1. 試用一個小學的數學知識(如統計知識),分析一個生活中的問題。(要有原始數據和過程記錄)
數學知識?
統計?是不是要你做一個在生活中的小小統計,並提出問題,作答版案?
既然你舉了一個權例子,……統計,我就先試著幫你吧。
可以統計的東西很多,例如每天各個時間點的溫度變化情況,幾點時候多少度,連續觀察一個星期,做折線統計圖;或統計周圍同學每天學習多少時間,做扇形統計圖;調查……正好,奧運會中國軍團每天拿多少金牌,銀牌哦,可以做雙折線統計呀!
至於分析問題,你完全可以寫……例如我舉得第一個例子,你可以提出問題,一般在一天中什麼時間溫度最高,然後得出結論。
數據與過程,只有看你的了……&只要你堅持做上一個星期,肯定是有話可說的嘛。
希望你能採納我的意見哦……
2. 日常生活中與數學有關的例子
....數學與生活搜一下了.
聯系生活實際,體會數學的應用價值
我們到底要培養孩子什麼?我認為,歸根結底是培養學生的數學能力,而數學能力的核心是運用所學知識解決生活中實際問題的能力。想讓學生獲得這種能力,關鍵要讓他們體會到數學的應用價值,培養他們的應用意識和慾望。因此,數學學習要回歸於兒童的生活,要在學習中時時關注兒童關心什麼?對什麼感興趣?經歷了什麼?在生活中發現了什麼?創造性地挖掘課程資源,讓數學學習與兒童自己的生活充分地融合起來,將數學學習納入他們的生活背景之中,進而培養學生解決實際問題的能力。
一、在實際生活中感受數學的存在,抽象出數學知識。
小學數學中的許多概念都可以在現實生活中找到相應的實例。例如,我在《體積和體積單位》的課始導入中,是這樣設計的:
師:同學們,老師非常想和大家交個朋友,願意嗎?
生:(非常高興地齊答):願意。
師:是朋友就應該相互了解,老師想了解一下大家,可以嗎?
生:(興奮地齊答):可以。
師:我在家裡,我的女兒特別喜歡穿我的鞋子和衣服,你們在家是不是也是這樣呢?
生:是的。
師:穿上你爸爸的衣服有什麼感覺?
生a:很大。
生b:非常肥大。
生c:像裙子一樣。
......
師:你爸爸穿你的衣服嗎?(學生感到很好笑。)
師:你們笑什麼?
生1:我的衣服太小,爸爸穿不上。
生2:爸爸會把我的衣服撐破的。
......
師:你的衣服,你爸爸為什麼穿不上?像這樣看起來很簡單的問題,實際上包含著豐富的數學知識,每個同學都應該善於從生活中發現數學問題。今天我們一起研究「體積和體積單位」,相信通過學習,你們會更深入地知道爸爸為什麼不穿你的衣服。
「穿不穿爸爸的衣服?」這一學生都體驗過的,頗具人情味的問題讓兒童深切感受到數學實際就在我們身邊,「一不小心」就會用到它。
對小學生而言,在生活中形成的常識、經驗是他們學習數學的基礎。所以我們要努力拓展學生認識數學、發現數學的空間,重視兒童數學經驗的積累。例如,在質量單位的教學中,為幫助學生建立"千克"的概念,我們先讓學生購買不同質量的物品,再用手掂這些物品,多次感受後嘗試估計一些物品的質量。學生對"質量"的概念有了這樣的感性認識之後,很容易地解決"千克"有多重的問題。再如,二年級的學生認識了簡單幾何圖形後,我們讓學生採用歸類整理的方法,盡可能多地從生活實例中找出圖形,註上名稱,然後測量出這些圖形每條邊的長度,算出每個圖形所有邊長的和,使學生初步建立"周邊長"的概念,為以後學習"長方形和正方形的周長"作有力鋪墊。
二、運用數學知識解決實際問題。
1、結合生活實際,培養數學意識。
生活中處處有數學,把學數學和生活體驗結合起來,不僅生動、深刻,而且進行了人文教育。學習了長度單位,讓學生思考生活中哪些地方需要長度單位;學習了圓的知識後,讓學生從數學的角度說明為什麼車輪的形狀是圓的,方的和三角形的行不行?為什麼?還可以讓學生想辦法找圓形物體的圓心。在教學中,結合生活實際,讓他們知道每天吃多少米、用多少水、耗多少電都要進行計算。這樣通過了解數學知識在實際中的廣泛運用,培養學生用數學眼光看問題,用數學頭腦想問題,增強學生用數學知識解決實際問題的意識。
2、把生活中的問題轉化為數學問題。
