似多邊形對應邊的比叫做相似比。
相似三角形:①三角對應相等,三邊對應成比例的兩個三角形叫做相似三角形。②條件:AAA、SSS、SAS。
相似多邊形的性質:①相似三角形對應高,對應角平分線,對應中線的比都等於相似比。②相似多邊形的周長比等於相似比,面積比等於相似比的平方。
圖形的放大與縮小:①如果兩個圖形不僅是相似圖形,而且每組對應點所在的直線都經過同一個點,那麼這樣的兩個圖形叫做位似圖形,這個點叫做位似中心,這時的相似比又稱為位似比。②位似圖形上任意一對對應點到位似中心的距離之比等於位似比。
C、圖形的坐標
平面直角坐標系:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸與Y軸統稱坐標軸,他們的公共原點O稱為直角坐標系的原點。他們分4個象限。XA,YB記作(A,B)。
D、證明
定義與命題:①對名稱與術語的含義加以描述,作出明確的規定,也就是給出他們的定義。②對事情進行判斷的句子叫做命題(分真命題與假命題)。③每個命題是由條件和結論兩部分組成。④要說明一個命題是假命題,通常舉出一個離子,使之具備命題的條件,而不具有命題的結論,這種例子叫做反例。
公理:①公認的真命題叫做公理。②其他真命題的正確性都通過推理的方法證實,經過證明的真命題稱為定理。③同位角相等,兩直線平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁內角互補,兩直線平行,反之亦然;內錯角相等,兩直線平行,反之亦然;三角形三個內角的和等於180度;三角形的一個外交等於和他不相鄰的兩個內角的和;三角心的一個外角大於任何一個和他不相鄰的內角。④由一個公理或定理直接推出的定理,叫做這個公理或定理的推論。

F. 寫出數與代數、圖形與幾何、統計與概率的三大點 1.寫講的內容與知識點 2.舉事例 3.掌握情況 拜

初中數學教學內容分為數與代數,圖形與幾何,統計與概率,綜合與實踐四個部分。
2、數與代數的內容主要包括數的認識,數的表示,數的大小,數的運算,數量的估計、用字母表示數,代數式及其運算、方程、方程組、不等式、函數等。
3、「圖形與幾何」的主要內容有空間和平面基本圖形的認識,圖形的性質,分類和度量、 圖形的平移、旋轉、軸對稱、相似和投影、平面圖形基本性質的證明、運用坐標描述圖形的位置和運動。
4、「統計與概率」的主要內容有:收集、整理和描述數據,包括簡單抽樣、整理調查數據、繪制統計圖表等;處理數據,包括計算平均數、中位數、眾數、極差、方差等;從數據中提取信息並進行簡單的推斷;簡單隨機事件及其發生的概率。
5、「綜合與實踐」是一類以問題為載體、以學生自主參與為主的學習活動。在學習活動中,學生將綜合運用「數與代數」「圖形與幾何」「統計與概率」等知識和方法解決問題。「綜合與實踐」的教學活動應當保證每學期至少一次,可以在課堂上完成,也可以課內外相結合。

G. 初中數學幾何知識點

幾何知識點匯總:
第一部分:相交線與平行線
1、線段、直線的基本性質:2、角的分類:
3、平面內兩條直線的關系:
4、平行線的性質與判定:
第二部分:三角形
1、重要線段:中線、角平分線、高線、中位線:
2、三角形邊、角的性質:
3、三角形按邊、按角分類:
4、三角形中位線性質及應用:
5、等腰三角形的性質:
6、等腰三角形的判定:
7、直角三角形的性質:
8、直角三角形的判定:
第三部分:全等與相似
1、全等三角形的性質、判定:
2、直角三角形的判定:
3、相似三角形的性質、判定:
4、相似多邊形的性質與判定:
第四部分:四邊形
1、多邊形的內角和與外角和:
2、平行四邊形的定義、性質、判定:
3、平行四邊形的典型圖形與結論:
5、矩形的定義、性質、判定:
6、矩形的典型圖形與結論:
7、菱形的定義、性質、判定:
8、菱形的的典型圖形與結論:
9、正方形的的定義、性質、判定:
10、正方形的典型圖形與結論:
11、等腰梯形的定義、性質、判定:
12、等腰梯形的的典型圖形與結論:
13、順次連接各邊中點所成四邊形的形狀與原四邊形的關系:
14、常見四邊形的對稱特點:
第五部分: 圓
1、點與圓的位置關系:
2、垂徑定理:
3、圓心角的定義、性質定理:
4、圓周角的定義、性質定理:
5、確定圓的條件:
6、圓的對稱性:
7、直線和圓的位置關系:
8、切線的性質、判定:
9、切線長定理:
10、三角形的內心、外心的定義和確定方法:
11、圓與圓的位置關系:
12、正多邊形和圓:
13、弧長公式、扇形面積公式:
15、扇形與它圍成的圓錐的關系:
第六部分:視圖與投影
1、幾何體的截面的形狀:
2、小正方體的展開圖:
3、常見集幾何體的三視圖:
4、中心投影、平行投影、正投影:
第七部分:平移與旋轉
1、圖形平移的性質:
2、圖形旋轉的性質:
第八部分:解直角三角形
1、三種銳角函數的定義式:
2、三角函數的特殊值:
3、解直角三角形所需要的關系式及定理:
4、常見解直角三角形的應用:
5、測量物體高度的兩種主要方法:
第九部分:
(一)幾何模型
(二)解決問題的策略
1、利用特殊情形探索規律:
2、分情況討論:
3、將未知轉化為已知:
4、數與形相結合:
5、幾何與代數的綜合應用:

