A. 等差數列知識點詳細分析
等差數列通項公式
如果一個等差數列的首項為a1,公差為d,那麼該等差數列第n項的表達式為:
an=a1+(n-1)*d
求和公式
若一個等差數列的首項為a1,末項為an那麼該等差數列和表達式為:
S=(a1+an)n÷2
即(首項+末項)×項數÷2
前n項和公式
注意:n是正整數(相當於n個等差中項之和)
等差數列前N項求和,實際就是梯形公式的妙用:
上底為:a1首項,下底為a1+(n-1)d,高為n。
即[a1+a1+(n-1)d]* n/2=a1 n+ n (n-1)d /2。
推論
一.從通項公式可以看出,a(n)是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由前n項和公式知,S(n)是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。
二. 從等差數列的定義、通項公式,前n項和公式還可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…
=a(k)+a(n-k+1),(類似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=...=p(k)+p(n-k+1)),k∈{1,2,…,n}
三.若m,n,p,q∈N*,且m+n=p+q,則有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=
(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差數列,等等。
若m+n=2p,則a(m)+a(n)=2*a(p)
(對3的證明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n)
p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因為m+n=p+q,所以p(m)+p(n)=p(p)+p
(q))
四.其他推論
① 和=(首項+末項)×項數÷2
(證明:s(n)=[n,n^2]*[1,1/2;0,1/2]*[b(0);b(1)]=n*b0+1/2*b1*n+1/2*b1*n^2
(p(1)+p(n))*n/2=(b(0)+b(1)+b(0)+b(1)*n)*n/2=n*b0+1/2*b1*n+1/2*b1*n^2=s(n))
證明原理見高斯演算法
項數=(末項-首項)÷公差+1
(證明:(p(n)-p(1))/b(1)+1=(b(0)+b(1)*n-(b(0)+b(1)))/b(1)+1=(b(1)*(n-1))/b(1)+1=n-1+1=n)
② 首項=2x和÷項數-首項或末項-公差×(項數-1)
③ 末項=2x和÷項數-首項
(以上2項為第一個推論的轉換)
④ 末項=首項+(項數-1)×公差
(上一項為第二個推論的轉換)
推論3證明
若m,n,p,q∈N*,且m+n=p+q,則有a(m)+a(n)=a(p)
+a(q)
如a(m)+a(n)=a(1)+(m-1)*d+a(1)+(n-1)*d
=2*a(1)+(m+n-2)*d
同理得,
a(p)+a(q)=2*a(1)+(p+q-2)*d
又因為
m+n=p+q ;
a(1),d均為常數
所以
若m,n,p,q∈N*,且m+n=p+q,則有a(m)+a(n)=a(p)+a(q)
若m,n,p∈N*,且m+n=2p,則有a(m)+a(n)=2a(p)
註:1.常數列不一定成立
2.m,p,q,n屬於自然數
⑤2(前2n項和-前n項和)=前n項和+前3n項和-前2n項和
等差中項
等差中項即等差數列頭尾兩項的和的一半.但求等差中項不一定要知道頭尾兩項.
等差數列中,等差中項一般設為A(r).當A(m),A(r),A(n)成等差數列時。
A(m)+A(n)=2×A(r),所以A(r)為A(m),A(n)的等差中項,且
為數列的平均數。並且可以推知n+m=2×r。
且任意兩項a(m),a(n)的關系為:a(n)=a(m)+(n-m)*d,(類似p(n)=p(m)+(n-m)*b(1),相當容易證明
它可以看作等差數列廣義的通項公式。
等差數列的應用日常生活中,人們常常用到等差數列如:在給各種產品的尺寸劃分級別
時,當其中的最大尺寸與最小尺寸相差不大時,常按等差數列進行分級。
若為等差數列,且有a(n)=m,a(m)=n.則a(m+n)=0。
B. 等差數列幾年級的知識點
高一的知識,在必修5第一章。
一般上學期後半段會學。
等差數列是從第二項起,每一項和前一項的差是固定的值。
C. 想學習等差數列的知識
一、 等差數列
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
等差數列的通項公式為:
an=a1+(n-1)d (1)
前n項和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均屬於正整數
從(1)式可以看出,an是n的一次數函(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項。
且任意兩項am,an的關系為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
從等差數列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
等差數列的應用:
日常生活中,人們常常用到等差數列如:在給各種產品的尺寸劃分級別
時,當其中的最大尺寸與最小尺寸相差不大時,常按等差數列進行分級。
若為等差數列,且有an=m,am=n.則a(m+n)=0。
3.等差數列的基本性質
⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若、為等差數列,則{ a ±b }與{ka +b}(k、b為非零常數)也是等差數列.