例如,教學「平均數」一課時,將學生分成四人一組,計算每個小組的平均身高,此時學生的熱情一下子高漲起來。求出結果後,讓學生進一步比較:「哪一組的同學最高?哪一組的同學最矮?」 「我們班的男生和女生身高情況如何?對這些數據進行研究。你能得出哪些結論?」這種活動與學生自身生活相結合,可以使他們產生強烈的求知慾。
再如,春遊之前,讓學生解決問題:學校組織五年級師生去恩龍山莊春遊,教師30人,學生300人。門票價格:成人每位30元,學生每位10元;團體票50人(含50人)以上每人12元。按照這種價格,我們怎樣購票最省錢?請大家設計一種你認為最好的購票方案。學生設計完後,教師和同學們一起將不同方案公布於眾,進行比較選優;最後選出一種都認為最好、最省錢的方案。這種數學能力考查活動,既培養了學生科學理財的意識,又拓寬了知識面。
3、加強實際操作,培養動手能力。
理論與實際往往有很大差距,要想使所學的知識能真正運用到實際生活中,必須加強實際操作,培養把所學知識運用於生活實際的能力。
案例1:教了「比和比例」之後,我有意把學生帶到籃球場上,要學生測量計算籃球架的高度。如何測量?多數同學搖頭,少數幾個竊竊私語:
生a:爬上去量!
生b:爬上去也夠不著頂端啊。好危險的!
生c:……
正當同學們議論紛紛的時候,我適時取來了一根長1.5米的竹竿,筆直插在球場邊。這時陽光燦爛,馬上出現了竹竿的影子,量得這影子長1米。
我啟發學生思考:從竿長是影子的1.5倍,你能想出測籃球架高度的辦法嗎?
生d:球架高也是它的影長的1.5倍。
生e補充:必須要在同一時間內。
這個想法得到肯定後,學生們很快從測量籃球架影子的長,算出了籃球架的高。回到教室後,我又說:「你們能用比例寫出一個求籃球架高的公式嗎?」學生小組合作,議論紛紛,不一會就得出:竿長:竿影長=籃球架高:籃球架影長 或 竿長: 籃球架高=竿影長:籃球架影長……
此時,學生意猶未盡,完全沉醉於探討活動中,增長了知識,鍛煉了能力。
案例2:教學比例尺知識時,教師首先從生活入手進行導課激趣:"老師暑假要去北京旅遊,你能幫助我測算一下寧國到北京的路程嗎?"學生興趣盎然,各自在備好的"中國地圖"上認真地測算。為測兩地的圖上距離,有的同學用直線折測的方法沿公路線重疊或沿鐵路線重疊,再將重疊過的線拉直,求出了圖上距離;有的用直尺直接量兩地的直線距離。如何用圖上距離求實際路程呢?同學們邊看圖例,邊討論,邊試做。有的用線段比例尺上每厘米代表的實際距離乘圖上距離,有的用圖上距離乘分數比例尺的分母,也有的用圖上距離除以比例尺。討論交流時,許多同學對直尺直接測量兩地直線距離的方法提出疑問。最後,大家一致認為:確定旅遊路線應該按圖上兩地鐵路或公路的長度作為圖上距離,然後求出兩地的實際路程。用線段比例尺可以這樣求:每厘米所表示的千米數×圖上距離=實際路程;用分數比例尺可以這樣求:圖上距離÷比例尺=兩地路程。之後,老師讓同學們設計一種最佳進京旅遊方案。同學們樂此不疲,整個學習過程一直處於輕松愉悅、興致盎然的氣氛中。使學生既解決了生活中的問題,又發現了新知識,更調動了學生學習數學的興趣。
在傳授數學知識和訓練數學能力的過程中,教師自然而然地注入生活內容;在參與關心學生生活過程中,教師引導學生學會運用所學知識為自己生活服務。使學生認識到知識來源於生活實踐,又要應用到生活實際中去解決實際問題,從而真正體會到數學的價值所在。
參考資料:http://..com/question/3662153.html
3. 小學數學知識大全
良好的學習習慣能使孩子收益終身,尤其是小學階段,小學階段是孩子從一個天真頑劣的小孩到一個真正接受知識的小學生,從各個方面進行要求規范的時期。在這個時期良好的學習方法是孩子成績優異的關鍵,很多家長不知道如何給孩子補習小學數學,那今天就帶大家一起了解補習小學數學的五大技巧。
現在的時代是一個多元化的教育時代,孩子們的大腦不僅僅是課上的40分鍾,而是要勇於積極的探索,在給孩子補習小學數學的時候著眼於以上幾點,加上對課本知識的結合,孩子的成績定會有所提高,於此同時孩子更多的學習到的是掌握知識的方法。
4. 適合小學生 的趣味數學
數學家高斯小時候的故事
從一加到一百
