① 小學六年級數學知識點總結(下冊)
負數:像-1,-2,-3。。。。叫負數,1,2,3。。。。。是正數,也可寫成+1,+2,+3。。。。。。0不是負數也不是正數。
數軸上,負數在0的左邊,正數在0的右邊。
圓柱與圓錐:圓柱的兩個圓面叫做底面,周圍的面叫側面,兩個底面之間的距離叫高,長方形的長等於圓柱底面的周長,寬等於圓柱的高。
公式:圓柱表面積=圓柱側面積+兩個底面的面積
圓柱的側面積=底面周長*高
圓柱的體積=底面積*高
圓錐的體積=等底等高的圓柱的體積*三分之一
比例:表示兩比相等的式子叫比例。
組成比例的四個數,叫做比例的項,兩端的兩項叫做比例的外項,中間的兩項叫做比例的內項。
在比例里,兩個外項的積等於兩個內項的積,這叫做比例的基本性質。
求比例中的未知項,叫做解比例。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。
兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系叫做反比例關系。
圖上距離:實際距離=比例尺,數值比例尺是1:10000或一萬分之一,線段比例尺是一個線段,圖上幾厘米表示實際多少。
統計沒什麼,記住三個統計圖,折線,扇形,條形的就行了。
數學廣角很簡單,只用記住方法。
② 小學六年級數學該怎麼輔導
小學6年級數學輔導怎樣做?數學在大部分人的眼中是一科較難的科目,並且跟隨年級的增長也逐步變難,正因為這樣數學是被拉分的科目.好多學生以為數學就是練習,以為練習好多,得分就會升高.其實有一個關鍵因素在阻礙我們數學得分的升高,那就是好的學習習慣.
小學6年級數學輔導需要幫助孩子建立的八種好習慣:
8、重復"檢查"習慣.培養學生的考核能力習慣是提高數學學習質量的重要舉措,這是培養學生自我意識和責任感的必要過程.小學6年級數學輔導只要從以上八點出發,相信孩子在很短的時間內會有驚人的進步.
③ 小學一至六年級數學知識點
小學數學知識點總結
一年級上冊
1、 數一數(1~10)
2、 比一比(多少、長短、高矮、)
3、 1~5的認識和加減法(比大小、第幾、幾和幾、加法、減法、0的認識)
4、 認識物體和圖形(長方體、正方體、圓柱、球、長方形、正方形、三角形、圓)
5、 分類
6、 6~10的認識和加減法(連加、連減、加減混合)
7、 11~20個數的認識(數位的認識)
8、 認識鍾表(整時、半時)
9、 20以內的進位加法 (湊十、9、8、7、6加幾,5、4、3、2加幾)
10、 總復習
一年級下冊
1、 位置(上下、左右、前後、位置)
2、 20以內的退位加法
3、 圖形的拼組
4、 100以內數的認識(數數、數的組成,讀數、寫數,數的順序、比較大小、整十數加一位數及相應的減法)
5、 認識人民幣(簡單的計算)
6、 100以內的加法和減法(一)(1、整十數加減整十數2、兩位數加一位數和整十數3、兩位數減一位數和整十數)
7、 認識時間
8、 找規律
9、 統計(條形統計圖)
10、 總復習
二年級上冊
1、 長度單位
2、 100以內的加法和減法(二)(1、兩位數加兩位數、不進位加、進位加2、兩位數減兩位數、不退位減、退位減3、連加、連減和加減混合、加減混合、加減估算)
3、 角的初步認識
4、 表內乘法(一)(1、乘法的初步認識2、2~6的乘法口訣)
5、 觀察物體
6、 表內乘法(二)(7、8、9的乘法口訣)
7、 統計
8、 數學廣角
9、 總復習
二年級下冊
1、 解決問題
2、 表內除法(一)(1、除法的初步認識、平均分、除法2、用2~6的乘法口訣求商)
3、 圖形與轉換(銳角和鈍角、平移和旋轉)
4、 表內除法(二)(用7、8、9的乘法口訣求商、解決問題)
5、 萬以內數的認識(1000以內數的認識、10000以內數的認識、整百整千數的加減法)
6、 克和千克
7、 萬以內的加法和減法(一)
8、 統計
9、 找規律
10、 總復習
三年級上冊
1、 測量(毫米、分米的認識,千米的認識,噸的認識)
2、 萬以內的加法和減法(二)(1、加法,2、減法3、加減法的驗算)