⑷對任何m、n ,在等差數列中有:a = a + (n-m)d,特別地,當m = 1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l + k + p + … = m + n + r + … (兩邊的自然數個數相等),那麼當為等差數列時,有:a + a + a + … = a + a + a + … .
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd( k為取出項數之差).
⑺如果是等差數列,公差為d,那麼,a ,a ,…,a 、a 也是等差數列,其公差為-d;在等差數列中,a -a = a -a = md .(其中m、k、 )
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a ,a ,a 為等差數列中的三項,且a 與a ,a 與a 的項距差之比 = ( ≠-1),則a = .
5.等差數列前n項和公式S 的基本性質
⑴數列為等差數列的充要條件是:數列的前n項和S 可以寫成S = an + bn的形式(其中a、b為常數).
⑵在等差數列中,當項數為2n (n N )時,S -S = nd, = ;當項數為(2n-1) (n )時,S -S = a , = .
⑶若數列為等差數列,則S ,S -S ,S -S ,…仍然成等差數列,公差為 .
⑷若兩個等差數列、的前n項和分別是S 、T (n為奇數),則 = .
⑸在等差數列中,S = a,S = b (n>m),則S = (a-b).
⑹等差數列中, 是n的一次函數,且點(n, )均在直線y = x + (a - )上.
⑺記等差數列的前n項和為S .①若a >0,公差d<0,則當a ≥0且a ≤0時,S 最大;②若a <0 ,公差d>0,則當a ≤0且a ≥0時,S 最小.
3.等比數列的基本性質
⑴公比為q的等比數列,從中取出等距離的項,構成一個新數列,此數列仍是等比數列,其公比為q ( m為等距離的項數之差).
⑵對任何m、n ,在等比數列中有:a = a · q ,特別地,當m = 1時,便得等比數列的通項公式,此式較等比數列的通項公式更具有普遍性.
⑶一般地,如果t ,k,p,…,m,n,r,…皆為自然數,且t + k,p,…,m + … = m + n + r + … (兩邊的自然數個數相等),那麼當為等比數列時,有:a .a .a .… = a .a .a .… ..
⑷若是公比為q的等比數列,則{| a |}、、、{ }也是等比數列,其公比分別為| q |}、、、{ }.
⑸如果是等比數列,公比為q,那麼,a ,a ,a ,…,a ,…是以q 為公比的等比數列.
⑹如果是等比數列,那麼對任意在n ,都有a ·a = a ·q >0.
⑺兩個等比數列各對應項的積組成的數列仍是等比數列,且公比等於這兩個數列的公比的積.
⑻當q>1且a >0或0<q<1且a <0時,等比數列為遞增數列;當a >0且0<q<1或a <0且q>1時,等比數列為遞減數列;當q = 1時,等比數列為常數列;當q<0時,等比數列為擺動數列.
4.等比數列前n項和公式S 的基本性質
⑴如果數列是公比為q 的等比數列,那麼,它的前n項和公式是S =
也就是說,公比為q的等比數列的前n項和公式是q的分段函數的一系列函數值,分段的界限是在q = 1處.因此,使用等比數列的前n項和公式,必須要弄清公比q是可能等於1還是必不等於1,如果q可能等於1,則需分q = 1和q≠1進行討論.