高斯有許多有趣的故事,故事的第一手資料常來自高斯本人,因為他在晚年時總喜歡談他小時後的事,我們也許會懷疑故事的真實性,但許多人都證實了他所談的故事。
高斯的父親作泥瓦廠的工頭,每星期六他總是要發薪水給工人。在高斯三歲夏天時,有一次當他正要發薪水的時候,小高斯站了起來說:「爸爸,你弄錯了。」然後他說了另外一個數目。原來三歲的小高斯趴在地板上,一直暗地裡跟著他爸爸計算該給誰多少工錢。重算的結果證明小高斯是對的,這把站在那裡的大人都嚇的目瞪口呆。
高斯常常帶笑說,他在學講話之前就已經學會計算了,還常說他問了大人字母如何發音後,就自己學著讀起書來。
七歲時高斯進了 St. Catherine小學。大約在十歲時,老師在算數課上出了一道難題:「把 1到 100的整數寫下來,然後把它們加起來!」每當有考試時他們有如下的習慣:第一個做完的就把石板〔當時通行,寫字用〕面朝下地放在老師的桌子上,第二個做完的就把石板擺在第一張石板上,就這樣一個一個落起來。這個難題當然難不倒學過算數級數的人,但這些孩子才剛開始學算數呢!老師心想他可以休息一下了。但他錯了,因為還不到幾秒鍾,高斯已經把石板放在講桌上了,同時說道:「答案在這兒!」其他的學生把數字一個個加起來,額頭都出了汗水,但高斯卻靜靜坐著,對老師投來的,輕蔑的、懷疑的眼光毫不在意。考完後,老師一張張地檢查著石板。大部分都做錯了,學生就吃了一頓鞭打。最後,高斯的石板被翻了過來,只見上面只有一個數字:5050(用不著說,這是正確的答案。)老師吃了一驚,高斯就解釋他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50對和為 101的數目,所以答案是 50×101=5050。由此可見高斯找到了算術級數的對稱性,然後就像求得一般算術級數合的過程一樣,把數目一對對地湊在一起。
數學家高斯的故事
高斯(Gauss 1777~1855)生於Brunswick,位於現在德國中北部。他的祖父是農民,父親是泥水匠,母親是一個石匠的女兒,有一個很聰明的弟弟,高斯這位舅舅,對小高斯很照顧,偶而會給他一些指導,而父親可以說是一名「大老粗」,認為只有力氣能掙錢,學問這種勞什子對窮人是沒有用的。
高斯很早就展現過人才華,三歲時就能指出父親帳冊上的錯誤。七歲時進了小學,在破舊的教室里上課,老師對學生並不好,常認為自己在窮鄉僻壤教書是懷才不遇。高斯十歲時,老師考了那道著名的「從一加到一百」,終於發現了高斯的才華,他知道自己的能力不足以教高斯,就從漢堡買了一本較深的數學書給高斯讀。同時,高斯和大他差不多十歲的助教Bartels變得很熟,而Bartels的能力也比老師高得多,後來成為大學教授,他教了高斯更多更深的數學。
老師和助教去拜訪高斯的父親,要他讓高斯接受更高的教育,但高斯的父親認為兒子應該像他一樣,作個泥水匠,而且也沒有錢讓高斯繼續讀書,最後的結論是--去找有錢有勢的人當高斯的贊助人,雖然他們不知道要到哪裡找。經過這次的訪問,高斯免除了每天晚上織布的工作,每天和Bartels討論數學,但不久之後,Bartels也沒有什麼東西可以教高斯了。
1788年高斯不顧父親的反對進了高等學校。數學老師看了高斯的作業後就要他不必再上數學課,而他的拉丁文不久也凌駕全班之上。
數學家華羅庚小時候的軼事
華羅庚(1910——1982)出生於江蘇太湖畔的金壇縣,因出生時被父親華老祥放於籮筐以圖吉利,「進籮避邪,同庚百歲「,故取名羅庚。
華羅庚從小便貪玩,也喜歡湊熱鬧,只是功課平平,有時還不及格。勉強上完小學,進了家鄉的金壇中學,但仍貪玩,字又寫得歪歪扭扭,做數學作業時倒時滿認真地畫來畫去,但像塗鴉一般,所以上初中時的華羅庚仍不被老師喜歡的學生而且還常常挨戒尺。
金壇中學的一位名叫王維克的教員卻獨有慧眼,他研究了華羅庚塗鴉的本子才發現這許多塗改的地方正反映他解題時探索的多種路子。一次王維克老師給學生講[孫子算經]出了這樣一道題:」今有物不知其數,三三數之剩其二,五五數剩其三,七七數剩其二,問物幾何?「正在大家沉默之際,有個學生站起來,大家一看,原來是向來為人瞧不起的華羅庚,當時他才十四歲,你猜一猜華羅庚他說出是多少?
