❶ 小學奧數中哪些知識點(如整除,行程問題,年齡問題等)與初中奧數或競賽聯系比較大
都有聯系,不過比那難一點而已,其實也說不上難,只是給出的條件更多一點,有時候需要用到初中的知識來回答。
比如要用到:方程組,幾何定理等一些知識。
謝謝。
❷ 小學生奧數知識點總結
(實在沒有找到例題,不好意思。但我看了很多的知識點,這是比較好的一個)
小學奧數理論知識總結
1、和差倍問題
2、年齡問題的三個基本特徵:
①兩個人的年齡差是不變的;
②兩個人的年齡是同時增加或者同時減少的;
③兩個人的年齡的倍數是發生變化的;
3、歸一問題的基本特點
問題中有一個不變的量,一般是那個「單一量」,題目一般用「照這樣的速度」……等詞語來表示。
關鍵問題:根據題目中的條件確定並求出單一量;
4、植樹問題
5、雞兔同籠問題
基本概念:雞兔同籠問題又稱為置換問題、假設問題,就是把假設錯的那部分置換出來;
基本思路:
①假設,即假設某種現象存在(甲和乙一樣或者乙和甲一樣):
②假設後,發生了和題目條件不同的差,找出這個差是多少;
③每個事物造成的差是固定的,從而找出出現這個差的原因;
④再根據這兩個差作適當的調整,消去出現的差。
基本公式:
①把所有雞假設成兔子:雞數=(兔腳數×總頭數-總腳數)÷(兔腳數-雞腳數)
②把所有兔子假設成雞:兔數=(總腳數一雞腳數×總頭數)÷(兔腳數一雞腳數)
關鍵問題:找出總量的差與單位量的差。
6、盈虧問題
基本概念:一定量的對象,按照某種標准分組,產生一種結果:按照另一種標准分組,又產生一種結果,由於分組的標准不同,造成結果的差異,由它們的關系求對象分組的組數或對象的總量、
基本思路:先將兩種分配方案進行比較,分析由於標準的差異造成結果的變化,根據這個關系求出參加分配的總份數,然後根據題意求出對象的總量、
基本題型:
①一次有餘數,另一次不足;
基本公式:總份數=(余數+不足數)÷兩次每份數的差
②當兩次都有餘數;
基本公式:總份數=(較大余數一較小余數)÷兩次每份數的差
③當兩次都不足;
基本公式:總份數=(較大不足數一較小不足數)÷兩次每份數的差
基本特點:對象總量和總的組數是不變的。
關鍵問題:確定對象總量和總的組數。
7、牛吃草問題
基本思路:假設每頭牛吃草的速度為「1」份,根據兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長速度和總草量。
基本特點:原草量和新草生長速度是不變的;
關鍵問題:確定兩個不變的量。
基本公式:
生長量=(較長時間×長時間牛頭數-較短時間×短時間牛頭數)÷(長時間-短時間);
總草量=較長時間×長時間牛頭數-較長時間×生長量;
8、周期循環與數表規律
周期現象:事物在運動變化的過程中,某些特徵有規律循環出現。
周期:我們把連續兩次出現所經過的時間叫周期。
關鍵問題:確定循環周期。
閏 年:一年有366天;
①年份能被4整除;②如果年份能被100整除,則年份必須能被400整除;
平 年:一年有365天。
①年份不能被4整除;②如果年份能被100整除,但不能被400整除;
9、平均數
基本公式:①平均數=總數量÷總份數
總數量=平均數×總份數
總份數=總數量÷平均數
②平均數=基準數+每一個數與基準數差的和÷總份數
基本演算法:
①求出總數量以及總份數,利用基本公式①進行計算.