3、 四邊形(四邊形、平行四邊形、周長、長方形和正方形的周長、估計)
4、 有餘數的除法
5、 時、分、秒(秒的認識、時間的計算)
6、 多位數乘一位數(1、口算乘法,2、筆算乘法)
7、 分數的初步認識(1、分數的初步認識<幾分之一、幾分之幾>,2、分數的簡單計算)
8、 可能性
9、 數學廣角
10、 總復習
三年級下冊
1、 位置和方向
2、 除數是一位數的除法(1、口算除法,2、筆算乘法)
3、 統計(1、簡單的數據分析,2、平均數)
4、 年、月、日(年月日、24小時計時法)
5、 兩位數乘兩位數(1、口算乘法,2、筆算乘法)
6、 面積(面積和面積單位、長方形和正方形面積的計算、面積單位間的進率、公頃與平方千米)
7、 小數的初步認識(認識小數、簡單的小數加減法)
8、 解決問題
9、 數學廣角
10、 總復習
四年級上冊
1、 大數的認識(億以內數的認識、數的產生、億以上數的認識、計算工具的認識、用計算器計算)
2、 角的度量(直線、射線和角,角的度量、角的分類、畫角)
3、 三位數乘兩位數(1、口算乘法,2筆算乘法)
4、 平行四邊形和梯形(垂直與平行、平行四邊形與梯形)
5、 除數是兩位數的除法(1、口算除法,2、筆算除法)
6、 統計
7、 數學廣角(烙餅問題)
8、 總復習
四年級下冊
1、 四則運算
2、 位置和方向
3、 運算定律與簡便計算(1、加法運算定律,2、乘法運算定律,3、簡便計算)
4、 小數的意義和性質(1、小數的意義和讀寫法<小數的產生和意義、小數的讀法和寫法>,2、小數的性質和大小比較<小數的大小比較、小數點移動>,3、生活中的小數,4求一個小數的近似數)
5、 三角形(三角形的特性、三角形的分類、三角形的內角和、圖形的拼組)
6、 小數的加法和減法
7、 統計
8、 數學廣角
9、 總復習
五年級上冊
1、 小數乘法(小數乘整數、小數乘小數、積的近似數,連乘、乘加、乘減,整數乘法定律推廣到小數)
2、 小數除法(小數除以整數、一個數除以小數、商的近似數、循環小數、用計算器探索規律、解決問題)
3、 觀察物體
4、 簡易方程(1、用字母表示數,1、解建議方程<方程的意義、解方程、稍復雜的方程>)
5、 多邊形的面積(平行四邊形的面積、三角形的面積、梯形的面積、組合圖形的面積)
6、 統計與可能性
7、 數學廣角
8、 總復習
五年級下冊
1、 圖形的變換(軸對稱、旋轉、欣賞設計)
2、 因數與倍數(1、因數和倍數,2、2、5、3倍數的特徵,指數和和數)
3、 長方體和正方體(1、長方體和正方體的認識,2、長方體和正方體的表面積,3、長方體和正方體的體積、體積單位間的進率、容積和容積單位)
4、 分數的意義和性質(1、分數的意義<分數的產生\分數的意義\分數與除法>,2、真分數和假分數,3、分數的基本性質,4、約分<最大公因數、約分>,5、通分<最小公倍數、通分>,6、分數和小數的互化)
5、 分數的加法和減法(1、同分母分數加減法,2、異分母分數加減法,3、分數加減混合運算)
6、 統計
7、 數學廣角
8、 總復習
六年級上冊
1、 位置
2、 分數的乘法(1、分數乘法,2、解決問題,3、倒數的認識)
3、 分數的除法(1、分數的除法,2、解決問題,3、比和比的應用<比的意義、比的基本性質、比的應用>)
4、 圓(1、認識圓,2、圓的周長,3、圓的面積)
5、 百分數(1、百分數的意義和寫法,2、百分數和分數、小數的互化,3、用百分數解決問題、折扣、納稅、合理存款)
6、 統計
7、 數學廣角
8、 總復習
六年級下冊
1、 負數
2、 圓柱與圓錐(1、圓柱<圓柱的認識、圓柱的表面積、圓柱的體積>,2、圓錐<圓錐的認識、圓錐的體積>)
3、 比例(1、比例的意義和基本性質<比例的意義、比例的基本性質、解比例>,2、正比例和反比例的意義<成正比例的量、成反比例的量>3、比例的應用<比例尺、圖形的放大與縮小、用比例解決問題>)
4、 統計
5、 數學廣角
6、 整理和復習(1、數和代數、數的運算、式與方程、常見的量、比和比例,2、空間與圖形<圖形的認識和測量、圖形與變換、圖形與位置>、3、統計與可能性,4、綜合應用)
以上回答你滿意么?