陳景潤:小時候,教授送我一顆明珠
20多年前,一篇轟動全中國的報告文學《哥德巴赫猜想》,使得一位數學奇才一夜之間街知巷聞、家喻戶曉。在一定程度上,這個人的事跡甚至還推動了一個尊重科學、尊重知識和尊重人才的偉大時代早日到來。他的名字叫做陳景潤。
不善言談,他曾是一個「丑小鴨」。通常,一個先天的聾子目光會特別犀利,一個先天的盲人聽覺會十分敏銳,而一個從小不被人注意、不受人歡迎的「丑小鴨」式的人物,常常也會身不由己或者說百般無奈之下窮思冥想,探究事理,格物致知,在天地萬物間重新去尋求一個適合自己的位置,發展自己的潛能潛質。你可以說這是被逼的,但這么一「逼」往往也就「逼」出來不少偉人。比如童年時代的陳景潤。陳景潤1933年出生在一個郵局職員的家庭,剛滿4歲,抗日戰爭開始了。不久,日寇的狼煙燒至他的家鄉福建,全家人倉皇逃入山區,孩子們進了山區學校。父親疲於奔波謀生,無暇顧及子女的教育;母親是一個勞碌終身的舊式家庭婦女,先後育有12個子女,但最後存活下來的只有6個。陳景潤排行老三,上有兄姐、下有弟妹,照中國的老話,「中間小囡軋扁頭「,加上他長得瘦小孱弱,其不受父母歡喜、手足善待可想而知。在學校,沉默寡言、不善辭令的他處境也好不到哪裡去。不受歡迎、遭人欺負,時時無端挨人打罵。可偏偏他又生性倔強,從不曲意討饒,以求改善境遇,不知不覺地便形成了一種自我封閉的內向性格。人總是需要交流的,特別是孩子。稟賦一般的孩子面對這種困境可能就此變成了行為乖張的木訥之人,但陳景潤沒有。對數字、符號那種天生的熱情,使得他忘卻了人生的艱難和生活的煩惱,一門心思地鑽進了知識的寶塔,他要尋求突破,要到那裡面去覓取人生的快樂。所謂因材施教,就是通過一定的教育教學方法和手段,為每一個學生創造一個根據自己的特點充分得到發展的空間。
小小陳景潤,自己對自己因材施教著。
一生大幸,小學生邂逅大教授但是,他畢竟還是個孩子。除了埋頭書卷,他還需要面對面、手把手的引導。畢竟,能給孩子帶來最大、最直接和最鮮活的靈感和歡樂的,還是那種人與人之間的、耳提面命式的,能使人心靈上迸射出輝煌火花的交流和接觸。所幸,後來隨著家人回到福州,陳景潤遇到了他自謂是終身獲益匪淺的名師沈元。
沈元是中國著名的空氣動力學家,航空工程教育家,中國航空界的泰斗。他本是倫敦大學帝國理工學院畢業的博士、清華大學航空系主任,1948年回到福州料理家事,正逢戰事,只好留在福州母校英華中學暫時任教,而陳景潤恰恰就是他任教的那個班上的學生。
大學名教授教幼童,自有他與眾不同、出手不凡的一招。針對教學對象的年齡和心理特點,沈元上課,常常結合教學內容,用講故事的方法,深入淺出地介紹名題名解,輕而易舉地就把那些年幼的學童循循誘入了出神入化的科學世界,激起他們嚮往科學、學習科學的巨大熱情。比如這一天,沈元教授就興致勃勃地為學生們講述了一個關於哥德巴赫猜想的故事。
師手遺「珠「,照亮少年奮斗的前程
「我們都知道,在正整數中,2、4、6、8、10......,這些凡是能被2整除的數叫偶數;1、3、5、7、9,等等,則被叫做奇數。還有一種數,它們只能被1和它們自身整除,而不能被其他整數整除,這種數叫素數。「
像往常一樣,整個教室里,寂靜地連一根綉花針掉在地上的聲音都能聽見,只有沈教授沉穩渾厚的嗓音在回響。
「二百多年前,一位名叫哥德巴赫的德國中學教師發現,每個不小於6的偶數都是兩個素數之和。譬如,6=3+3,12=5+7,18=7+11,24=11+13......反反復復的,哥德巴赫對許許多多的偶數做了成功的測試,由此猜想每一個大偶數都可以寫成兩個素數之和。」沈教授說到這里,教室里一陣騷動,有趣的數學故事已經引起孩子們極大的興趣。