⑵當已知a ,q,n時,用公式S = ;當已知a ,q,a 時,用公式S = .
⑶若S 是以q為公比的等比數列,則有S = S +qS .⑵
⑷若數列為等比數列,則S ,S -S ,S -S ,…仍然成等比數列.
⑸若項數為3n的等比數列(q≠-1)前n項和與前n項積分別為S 與T ,次n項和與次n項積分別為S 與T ,最後n項和與n項積分別為S 與T ,則S ,S ,S 成等比數列,T ,T ,T 亦成等比數列
D. 等差數列,等比數列的基本知識
等差數列
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
通項公式
等差數列的通項公式為:an=a1+(n-1)d (1)
前n項和公式
前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2 (2)
以上n均屬於正整數。
推論
1.從(1)式可以看出,an是n的一次函數(d≠0)或常數函數(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函數(d≠0)或一次函數(d=0,a1≠0),且常數項為0。
2. 從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
3.若m,n,p,q∈N*,且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
4.其他推論
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
等差中項
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。
且任意兩項am,an的關系為:an=am+(n-m)d
它可以看作等差數列廣義的通項公式。 [編輯本段]二、等差數列的應用: 日常生活中,人們常常用到等差數列如:在給各種產品的尺寸劃分級別
時,當其中的最大尺寸與最小尺寸相差不大時,常按等差數列進行分級。
若為等差數列,且有an=m,am=n.則a(m+n)=0。
其實,中國古代南北朝的張丘建早已在《張丘建算經》提到等差數列了:
今有女子不善織布,逐日所織的布以同數遞減,初日織五尺,末一日織一尺,計織三十日,問共織幾何?
書中的解法是:並初、末日織布數,半之,余以乘織訖日數,即得。這相當於給出了Sn=(a1+an)/2×n的求和公式 [編輯本段]三、等差數列的基本性質 ⑴公差為d的等差數列,各項同加一數所得數列仍是等差數列,其公差仍為d.
⑵公差為d的等差數列,各項同乘以常數k所得數列仍是等差數列,其公差為kd.
⑶若、為等差數列,則{ a ±b }與{ka +b}(k、b為非零常數)也是等差數列.
⑷對任何m、n ,在等差數列中有:a = a + (n-m)d,特別地,當m = 1時,便得等差數列的通項公式,此式較等差數列的通項公式更具有一般性.
⑸、一般地,如果l,k,p,…,m,n,r,…皆為自然數,且l + k + p + … = m + n + r + … (兩邊的自然數個數相等),那麼當為等差數列時,有:a + a + a + … = a + a + a + … .
⑹公差為d的等差數列,從中取出等距離的項,構成一個新數列,此數列仍是等差數列,其公差為kd( k為取出項數之差).
⑺如果是等差數列,公差為d,那麼,a ,a ,…,a 、a 也是等差數列,其公差為-d;在等差數列中,a -a = a -a = md .(其中m、k、 )
⑻在等差數列中,從第一項起,每一項(有窮數列末項除外)都是它前後兩項的等差中項.
⑼當公差d>0時,等差數列中的數隨項數的增大而增大;當d<0時,等差數列中的數隨項數的減少而減小;d=0時,等差數列中的數等於一個常數.
⑽設a 1,a 2,a 3為等差數列中的三項,且a1 與a2 ,a 2與a 3的項距差之比 = d( d≠-1),則2a2 = a1+a3. [編輯本段]四、等差數列前n項和公式S 的基本性質 ⑴數列為等差數列的充要條件是:數列的前n項和S 可以寫成S = an + bn的形式(其中a、b為常數).
⑵在等差數列中,當項數為2n (n N )時,S -S = nd, = ;當項數為(2n-1) (n )時,S -S = a , = .