②基準數法:根據給出的數之間的關系,確定一個基準數;一般選與所有數比較接近的數或者中間數為基準數;以基準數為標准,求所有給出數與基準數的差;再求出所有差的和;再求出這些差的平均數;最後求這個差的平均數和基準數的和,就是所求的平均數,具體關系見基本公式②。
10、抽屜原理
抽屜原則一:如果把(n+1)個物體放在n個抽屜里,那麼必有一個抽屜中至少放有2個物體。
例:把4個物體放在3個抽屜里,也就是把4分解成三個整數的和,那麼就有以下四種情況:
①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1
觀察上面四種放物體的方式,我們會發現一個共同特點:總有那麼一個抽屜里有2個或多於2個物體,也就是說必有一個抽屜中至少放有2個物體。
抽屜原則二:如果把n個物體放在m個抽屜里,其中n>m,那麼必有一個抽屜至少有:
①k=[n/m ]+1個物體:當n不能被m整除時。
②k=n/m個物體:當n能被m整除時。
理解知識點:[X]表示不超過X的最大整數。
例[4.351]=4;[0.321]=0;[2.9999]=2;
關鍵問題:構造物體和抽屜。也就是找到代表物體和抽屜的量,而後依據抽屜原則進行運算。
❸ 初中數學知識點總結
很多的學生到了初中之後,發現自己的分數會有一定的下降,這可能是由於上初中之後數學科目的難度加大,所以分數會有一定的降低,那麼初中數學應該怎樣學?應該使用什麼方式哪?
知識點
當老師在講完內容之後會講一些課外的內容,一般是定理、概念等等,會讓你對這些知識更加的了解,所以如果對這類題目有問題的同學可以多看一些課外的題目,當然想要提升分數是離不開練習題的,想要多好就需要多做一些習題,但是不可以過多,需要邊做邊思考才可以,這樣所學的知識就會運用出來.
以上就是初中數學應該怎樣學習的內容,如果在這個階段對自己分數不滿意的同學可以借鑒一下以上的內容,或許會對你有一定的幫助,將自身的分數提升.
❹ 小學升初中數學都考哪些知識點
老師講的
❺ 小學奧數的十七個知識點是哪十七個
http://www.shuxueweb.com/aoshu/Index.html
❻ 小學奧數涉及的初中還是高中的知識
現在一般的話是考初中的知識,當然也會涉及到高中的知識。
希望對你有用,祝你學習進步!
❼ 小學數學到初中有什麼不同,知識點或者方法或者學習思路這些角度,可以一起談
升入初中後,面臨著諸如環境、學習方法和學習科目設置的不同,要學會針對小學和初中幾個方面的不同做好調整,盡快適應初中的生活,才能學好.學習方法:從傳授性到理解性學會:多提問、多思考、多總結進入初中以後,學生的學習由直觀的、感性的、零碎的知識點變成了更為完整、系統的知識體系,並更加突出能力要求.因此就要求學生在學習方法上相應做出調整.小學生的學習主要是眼看、手寫、記住,而到了初中,要求學生對知識充分理解,並學會用思維去分析這些知識點.由於小學本身知識量少且時間充裕,所以小學老師的教學進度較慢,講解也更詳細具體.但初中科目增多,每個老師的講課時間都是規定好的,老師必然要改變授課方式.因此,要培養多提問、多思考、多總結的學習習慣.學習要求:從指令性到計劃性學會:學會預習,提高學習主動性從小學升入初中,對學生的學習要求也有很大的不同.小學階段的學習主要依賴老師的安排,學生只要完成寫字、造句、背課文這些老師下達的簡單「學習指令」就行.但初中則要求學生自覺主動並且有計劃地學習.一般的學生只是單純完成學校和老師交給的作業就覺得完成了學習任務,而優秀的學生基本上都有預習課本的學習習慣.從小學升入初中要求學生的學習態度實現從「要我學」到「我要學」的轉變.學習行為:從隨意性到目標性學會:做一周學習安排進入初中以後,由於學習內容和學科的變化,原先的學習方法和習慣要隨之改變.原本可能通過短計劃就能實現的學習任務和目標,到了初中之後則要求學生有一個「長安排」的計劃,才能實現.學習時間:從短時性到長時性現在小學生的學習時間安排基本上是「4+2」,即在學校花4個小時學習,在家裡花2個小時學習.而升到初中後,學習時間就要變成「8+4」.到校時間提前了,下課時間又推遲了.學習內容不同:從單純性到多樣化學會:別偏科,多看看基礎科學小學和初中面臨的任務和學科學習的內容差異很大.總體來看,小學的課堂教學容量小,作業量小,注重基礎知識的學習和鞏固,主要是語文、數學和英語三大學科的學習.到了初中,多出了物理、化學、生物、歷史、地理等幾大學科,而且知識系統性比較強,需要課後花時間去消化,不然很容易導致成績下降.