「但是,猜想畢竟是猜想,不經過嚴密的科學論證,就永遠只能是猜想。」這下子輪到小陳景潤一陣騷動了。不過是在心裡。
該怎樣科學論證呢?我長大了行不行呢?他想。後來,哥德巴赫寫了一封信給當時著名的數學家歐勒。歐勒接到信十分來勁兒,幾乎是立刻投入到這個有趣的論證過程中去。但是,很可惜,盡管歐勒為此幾近嘔心瀝血,鞠躬盡瘁,卻一直到死也沒能為這個猜想作出證明。從此,哥德巴赫猜想成了一道世界著名的數學難題,二百多年來,曾令許許多多的學界才俊、數壇英傑為之前赴後繼,競相折腰。教室里已是一片沸騰,孩子們的好奇心、想像力一下全給調動起來。
「數學是自然科學的皇後,而這位皇後頭上的皇冠,則是數論,我剛才講到的哥德巴赫猜想,就是皇後皇冠上的一顆璀璨奪目的明珠啊!」
沈元一氣呵成地講完了關於哥德巴赫猜想的故事。同學們議論紛紛,很是熱鬧,內向的陳景潤卻一聲不出,整個人都「痴」了。這個沉靜、少言、好冥思苦想的孩子完全被沈元的講述帶進了一個色彩斑斕的神奇世界。在別的同學嘖嘖贊嘆、但贊嘆完了也就完了的時候,他卻在一遍一遍暗自跟自己講:
「你行嗎?你能摘下這顆數學皇冠上的明珠嗎?」
一個是大學教授,一個是黃口小兒。雖然這堂課他們之間並沒有嚴格意義上的交流、甚至連交談都沒有,但又的確算得上一次心神之交,因為它奠就了小陳景潤一個美麗的理想,一個奮斗的目標,並讓他願意為之奮斗一輩子!多年以後,陳景潤從廈門大學畢業,幾年後,被著名數學家華羅庚慧眼識中,伯樂相馬,調入中國科學院數學研究所。自此,在華羅庚的帶領下,陳景潤日以繼夜地投入到對哥德巴赫猜想的漫長而卓絕的論證過程之中。
1966年,中國數學界升起一顆耀眼的新星,陳景潤在中國《科學通報》上告知世人,他證明了(1+2)!
1973年2月,從「文革「浩劫中奮身站起的陳景潤再度完成了對(1+2)證明的修改。其所證明的一條定理震動了國際數學界,被命名為「陳氏定理」。不知道後來沈元教授還能否記得自己當年對這幫孩子們都說了些什麼,但陳景潤卻一直記得,一輩子都那樣清晰。
名人成長路
陳景潤(1933-1996),當代著名數學家。1950年,僅以高二學歷考入廈門大學,1953年畢業留校任教。1957年調入中國科學院數學研究所,後任研究員。1973年發表論文《大偶數表為一個素數及一個不超過二個素數的乘積之積》。1979年,論文《算術級數中的最小素數》問世。1980年當選為中國科學院學部委員(中國科學院院士)。
5. 小學數學知識點總結(全部)
對於那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬於基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養成良好習慣的時期,注重培養孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態,不能見考試就膽怯,調整心態很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
6. 利用小學所學的數學知識(如統計知識),分析一個生活中的問題。(要有原始數據和過程記錄)
曾看過這樣一則謎語:「小小諸葛亮,穩坐軍中帳。擺下八卦陣,只等飛來將。」動一動腦筋,這說的是什麼呢?原來是蜘蛛,後兩句講的正是蜘蛛結網捕蟲的生動情形。我們知道,蜘蛛網既是它棲息的地方,也是它賴以謀生的工具。