④ 小學六年級數學的知識點總結
1到6年級數學公式
1 .每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2. 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3. 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4. 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5. 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
小學數學圖形計算公式
1. 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2. 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3. 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 .長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積=(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 .三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6. 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7. 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9. 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10. 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
和差問題的公式;
總數÷總份數=平均數
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題 :
1. 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題 :
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題 :
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題 :
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題 :
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題 :
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題:
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
⑤ 蘇教版小學六年級數學知識點整理
小學數學復習考試知識點匯總
一、小學生數學法則知識歸類
(一)筆算兩位數加法,要記三條
1、相同數位對齊;
2、從個位加起;
3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條
1、相同數位對齊;
2、從個位減起;
3、個位不夠減從十位退1,在個位加10再減。
(三)混合運算計演算法則
1、在沒有括弧的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;
2、在沒有括弧的算式里,有乘除法和加減法的,要先算乘除再算加減;
3、算式里有括弧的要先算括弧裡面的。
(四)四位數的讀法
1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;
2、中間有一個0或兩個0隻讀一個「零」;
3、末位不管有幾個0都不讀。
(五)四位數寫法
1、從高位起,按照順序寫;
2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫「0」。
(六)四位數減法也要注意三條
1、相同數位對齊;
2、從個位減起;
3、哪一位數不夠減,從前位退1,在本位加10再減。
(七)一位數乘多位數乘法法則
1、從個位起,用一位數依次乘多位數中的每一位數;
2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則
1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;
2、除數除到哪一位,就把商寫在那一位上面;
3、每求出一位商,餘下的數必須比除數小。
(九)一個因數是兩位數的乘法法則
1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
3、然後把兩次乘得的數加起來。
(十)除數是兩位數的除法法則
1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,
2、除到被除數的哪一位就在哪一位上面寫商;
3、每求出一位商,餘下的數必須比除數小。
(十一)萬級數的讀法法則
1、先讀萬級,再讀個級;
2、萬級的數要按個級的讀法來讀,再在後面加上一個「萬」字;
3、每級末位不管有幾個0都不讀,其它數位有一個0或連續幾個零都只讀一個「零」。
(十二)多位數的讀法法則
1、從高位起,一級一級往下讀;
2、讀億級或萬級時,要按照個級數的讀法來讀,再往後面加上「億」或「萬」字;
3、每級末尾的0都不讀,其它數位有一個0或連續幾個0都只讀一個零。
(十三)小數大小的比較
比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計演算法則
計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最後在得數里對齊橫線上的小數點位置,點上小數點。
(十五)小數乘法的計演算法則
計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則
除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有餘數,就在余數後面添0再繼續除。
(十七)除數是小數的除法運演算法則
除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然後按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟
1、弄清題意,並找出已知條件和所求問題,分析題里的數量關系,確定先算什麼,再算什麼,最後算什麼;
2、確定每一步該怎樣算,列出算式,算出得數;
3、進行檢驗,寫出答案。
(十九)列方程解應用題的一般步驟
1、弄清題意,找出未知數,並用X表示;
2、找出應用題中數量之間的相等關系,列方程;
3、解方程;
4、檢驗、寫出答案。
(二十)同分母分數加減的法則
同分母分數相加減,分母不變,只把分子相加減。
(二十一)同分母帶分數加減的法則
帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合並起來。
(二十二)異分母分數加減的法則
異分母分數相加減,先通分,然後按照同分母分數加減的法則進行計算。
(二十三)分數乘以整數的計演算法則
分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計演算法則
分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。
(二十五)一個數除以分數的計演算法則
一個數除以分數,等於這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法
把小數化成百分數,只要把小數點向右移動兩位,同時在後面添上百分號;
把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。
(二十七)把分數化成百分數和把百分數化成分數的方法
把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;
把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類
1、什麼是圖形的周長?