❽ 小學奧數有哪些知識點
16.約數與倍數
約數和倍數:若整數a能夠被b整除,a叫做b的倍數,b就叫做a的約數。
公約數:幾個數公有的約數,叫做這幾個數的公約數;其中最大的一個,叫做這幾個數的最大公約數。
最大公約數的性質:
1、 幾個數都除以它們的最大公約數,所得的幾個商是互質數。
2、 幾個數的最大公約數都是這幾個數的約數。
3、 幾個數的公約數,都是這幾個數的最大公約數的約數。
4、 幾個數都乘以一個自然數m,所得的積的最大公約數等於這幾個數的最大公約數乘以m。
例如:12的約數有1、2、3、4、6、12;
18的約數有:1、2、3、6、9、18;
那麼12和18的公約數有:1、2、3、6;
那麼12和18最大的公約數是:6,記作(12,18)=6;
求最大公約數基本方法:
1、分解質因數法:先分解質因數,然後把相同的因數連乘起來。
2、短除法:先找公有的約數,然後相乘。
3、輾轉相除法:每一次都用除數和余數相除,能夠整除的那個余數,就是所求的最大公約數。
公倍數:幾個數公有的倍數,叫做這幾個數的公倍數;其中最小的一個,叫做這幾個數的最小公倍數。
12的倍數有:12、24、36、48……;
18的倍數有:18、36、54、72……;
那麼12和18的公倍數有:36、72、108……;
那麼12和18最小的公倍數是36,記作[12,18]=36;
最小公倍數的性質:
1、兩個數的任意公倍數都是它們最小公倍數的倍數。
2、兩個數最大公約數與最小公倍數的乘積等於這兩個數的乘積。
求最小公倍數基本方法:1、短除法求最小公倍數;2、分解質因數的方法
17.數的整除
一、基本概念和符號:
1、整除:如果一個整數a,除以一個自然數b,得到一個整數商c,而且沒有餘數,那麼叫做a能被b整除或b能整除a,記作b|a。
2、常用符號:整除符號「|」,不能整除符號「」;因為符號「∵」,所以的符號「∴」;
二、整除判斷方法:
1. 能被2、5整除:末位上的數字能被2、5整除。
2. 能被4、25整除:末兩位的數字所組成的數能被4、25整除。
3. 能被8、125整除:末三位的數字所組成的數能被8、125整除。
4. 能被3、9整除:各個數位上數字的和能被3、9整除。
5. 能被7整除:
①末三位上數字所組成的數與末三位以前的數字所組成數之差能被7整除。
②逐次去掉最後一位數字並減去末位數字的2倍後能被7整除。
6. 能被11整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被11整除。
②奇數位上的數字和與偶數位數的數字和的差能被11整除。
③逐次去掉最後一位數字並減去末位數字後能被11整除。
7. 能被13整除:
①末三位上數字所組成的數與末三位以前的數字所組成的數之差能被13整除。
②逐次去掉最後一位數字並減去末位數字的9倍後能被13整除。
三、整除的性質:
1. 如果a、b能被c整除,那麼(a+b)與(a-b)也能被c整除。
2. 如果a能被b整除,c是整數,那麼a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那麼a也能被c整除。
4. 如果a能被b、c整除,那麼a也能被b和c的最小公倍數整除。
18.余數及其應用
基本概念:對任意自然數a、b、q、r,如果使得a÷b=q……r,且0< p>
余數的性質:
①余數小於除數。
②若a、b除以c的余數相同,則c|a-b或c|b-a。
③a與b的和除以c的余數等於a除以c的余數加上b除以c的余數的和除以c的余數。
④a與b的積除以c的余數等於a除以c的余數與b除以c的余數的積除以c的余數。
19.余數、同餘與周期
一、同餘的定義:
①若兩個整數a、b除以m的余數相同,則稱a、b對於模m同餘。
②已知三個整數a、b、m,如果m|a-b,就稱a、b對於模m同餘,記作a≡b(mod m),讀作a同餘於b模m。
二、同餘的性質:
①自身性:a≡a(mod m);
②對稱性:若a≡b(mod m),則b≡a(mod m);
③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關於乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除後的余數特徵:
①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);
②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1≡1(mod p)。
20.分數與百分數的應用
基本概念與性質:
分數:把單位「1」平均分成幾份,表示這樣的一份或幾份的數。
分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。
分數單位:把單位「1」平均分成幾份,表示這樣一份的數。
百分數:表示一個數是另一個數百分之幾的數。
常用方法:
①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。