你觀察過蜘蛛網嗎?它是用什麼工具編織出這么精緻的網來的呢?你心中是不是有一連串的疑問,好,下面就讓我來慢慢告訴你吧。在結網的過程中,功勛最卓著的要屬它的腿了。首先,它用腿從吐絲器中抽出一些絲,把它固定在牆角的一側或者樹枝上。然後,再吐出一些絲,把整個蜘蛛網的輪廓勾勒出來,用一根特別的絲把這個輪廓固定住。為繼續穿針引線搭好了腳手架。它每抽一根絲,沿著腳手架,小心翼翼地向前走,走到中心時,把絲拉緊,多餘的部分就讓它聚到中心。從中心往邊上爬的過程中,在合適的地方加幾根輻線,為了保持蜘蛛網的平衡,再到對面去加幾根對稱的輻線。一般來說,不同種類的蜘蛛引出的輻線數目不相同。絲蛛最多,42條;有帶的蜘蛛次之,也有32條;角蛛最少,也達到21條。同一種蜘蛛一般不會改變輻線數。
到目前為止,蜘蛛已經用輻線把圓周分成了幾部分,相臨的輻線間的圓周角也是大體 相同的。現在,整個蜘蛛網看起來是一些半徑等分的圓周,畫曲線的工作就要開始了。蜘蛛從中心開始,用一條極細的絲在那些半徑上作出一條螺旋狀的絲。這是一條輔助的絲。然後,它又從外圈盤旋著走向中心,同時在半徑上安上最後成網的螺旋線。在這個過程中,它的腳就落在輔助線上,每到一處,就用腳把輔助線抓起來,聚成一個小球,放在半徑上。這樣半徑上就有許多小球。從外面看上去,就是許多個小點。好了,一個完美的蜘蛛網就結成了。
讓我們再來好好觀察一下這個小精靈的傑作:從外圈走向中心的那根螺旋線,越接近中心,每周間的距離越密,直到中斷。只有中心部分的輔助線一圈密似一圈,向中心繞去。小精靈所畫出的曲線,在幾何中稱之為對數螺線。
對數螺線又叫等角螺線,因為曲線上任意一點和中心的連線與曲線上這點的切線所形成的角是一個定角。大家可別小看了對數螺線:在工業生產中,把抽水機的渦輪葉片的曲面作成對數;螺線的形狀,抽水就均勻;在農業生產中,把軋刀的刀口彎曲成對數螺線的形狀,它就會按特定的角度來切割草料,又快又好。
貓捉老鼠
問題:如果3隻貓在3分鍾內捉住了3隻老鼠,那麼多少只貓將在100分鍾內捉住100隻老鼠?
這是一個古老的趣題,常見的答案是這樣的:如果3隻貓用3分鍾捉住了3隻老鼠,那麼它們必須用1分鍾捉住1隻老鼠。於是,如果捉1隻老鼠要花去它們1分鍾時間,那麼同樣的3隻貓在l00分鍾內將會捉住100隻老鼠。
遺憾的是,問題並不那麼簡單。剛才的解答實際上利用了某個假定,它無疑是題目中所沒有談到的。這個假定認為這3隻貓把注意力全部集中於同一隻老鼠身上,它們通過合作在1分鍾內把它捉住,然後再聯合把注意力轉向另—只老鼠。
但是,假設3隻貓換一個做法,每隻貓各追捕1隻老鼠,各花3分鍾把它們捉住。按照這種設想,3隻貓還是用3分鍾捉住3隻老鼠。於是,它們要花6分鍾去捉住6隻老鼠,花9分鍾捉住9隻老鼠,花99分鍾捉住99隻老鼠。現在我們面臨著一個計算上的困難,同樣的3隻貓究竟要花多長時間才能捉住第100隻老鼠呢?如果它們還是要足足花上3分鍾去捉住這只老鼠,那麼這3隻貓得花l02分鍾捉住102隻老鼠。要在100分鍾內捉住100隻老鼠——這是題目關於貓捉老鼠的效率指標,我們肯定需要多於3隻而少於4隻的貓,因此答案只能是需要4隻貓,雖然這有點浪費。
顯然,對於3隻貓是怎樣准確地計算貓捉老鼠這種行動的時間,這個趣題沒做任何交代。因此,如果允許答案不唯一,那麼,答案可以是豐富多彩的,3隻、4隻、甚至更多。如果要求答案唯一的話,這個問題的唯一正確答案是:這是一個意義不明確的問題,由於沒有更多關於貓是怎樣捕捉老鼠的信息,因此無法回答這個問題。
這個簡單的趣題啟示我們,在解答一個數學問題(也包括其他問題)前,一定要仔細領會題目所給出的全部信息,既不要曲解題義,也不要人為添加條件以迎合所謂的標准答案。當然這個趣題也給了我們一個有益的人生啟示——只有合作才能產生最佳的工作效益。
表面塗漆的小積木的塊數
一塊表面塗著紅漆的大積木(正方體),被鋸成27塊大小一樣的小積木,那麼,這些小積木中,(1)三面塗漆的有幾塊?(2)兩面塗漆的有幾塊?(3)一面塗漆的有幾塊?