圍成一個圖形所有邊長的總和就是這個圖形的周長。
2、什麼是面積?
物體的表面或圍成的平面圖形的大小叫做他們的面積。
3、加法各部分的關系:
一個加數=和-另一個加數
4、減法各部分的關系:
減數=被減數-差 被減數=減數+差
5、乘法各部分之間的關系:
一個因數=積÷另一個因數
6、除法各部分之間的關系:
除數=被除數÷商 被除數=商×除數
7、角
(1)什麼是角?
從一點引出兩條射線所組成的圖形叫做角。
(2)什麼是角的頂點?
圍成角的端點叫頂點。
(3)什麼是角的邊?
圍成角的射線叫角的邊。
(4)什麼是直角?
度數為90°的角是直角。
(5)什麼是平角?
角的兩條邊成一條直線,這樣的角叫平角。
(6)什麼是銳角?
小於90°的角是銳角。
(7)什麼是鈍角?
大於90°而小於180°的角是鈍角。
(8)什麼是周角?
一條射線繞它的端點旋轉一周所成的角叫周角,一個周角等於360°.
8、(1)什麼是互相垂直?什麼是垂線?什麼是垂足?
兩條直線相交成直角時,這兩條線互相垂直,其中一條直線叫做另一條直線的垂線,這兩條直線的交點叫做垂足。
(2)什麼是點到直線的距離?
從直線外一點向一條直線引垂線,點和垂足之間的距離叫做這點到直線的距離。
9、三角形
(1)什麼是三角形?
有三條線段圍成的圖形叫三角形。
(2)什麼是三角形的邊?
圍成三角形的每條線段叫三角形的邊。
(3)什麼是三角形的頂點?
每兩條線段的交點叫三角形的頂點。
(4)什麼是銳角三角形?
三個角都是銳角的三角形叫銳角三角形。
(5)什麼是直角三角形?
有一個角是直角的三角形叫直角三角形。
(6)什麼是鈍角三角形?
有一個角是鈍角的三角形叫鈍角三角形。
(7)什麼是等腰三角形?
兩條邊相等的三角形叫等腰三角形。
(8)什麼是等腰三角形的腰?
有等腰三角形里,相等的兩個邊叫做等腰三角形的腰。
(9)什麼是等腰三角形的頂點?
兩腰的交點叫做等腰三角形的頂點。
(10)什麼是等腰三角形的底?
在等腰三角形中,與其它兩邊不相等的邊叫做等腰三角形的底。
(11)什麼是等腰三角形的底角?
底邊上兩個相等的角叫等腰三角形的底角。
(12)什麼是等邊三角形?
三條邊都相等的三角形叫等邊三角形,也叫正三角形。
(13)什麼是三角形的高?什麼叫三角形的底?
從三角形的一個頂點向它的對邊引一條垂線,頂點和垂足之間的線段叫做三角形的高,這個頂點的對邊叫三角形的底。
(14)三角形的內角和是多少度?
三角形內角和是180°.
10、四邊形
(1)什麼是四邊形?
有四條線段圍成的圖形叫四邊形。
(2)什麼是平等四邊形?