H. 小學圖形與幾何復習人教版知識點(教材全解)

(一)圖形的認識、測量

量的計量

一、長度單位是用來測量物體的長度的。常用的長度單位有:千米、米、分米、厘米、毫米。

二、長度單位:

1千米=1000米

1米=10分米

1分米=10厘米

1厘米=10毫米

1米=100厘米

1米=1000毫米

三、面積單位是用來測量物體的表面或平面圖形的大小的。常用面積單位:平方千米、公頃、平方米、平方分米、平方厘米。

四、測量和計算土地面積,通常用公頃作單位。邊長100米的正方形土地,面積是1公頃。

五、測量和計算大面積的土地,通常用平方千米作單位。邊長1000米的正方形土地,面積是1平方千米。

六、面積單位:(100)

1平方千米=100公頃

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

七、體積單位是用來測量物體所佔空間的大小的。常用的體積單位有:立方米、立方分米(升)、立方厘米(毫升)。

八、體積單位:(1000)

1立方米=1000立方分米

1立方分米=1000立方厘米

1升=1000毫升


平面圖形【認識、周長、面積】

一、用直尺把兩點連接起來,就得到一條線段;把線段的一端無限延長,可以得到一條射線;把線段的兩端無限延長,可以得到一條直線。線段、射線都是直線上的一部分。線段有兩個端點,長度是有限的;射線只有一個端點,直線沒有端點,射線和直線都是無限長的。

二、從一點引出兩條射線,就組成了一個角。角的大小與兩邊叉開的大小有關,與邊的長短無關。角的大小的計量單位是(°)。

三、角的分類:小於90度的角是銳角;等於90度的角是直角;大於90度小於180度的角是鈍角;等於180度的角是平角;等於360度的角是周角。

四、相交成直角的兩條直線互相垂直;在同一平面不相交的兩條直線互相平行。

五、三角形是由三條線段圍成的圖形。圍成三角形的每條線段叫做三角形的邊,每兩條線段的交點叫做三角形的頂點。

六、三角形按角分,可以分為銳角三角形、直角三角形和鈍角三角形。

按邊分,可以分為等邊三角形、等腰三角形和任意三角形。

七、三角形的內角和等於180度。

八、在一個三角形中,任意兩邊之和大於第三邊。

九、在一個三角形中,最多隻有一個直角或最多隻有一個鈍角。

十、四邊形是由四條邊圍成的圖形。常見的特殊四邊形有:平行四邊形、長方形、正方形、梯形。

十一、圓是一種曲線圖形。圓上的任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。通過圓心並且兩端都在圓的線段叫做圓的直徑。

十二、有一些圖形,把它沿著一條直線對折,直線兩側的圖形能夠完全重合,這樣的圖形就是軸對稱圖形。這條直線叫做對稱軸。

十三、圍成一個圖形的所有邊長的總和就是這個圖形的周長。

十四、物體的表面或圍成的平面圖形的大小,叫做它們的面積。

十五、平面圖形的面積計算公式推導:

【1】平行四邊形面積公式的推導過程

閱讀全文

與小學圖形與幾何知識點相關的資料

熱點內容
小學讀書計劃表格模板 瀏覽:342
小學語文四年級感嘆句 瀏覽:243
天通苑中山實驗小學 瀏覽:596
小學三年級語文補習班內容 瀏覽:921
吉安師范附屬小學作文 瀏覽:396
小學教師備課網站 瀏覽:1
私立美男學院 瀏覽:383
小學六年級上冊語文第六單元試卷涼州島 瀏覽:915
小學1年級手gong大全 瀏覽:459
小學生手抄報的圖片大全圖片大全 瀏覽:68
小學健康知識講座 瀏覽:120
小學畢業季適合發老師的句子 瀏覽:451
汕尾鳳山中心小學校長 瀏覽:606
小學生畢業匯演舞蹈 瀏覽:702
小學生抗擊疫情的表演 瀏覽:107
私立華聯大學本科 瀏覽:61
小學三年級作文我想謝謝你400 瀏覽:855
中小學生睡眠問題 瀏覽:174
小學生公共生活守規則教案 瀏覽:313
淮河私立學校 瀏覽:99