②對應思維方法:找出題目中具體的量與它所佔的率的直接對應關系。
③轉化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數關系;把不同的標准(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標准為一倍量。
④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然後再進行調整,求出最後結果。
⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發生變化,總量不變。B、總量發生變化,但其中有的分量不變。C、總量和分量都發生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規律進行處理。
⑧濃度配比法:一般應用於總量和分量都發生變化的狀況。
21.分數大小的比較
基本方法:
①通分分子法:使所有分數的分子相同,根據同分子分數大小和分母的關系比較。
②通分分母法:使所有分數的分母相同,根據同分母分數大小和分子的關系比較。
③基準數法:確定一個標准,使所有的分數都和它進行比較。
④分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數值越大。
⑤倍率比較法:當比較兩個分子或分母同時變化時分數的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數的大小。(具體運用見同倍率變化規律)
⑥轉化比較方法:把所有分數轉化成小數(求出分數的值)後進行比較。
⑦倍數比較法:用一個數除以另一個數,結果得數和1進行比較。
⑧大小比較法:用一個分數減去另一個分數,得出的數和0比較。
⑨倒數比較法:利用倒數比較大小,然後確定原數的大小。
⑩基準數比較法:確定一個基準數,每一個數與基準數比較。
22.分數拆分
一、 將一個分數單位分解成兩個分數之和的公式:
① =+;
②=+(d為自然數);
23.完全平方數
完全平方數特徵:
1. 末位數字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3餘0或餘1;反之不成立。
3. 除以4餘0或餘1;反之不成立。
4. 約數個數為奇數;反之成立。
5. 奇數的平方的十位數字為偶數;反之不成立。
6. 奇數平方個位數字是奇數;偶數平方個位數字是偶數。
7. 兩個相臨整數的平方之間不可能再有平方數。
平方差公式:X2-Y2=(X-Y)(X+Y)
完全平方和公式:(X+Y)2=X2+2XY+Y2
完全平方差公式:(X-Y)2=X2-2XY+Y2
24.比和比例
比:兩個數相除又叫兩個數的比。比號前面的數叫比的前項,比號後面的數叫比的後項。
比值:比的前項除以後項的商,叫做比值。
比的性質:比的前項和後項同時乘以或除以相同的數(零除外),比值不變。
比例:表示兩個比相等的式子叫做比例。a:b=c:d或
比例的性質:兩個外項積等於兩個內項積(交叉相乘),ad=bc。
正比例:若A擴大或縮小幾倍,B也擴大或縮小幾倍(AB的商不變時),則A與B成正比。
反比例:若A擴大或縮小幾倍,B也縮小或擴大幾倍(AB的積不變時),則A與B成反比。
比例尺:圖上距離與實際距離的比叫做比例尺。
按比例分配:把幾個數按一定比例分成幾份,叫按比例分配。
25.綜合行程
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、路程三者之間的關系.
基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間
關鍵問題:確定運動過程中的位置和方向。
相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)
追及問題:追及時間=路程差÷速度差(寫出其他公式)
流水問題:順水行程=(船速+水速)×順水時間
逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速
逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2
水 速=(順水速度-逆水速度)÷2
流水問題:關鍵是確定物體所運動的速度,參照以上公式。
過橋問題:關鍵是確定物體所運動的路程,參照以上公式。
主要方法:畫線段圖法
基本題型:已知路程(相遇路程、追及路程)、時間(相遇時間、追及時間)、速度(速度和、速度差)中任意兩個量,求第三個量。
26.工程問題
基本公式:
①工作總量=工作效率×工作時間
②工作效率=工作總量÷工作時間
③工作時間=工作總量÷工作效率
基本思路:
①假設工作總量為「1」(和總工作量無關);
②假設一個方便的數為工作總量(一般是它們完成工作總量所用時間的最小公倍數),利用上述三個基本關系,可以簡單地表示出工作效率及工作時間.
