① 求一個小學數學公式大全
1 、每份數×份數=總數 總數÷每份數=份數 總數÷份數=每份數
2 、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數 幾倍數÷倍數=1倍數
3 、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4 、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5 、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6 、加數+加數=和 和-一個加數=另一個加數
7 、被減數-減數=差 被減數-差=減數 差+減數=被減數
8 、因數×因數=積 積÷一個因數=另一個因數
9 、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
1 、正方形
C周長 S面積 a邊長 周長=邊長× 4 C=4a
面積=邊長×邊長 S=a×a
表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長 周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高 (1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5 、三角形
s面積 a底 h高 面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6 、平行四邊形
s面積 a底 h高 面積=底×高 s=ah
7 、 梯形
s面積 a上底 b下底 h高 面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑 C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 、圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高 (2)表面積=側面積+底面積×2 (3)體積=底面積×高 (4)體積=側面積÷2×半徑
10 、圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3 總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數 (和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數 小數×倍數=大數 (或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數 小數×倍數=大數 (或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼: 株數=段數+1=全長÷株距-1 全長=株距×(株數-1) 株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1 全長=株距×(株數+1) 株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距 全長=株距×株數 株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數 (大盈-小盈)÷兩次分配量之差=參加分配的份數 (大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間 相遇時間=相遇路程÷速度和 速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間 追及時間=追及距離÷速度差 速度差=追及距離÷追及時間
濃度問題
溶質的重量+溶劑的重量=溶液的重量 溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量 溶質的重量÷濃度=溶液的重量
--------------------------------------------------------------------------------
奧數網每周專題訓練(四)
1、甲、乙兩車分別從A、B兩地出發相向而行。出發時,甲、乙的速度比是5:4,相遇後,甲的速度減少20%,乙的速度增加20%,這樣,當甲到達B地時,乙離A地還有10千米。那麼A、B兩地相距___千米。
【解】甲、乙原來的速度比是5:4,相遇後的速度比是
5×(1-20%):4×(1+20%)=4:4.8=5:6。
相遇時,甲、分別走了全程的 和 。
A、B兩地相距10÷( - × )=450(千米)
2、早晨8點多鍾有兩輛汽車先後離開化肥廠向幸福村開去。兩輛車的速度都是每小時60千米。8點32分的時候,第一輛汽車離開化肥廠的距離是第二輛汽車的三倍。到了8 點39分的時候,第一輛汽車離開化肥廠的距離是第二輛汽車的2倍。那麼,第一輛汽車是8點幾分離開化肥廠的?
【解】39-32=7,這7分鍾每輛行駛的距離恰好等於第二輛車在8點32分行過的距離的1(=3-2)倍,因此第一輛車在8點32分已行了7×3=21(分),它是8點11分離開化肥廠的(32-21=11)
註:本題結論與兩車的速度大小無關,只要它們的速度相同,答案都是8點11分。
3、甲、乙兩車都從A地出發經過B地駛往C地,A、B兩地的距離等於B、C兩地的距離。乙車的速度是甲車速度的80%。已知乙車比甲車早出發11分鍾,但在B地停留了7分鍾;甲則不住地駛往C地。最後乙車比甲車遲4分鍾到達C地。那麼,乙車出發後____分鍾時,甲車就超過乙車。
【解】從A地到C地,不考慮中途停留,乙車比甲車多用時8分鍾.最後甲比乙早到4分鍾,
所以甲車在中點B超過乙.甲車行全程所用時間是乙所用時間的80%,所以乙行全程用
8÷(1-80%)=40(分鍾) 甲行全程用40-8=32(分鍾)
甲行到B用32÷2=16(分鍾)
即在乙出發後11+16=27(分鍾)甲車超過乙車
4、鐵路旁的一條平等小路上,有一行人與一騎車人同時向南行進,行人速度為3.6千米/小時,騎車人速度為10.8千米/小時。這時,有一列火車從他們背後開過來,火車通過行人用22秒鍾,通過騎車人用26秒鍾。這列火車的車身總長是____(①22米②56米③781米④286米⑤308米)
【解】設這列火車的速度為x米/秒,又知行人速度為1米/秒,騎車人速度為3米/秒。依題意,這列火車的車身長度是
(x-1)×22=(x-3)×26 化簡得4 x=56,即x=14(米/秒) 所以火車的車身總長是(14-1)×22=286(米),故選④。
6、某司機開車從A城到B城。如果按原定速度前進,可准時到達。當路程走了一半時,司機發現前一半路程中,實際平均速度只可達到原定速度的11/13 。現在司機想准時到達B城,在後一半的行程中,實際平均速度與原速度的比是_______。