這時,就不能再用把積木鋸開的辦法來回答問題了。但只需認真觀察一下,你就能發現,把正方體鋸開以後,只有位於正方體八個角上的那些小積木,是三面塗漆的。也就是說,三面塗漆的小積木的塊數,等於正方體的頂點數,有8塊;
塗漆的那些小積木,位於正方體的兩個面的交界處,但不在正方體的角上(即頂點處)。因此,只需首先確定正方體的某條棱上出現的兩面塗漆的小積木的塊數,而正方體有12條棱。於是,立即可以求得,兩面塗漆的小積木的塊數為1塊×12=12塊;
一面塗漆的小積木,位於正方體每個面的中心部位。即不在正方體的頂點處,也不在棱上。因此,只需首先確定正方體的某一個面上出現的一面塗漆的小積木的塊數,而正方體有6個面。於是可得,一面塗漆的小積木的塊數為1塊×6=6塊。
通過觀察,找出解決問題的規律,是學習數學的重要任務之一。這樣,就能運用數學知識迅速而又有效地解決實際問題。根據上面歸納出來的分析方法,即使把這個正方體鋸成更多的小積木,我們也能輕松地回答類似的問題。
建議班級購買一台飲水機
在炎炎夏日裡,同學們遇到的難事就是飲水問題,為了使同學們過一個衛生清潔的夏季,班級決定出錢買一台飲水機,而每人又應出多少錢呢?即使買了飲水機,是否比過去每個學生每天買礦泉水更節省、更實惠?下面就來解答這個問題。
一、學生礦泉水費用支出
溫州市景山中學共有37個班級,假設每班學生平均為60人,那麼全校就有60×37=2220(人)。一年中,學生在校的時間(除去寒暑假雙休日)大約為240天,設春季、夏季、秋季、冬季、各為60天,在班級沒有購買飲水機時,學生解渴一般買礦泉水,設礦泉水每瓶為一元,學生春秋季每人二天1瓶礦泉水,則總共為60瓶。夏季每人每天1瓶,則總共也為60瓶,冬季每人每4天1瓶,總共為15瓶,則全年平均每名學生礦泉水費支出: 60+60+(60÷4)×1=135(元);全班學生礦泉水費用 135×60=8100(元);全校學生礦泉水費用:8100×37=299700(元)。
二、使用飲水機費用
一台冷熱飲水機的價格約為750元,1字牌大桶礦泉水為每桶10元,現每班都配備飲水機。設每班春、季兩季、每2天1桶,則需60桶,夏季每天2桶,則需120桶,冬季每6天1桶,則每班需20桶,則一學年每班需要「60+120+20=200(桶),一學生每班水費為200×10=2000元。電費摺合為每學年每班為300元。則一學年配置飲水機每班水電費2300元。所以,一學年每班飲水機等合計約為2300+750÷3=2550元;每個學生平均一學年的水電費為2500÷60=42.5元;景山中學全校全年飲水機等費用約為37×2550=94350元;
顯然,通過計算,比較兩項開支費用,各班購買一台飲水機要經濟實惠得多,一學年每個學生可以節省:135-42.5=92.5元;每個班一學年可節省: 92.5×60=5550元;全校一學年可節省:5550×37=205350元。
205350元,一個了不起的數據,而我們每天又可以喝上衛生清潔、冷暖皆宜的飲水機的礦泉水,等我們畢業時還可以把飲水機贈給下屆同學,何樂而不為呢?我向昌樂二中提出倡議:在每個教室里配一台飲水機。
巧用數學看現實
在現實生活中,人們的生活越來越趨向於經濟化,合理化.但怎樣才能達到這樣的目的呢?
某報紙上報道了兩則廣告,甲商廈實行有獎銷售:特等獎 10000元 1名,一等獎1000元 2名,二等獎100元10名,三等獎5元200名,乙商廈則實行九五折優惠銷售。請你想一想;哪一種銷售方式更吸引人?哪一家商廈提供給銷費者的實惠大?