關鍵問題:確定工作量、工作時間、工作效率間的兩兩對應關系。
經驗簡評:合久必分,分久必合。
27.邏輯推理
基本方法簡介:
①條件分析—假設法:假設可能情況中的一種成立,然後按照這個假設去判斷,如果有與題設條件矛盾的情況,說明該假設情況是不成立的,那麼與他的相反情況是成立的。例如,假設a是偶數成立,在判斷過程中出現了矛盾,那麼a一定是奇數。
②條件分析—列表法:當題設條件比較多,需要多次假設才能完成時,就需要進行列表來輔助分析。列表法就是把題設的條件全部表示在一個長方形表格中,表格的行、列分別表示不同的對象與情況,觀察表格內的題設情況,運用邏輯規律進行判斷。
③條件分析——圖表法:當兩個對象之間只有兩種關系時,就可用連線表示兩個對象之間的關系,有連線則表示「是,有」等肯定的狀態,沒有連線則表示否定的狀態。例如A和B兩人之間有認識或不認識兩種狀態,有連線表示認識,沒有表示不認識。
④邏輯計算:在推理的過程中除了要進行條件分析的推理之外,還要進行相應的計算,根據計算的結果為推理提供一個新的判斷篩選條件。
⑤簡單歸納與推理:根據題目提供的特徵和數據,分析其中存在的規律和方法,並從特殊情況推廣到一般情況,並遞推出相關的關系式,從而得到問題的解決。
28.幾何面積
基本思路:
在一些面積的計算上,不能直接運用公式的情況下,一般需要對圖形進行割補,平移、旋轉、翻折、分解、變形、重疊等,使不規則的圖形變為規則的圖形進行計算;另外需要掌握和記憶一些常規的面積規律。
常用方法:
1. 連輔助線方法
2. 利用等底等高的兩個三角形面積相等。
3. 大膽假設(有些點的設置題目中說的是任意點,解題時可把任意點設置在特殊位置上)。
4. 利用特殊規律
①等腰直角三角形,已知任意一條邊都可求出面積。(斜邊的平方除以4等於等腰直角三角形的面積)
②梯形對角線連線後,兩腰部分面積相等。
③圓的面積占外接正方形面積的78.5%。
29.立體圖形
名稱 圖形 特徵 表面積 體積
長
方
體 8個頂點;6個面;相對的面相等;12條棱;相對的棱相等; S=2(ab+ah+bh) V=abh
=Sh
正
方
體 8個頂點;6個面;所有面相等;12條棱;所有棱相等; S=6a2 V=a3
圓
柱
體 上下兩底是平行且相等的圓;側面展開後是長方形; S=S側+2S底
S側=Ch V=Sh
圓
錐
體 下底是圓;只有一個頂點;l:母線,頂點到底圓周上任意一點的距離; S=S側+S底
S側=rl V=Sh
球
體 圓心到圓周上任意一點的距離是球的半徑。 S=4r2 V=r3
30.時鍾問題—快慢表問題
基本思路:
1、 按照行程問題中的思維方法解題;
2、 不同的表當成速度不同的運動物體;
3、 路程的單位是分格(表一周為60分格);
4、 時間是標准表所經過的時間;
合理利用行程問題中的比例關系;
❾ 小學升初中的數學知識點
全國小升初是小學生升入初中生的簡稱。按照中國義務教育政策與相關法律法規,小學升入初中就讀是不需要升學考試的,大多為免試就近入學,但是民辦初中和部分公辦重點初中依然舉辦小升初的升學選拔性考試。小升初考試的組織形式小升初考試大體可以總結為兩種主要形式,即筆試和面試。其中筆試考查主要是數學和語文兩個科目,一般來說每科平均考試時間為60分鍾。小升初考試是由各個學校半公開組織 的選拔性考試,因此它具有不穩定性和多樣性(各學校考試時間不一樣,出題角度不同)。針對這樣的特性,目前的社會上呈現出眾多紛繁復雜的應考策略。很多家長的文章中也把小升初簡寫為:xsc。考試形式其中筆試考查主要是語文和數學兩個科目。題目來源是所在中學初二上學期或初一下學期的期末考試題;重點從語法和閱讀理解兩個方面來測試學生。考試時間最長為二十分鍾,最短為五六分鍾。小升初考試是由各個學校半公開組織的選拔性考試。因此它具有不穩定性和多樣性。針對這樣的特性,在此我想就這一角度入手談談小升初考試的誤區。小升初不僅是考試,更應注重知識的實用性。說明:小升初考試內容屬於地方教委入學政策,全國各地考試政策不盡相同,需要查詢具體學校相關規定;小升初免試就近入學,單校劃片學校,用對口直升方式招生;多校劃片學校,按隨機派位等方式招生。公辦、民辦學校均不得採取考試方式選拔學生;逐步減少特長招生,到2016年特長生比例降到5%以內;公辦學校不得以各類競賽證書或考級證明作為招生入學依據。