【解】前一半路程用的時間是原定的 ,多用了 -1= 。要起准時到達,後一半路程只能用原定時間的1- = ,所以後一半行程的速度是原定速度的 ,即11:9
7、甲、乙兩輛汽車分別從A、B兩站同時出發,相向而行,第一次相遇在距A站28千米處,相遇後兩車繼續行進,各自到達B、A兩站後,立即沿原路返回,第二次相遇在距A站60千米處。A、B兩站間的路程是___千米。
【解】甲、乙第一次相遇在C處,此時,甲、乙所行路程之和等於A、B間的距離。
甲、乙第二次相遇在D處,乙由C到A再沿反方向行到D,共走60+28=88(千米),甲由C到B再沿反方向行到D。此時,甲、乙所行路程之和等於A、B間的距離的2倍,於是第二次之和等於A、B間的距離的2倍,甲、乙所走的路程也分別是第一次相遇時各自所行路程的2倍。這樣,第一次相遇時乙所行路程BC=88÷2=44(千米)。從而AB=28+44=72(千米)
② 小學數學公式大全(全)
嗯。找到了!
1
每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2
1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3
速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4
單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5
工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6
加數+加數=和
和-一個加數=另一個加數
7
被減數-減數=差
被減數-差=減數
差+減數=被減數
8
因數×因數=積
積÷一個因數=另一個因數
9
被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1
正方形
C周長
S面積
a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2
正方體
V:體積
a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3
長方形
C周長
S面積
a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4
長方體
V:體積
s:面積
a:長
b:
寬
h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5
三角形
s面積
a底
h高
面積=底×高÷2
s=ah÷2
三角形高=面積
×2÷底
三角形底=面積
×2÷高
6
平行四邊形
s面積
a底
h高
面積=底×高
s=ah
7
梯形
s面積
a上底
b下底
h高
面積=(上底+下底)×高÷2
s=(a+b)×
h÷2
8
圓形
S面積
C周長
∏
d=直徑
r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9
圓柱體
v:體積
h:高
s;底面積
r:底面半徑
c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10
圓錐體
v:體積
h:高
s;底面積
r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者
和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或
小數+差=大數)
植樹問題
1
非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2
封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
③ 小學數學公式大全
小學數學公式大全
一、小學數學幾何形體周長 面積 體積計算公式
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a×a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr^2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr^2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
二、單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分
1分=60秒 1時=3600秒
三、數量關系計算公式方面
1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
四、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
五、特殊問題
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數+1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
(2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
(3)如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題
(1)一般公式:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾
1÷單位時間能完成的幾分之幾=工作時間
④ 小學數學全部公式
1 、正方形 C:周長 S:面積 a:邊長
周長=邊長×4 C=4a 面積=邊
2 、正方體 V:體積 L: 棱長和
(1)棱長和=棱長×12 L=12a
(2)表面積=棱長×棱長×6 S表=a×a×6
(3) 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形 C:周長 S:面積 a:長 b: 寬
周長=(長+寬)×2 C=2(a+b) 面積
4 、長方體 V:體積 s:面積 L: 棱長和 a:長 b: 寬 h:高
(1)棱長和=(長+寬+高)×4 L=4(a+b+h)
(2)表面積=(長×寬+長×高+寬×高)×2 S表
(3)體積=長×寬×高 V=abh
5 、三角形 s:面積 a:底
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形
6、 平行四邊形 S:面積 a:底 h:高
面積=底×高 s=ah
7 、梯形 S:面積 a:上底 b:下底 h:高
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
梯形高=面積 ×2÷(上底+下底) 梯形上
⑤ 小學數學公式大全(一定要完整!)