面對問題我們並不能一目瞭然。於是我們首先作了一個隨機調查。把全組的16名學員作為調查對象,其中8人願意去甲家,6人喜歡去乙家,還有兩人則認為去兩家都可以。調查結果表明:甲商廈的銷售方式更吸引人,但事實是否如此呢?
在實際問題中,甲商厚每組設獎銷售的營業額和參加抽獎的人數都沒有限制。所以我們認為這個問題應該有幾種答案。
一、苦甲商廈確定每組設獎,當參加人數較少時,少於213(1十2+10+200=213人)人,人們會認為獲獎機率較大,則甲商廈的銷售方式更吸引顧客。
二、若甲商廈的每組營業額較多時,它給顧客的優惠幅度就相應的小。因為甲商廈提供的優惠金額是固定的,共 14000元(10000+ 2000+ 1000+1000=14000)。假設兩商廈提供的優惠都是14000元,則可求乙商廈的營業額為 280000元( 14000 ÷ 5%=280000)。
所以由此可得:
(l)當兩商廈的營業額都為280000元時,兩家商廈所提供的優惠同樣多。
(2)當兩商廈的營業額都不足 280000元時,乙商廈的優惠則小於 14000元,所以這時甲商廈提供的優惠仍是 14000元,優惠較大。
(3)當兩家的營業額都超過280000元時,乙商廈的優惠則大於14000元,而甲商廈的優惠仍保持14000元時,乙商廈所提供的實惠大。
像這樣的問題,我們在日常生活中隨處可見。例如,有兩家液化氣站,已知每瓶液化氣的質和量相同,開始定的價也相同。為了爭取更多的用戶,兩站分別推出優惠政策。甲站的辦法是實行七五折錯售,乙站的辦法是對客戶自第二次換氣以後以7折銷售。兩站的優惠期限都是一年。你作為用戶,應該選哪家好?
這個問題與前面的問題有很大相同之處。只要通過你所需要的罐數來分析討論,這樣,問題便可迎刃而解了。
隨著市場經濟的逐步完善,人們日常生活中的經濟活動越來越豐富多彩。買與賣,存款與保險,股票與債券,……都已進入我們的生活.同時與這一系列經濟活動相關的數學,利比和比例,利息與利率,統計與概率。運籌與優化,以及系統分析和決策,都將成為數學課程中的「座上客」。
作為跨世紀的中學生,我們不僅要學會數學知識,而且要會應用數學知識去分析、解決生活中遇到的問題.這樣才能更好地適應社會的發展和需要。
7. 小學生生活中有哪些有趣的數學現象
買各種各樣的東西
8. 小學四年級生活中的數學知識
1、加法:把兩個數合並成一個數的運算。
2、減法:已知兩個數的和與其中一個加數,求另一個加數的運算。
3、乘法:求相同加數和的簡便計算。
4、除法:已知兩個因數的積和其中一個因數,求另一個因數的運算。
小數四則運算的運算順序和整數四則運算順序相同。
分數四則運算的運算順序和整數四則運算順序相同。
9. 小學數學在生活中的應用(舉例)
1、生活中的分工問題
創設情境:要求每個學生拿出9個桃子放在盤子里,每盤放的個數一樣多,有幾種放法,可以放幾盤。由此可知有以下五種:
(1)每盤放3個,9÷3=3(盤);(2)每盤放9個,9÷9=1(盤);(3)每盤放2個,9÷2=4(盤)多1個;(4)每盤放4個,9÷4=2(盤)多1個;(5)每盤放5個,9÷5=1(盤)多4個。
2、交水電費的計算
李大媽交水電費帶回一張發票,換衣服時忘了取出,不慎搓洗掉一角,能看到的數據如下:電160度,水25噸,每噸1.70元,總共交了138.5元。
由此可計算出所交的水電費數額。根據等量關系:總費用-水費=電費,列式算出(138.5-1.70×25)÷160=0.60元。
3、計算商品價格
在超市或商場購物時,利用買一贈一、打折等活動可以進行計算,根據價格x折扣可以計算出商品的實際價格。
4、比較商品價格高低
到不同的超市或商店摘錄、調查打聽同一種商品的價錢,再自由比較各種商品的價格高低,用「>」「<」或「=」連接,最後把所有商品的價格從高到低依次排列,可以得出最便宜的店鋪進行購買。
5、了解運動比賽名次
在運動會等比賽開展時,可以根據短跑時間、跳遠距離、跳高高度等進行比較,通過大小數進行比較得出排名和比賽名次。