⑶若數列為等差數列,則S ,S -S ,S -S ,…仍然成等差數列,公差為 .
⑷若兩個等差數列、的前n項和分別是S 、T (n為奇數),則 = .
⑸在等差數列中,S = a,S = b (n>m),則S = (a-b).
⑹等差數列中, 是n的一次函數,且點(n, )均在直線y = x + (a - )上.
⑺記等差數列的前n項和為S .①若a >0,公差d<0,則當a ≥0且a ≤0時,S 最大;②若a <0 ,公差d>0,則當a ≤0且a ≥0時,S 最小. 等比數列 簡介與公式如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0)。
(1)等比數列的通項公式是:An=A1*q^(n-1)
若通項公式變形為an=a1/q*q^n(n∈N*),當q>0時,則可把an看作自變數n的函數,點(n,an)是曲線y=a1/q*q^x上的一群孤立的點。
(2)求和公式:Sn=nA1(q=1)
Sn=A1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q)
=(a1-an*q)/(1-q)
=a1/(1-q)-a1/(1-q)*q^n ( 即A-Aq^n)
(前提:q≠ 1)
任意兩項am,an的關系為an=am·q^(n-m)
(3)從等比數列的定義、通項公式、前n項和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底數後構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是「同構」的。
(5)無窮遞縮等比數列各項和公式:
無窮遞縮等比數列各項和公式:對於等比數列 的前n 項和,當n 無限增大時的極限,叫做這個無窮遞縮數列的各項和。 [編輯本段]性質①若 m、n、p、q∈N*,且m+n=p+q,則am*an=ap*aq;
②在等比數列中,依次每 k項之和仍成等比數列.
「G是a、b的等比中項」「G^2=ab(G≠0)」.
③若(an)是等比數列,公比為q1,(bn)也是等比數列,公比是q2,則
(a2n),(a3n)…是等比數列,公比為q1^2,q1^3…
(can),c是常數,(an*bn),(an/bn)是等比數列,公比為q1,q1q2,q1/q2。
(5) 等比數列前n項之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比數列中,首項A1與公比q都不為零.
注意:上述公式中A^n表示A的n次方。
(6)由於首項為a1,公比為q的等比數列的通向公式可以寫成an*q/a1=q^n,它的指數函數y=a^x有著密切的聯系,從而可以利用指數函數的性質來研究等比數列。
E. 小學常用的數學公式,如:等差數列,列項求和,等差數列,和奧數常用計算公式.求詳細分析.
數學基礎
一、小學數學幾何形體周長 面積 體積計算公式
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a.a= a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
二、單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分
1分=60秒 1時=3600秒
三、數量關系計算公式方面
1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
四、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
五、特殊問題
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
(2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
(3)如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題
(1)一般公式:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾
1÷單位時間能完成的幾分之幾=工作時間
F. 小學如何學習等差數列才能容易接受
給你講個故事吧可能對你有用:高斯是位小學二年級的學生,有一天他的數學老師因為事情已處理了一大半,雖然上課了,仍希望將其完成,因此打算出一題數學題目給學生練習,他的題目是:1+2+3+4+5+6+7+8+9+10=?,因為加法剛教不久,所以老師覺得出了這題,學生肯定是要算蠻久的,才有可能算出來,也就可以藉此利用這段時間來處理未完的事情,但是才一轉眼的時間,高斯已停下了筆,閑閑地坐在那裡,老師看到了很生氣的訓斥高斯,但是高斯卻說他已經將答案算出來了,就是55,老師聽了下了一跳,就問高斯如何算出來的,高斯答道,我只是發現1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和還是11,又11+11+11+11+11=55,我就是這么算的。 高斯長大後,成為一位很偉大的數學家。 高斯小的時候能將難題變成簡易,當然資質是很大的因素,但是他懂得觀察,尋求規則,化難為簡,卻是值得我們學習與效法的。