小學數學公式大全
一、小學數學幾何形體周長 面積 體積計算公式
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a.a= a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
二、單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分
1分=60秒 1時=3600秒
三、數量關系計算公式方面
1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
四、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
五、特殊問題
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
(2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
(3)如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題
(1)一般公式:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾
1÷單位時間能完成的幾分之幾=工作時間
⑥ 小學數學公式大全是什麼
小學數學公式大全
一、小學數學幾何形體周長 面積 體積計算公式
長方形的周長=(長+寬)×2 C=(a+b)×2
正方形的周長=邊長×4 C=4a
長方形的面積=長×寬 S=ab
正方形的面積=邊長×邊長 S=a.a= a
三角形的面積=底×高÷2 S=ah÷2
平行四邊形的面積=底×高 S=ah
梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
圓的面積=圓周率×半徑×半徑
三角形的面積=底×高÷2。 公式 S= a×h÷2
正方形的面積=邊長×邊長 公式 S= a×a
長方形的面積=長×寬 公式 S= a×b
平行四邊形的面積=底×高 公式 S= a×h
梯形的面積=(上底+下底)×高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長×寬×高 公式:V=abh
長方體(或正方體)的體積=底面積×高 公式:V=abh
正方體的體積=棱長×棱長×棱長 公式:V=aaa
圓的周長=直徑×π 公式:L=πd=2πr
圓的面積=半徑×半徑×π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等於底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等於底面的周長乘高再加上兩頭的圓的面積。 公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等於底面積乘高。公式:V=Sh
圓錐的體積=1/3底面×積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等於乘以這個數的倒數。
二、單位換算
(1)1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米
(2)1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米
(3)1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米
(4)1噸=1000千克 1千克= 1000克= 1公斤 = 2市斤
(5)1公頃=10000平方米 1畝=666.666平方米
(6)1升=1立方分米=1000毫升 1毫升=1立方厘米
(7)1元=10角1角=10分1元=100分
(8)1世紀=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時 1時=60分
1分=60秒 1時=3600秒
三、數量關系計算公式方面
1、每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、加數+加數=和 和-一個加數=另一個加數
7、被減數-減數=差 被減數-差=減數 差+減數=被減數
8、因數×因數=積 積÷一個因數=另一個因數
9、被除數÷除數=商 被除數÷商=除數 商×除數=被除數
四、算術方面
1.加法交換律:兩數相加交換加數的位置,和不變。
2.加法結合律:三個數相加,先把前兩個數相加,或先把後兩個數相加,再同第
三個數相加,和不變。
3.乘法交換律:兩數相乘,交換因數的位置,積不變。
4.乘法結合律:三個數相乘,先把前兩個數相乘,或先把後兩個數相乘,再和第三個數相乘,它們的積不變。
5.乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。如:(2+4)×5=2×5+4×5。
6.除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。0除以任何不是0的數都得0。
7.等式:等號左邊的數值與等號右邊的數值相等的式子叫做等式。等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。
8.方程式:含有未知數的等式叫方程式。
9.一元一次方程式:含有一個未知數,並且未知數的次 數是一次的等式叫做一元一次方程式。
學會一元一次方程式的例法及計算。即例出代有χ的算式並計算。
10.分數:把單位「1」平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11.分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然後再加減。
12.分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然後再比較;若分子相同,分母大的反而小。
13.分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。
14.分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15.分數除以整數(0除外),等於分數乘以這個整數的倒數。
16.真分數:分子比分母小的分數叫做真分數。
17.假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大於或等於1。
18.帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。
19.分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20.一個數除以分數,等於這個數乘以分數的倒數。
21.甲數除以乙數(0除外),等於甲數乘以乙數的倒數。
五、特殊問題
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
(1)如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
(2)如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
(3)如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
(1)一般公式:
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
(2)兩船相向航行的公式:
甲船順水速度+乙船逆水速度=甲船靜水速度+乙船靜水速度
(3)兩船同向航行的公式:
後(前)船靜水速度-前(後)船靜水速度=兩船距離縮小(拉大)速度
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-5%)
工程問題
(1)一般公式:
工作效率×工作時間=工作總量
工作總量÷工作時間=工作效率
工作總量÷工作效率=工作時間
(2)用假設工作總量為「1」的方法解工程問題的公式:
1÷工作時間=單位時間內完成工作總量的幾分之幾