兩組對邊分別平行的四邊形叫做平行四邊形。
(3)什麼是平行四邊形的高?
從平行四邊形一條邊上的一點到對邊引一條垂線,這個點和垂足之間的線段叫做四邊形的高。
(4)什麼是梯形?
只有一組對邊平行的四邊形叫做梯形。
(5)什麼是梯形的底?
在梯形里互相平等的一組邊叫梯形的底(通常較短的底叫上底,較長的底叫下底)。
(6)什麼是梯形的腰?
在梯形里,不平等的一組對邊叫梯形的腰。
(7)什麼是梯形的高?
從上底的一點往下底引一條垂線,這個點和垂足之間的線段叫做梯形的高。
(8)什麼是等腰梯形?
兩腰相等的梯形叫做等腰梯形。
11、什麼是自然數?
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……是自然數(自然數都是整數)。
12、什麼是四捨五入法?
求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數捨去,如果是5或者比5大,去掉尾數後,要在它的前一位加1。這種求近似數的方法,叫做四捨五入法。
13、加法意義和運算定律
(1)什麼是加法?
把兩個數合並成一個數的運算叫加法。
(2)什麼是加數?
相加的兩個數叫加數。
(3)什麼是和?
加數相加的結果叫和。
(4)什麼是加法交換律?
兩個數相加,交換加數的位置後,它的和不變,這叫做加法交換律。
14、什麼是減法?
已知兩個數的和與其中的一個加數,求另一個加數的運算叫做減法。
15、什麼是被減數?什麼是減數?什麼叫差?
在減法中已知的和叫被減數,減去的已知數叫減數,所求的未知數叫差。
16、加法各部分間的關系:
和=加數+加數 加數=和-另一加數
17、減法各部分間的關系:
差=被減數-減數 減數=被減數-差 被減數=減數+差
18、乘法
(1)什麼是乘法?
求幾個相同加數的和的簡便運算叫乘法。
(2)什麼是因數?
相乘的兩個數叫因數。
(3)什麼是積?
因數相乘所得的數叫積。
(4)什麼是乘法交換律?
兩個因數相乘,交換因數的位置,它們的積不變,這叫乘法交換律。
(5)什麼是乘法結合律?
三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把後兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
19、除法
(1)什麼是除法?
已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
(2)什麼是被除數?
在除法中,已知的積叫被除數。
(3)什麼是除數?
在除法中,已知的一個因數叫除數。
(4)什麼是商?
在除法中,求出的未知因數叫商。
20、乘法各部分的關系:
積=因數×因數 一個因數=積÷另一個因數
21、(1)除法各部分間的關系:
商=被除數÷除數 除數=被除數÷商
(2)有餘數的除法各部分間的關系:
被除數=商×除數+余數
22、什麼是名數?
通常量得的數和單位名稱合起來的數叫名數。
23、什麼是單名數?
只帶有一個單位名稱的數叫單名數。
24、什麼是復名數?
有兩個或兩個以上單位名稱的數叫復名數。
25、什麼是小數?
仿照整數的寫法,寫在整數個位的右面,用圓點隔開,用來表示十分之幾、百分之幾、千分之幾……的數叫小數。
26、什麼是小數的基本性質?
小數的末尾添上零或者去掉零,小數大小不變,這叫小數的基本性質。
27、什麼是有限小數?
小數部分的位數是有限的小數叫有限小數。
28、什麼是無限小數?
小數部分的位數是無限的小數叫無限小數。
29、什麼是循環節?
一個循環小數的部分依次不斷重復出現的數叫做這個數的循環節。
30、什麼是純循環小數?
循環節從小數第一位開始的叫純循環小數。
31、什麼是混循環小數?
循環節不是從小數部分第一位開始的叫做混循環小數。
32、什麼是四則運算?
我們把學過的加、減、乘、除四種運算統稱四則運算。
33、什麼是方程?
含有未知數的等式叫方程。
34、什麼是解方程?
求方程解的過程叫解方程。
35、什麼是倍數?什麼叫約數?
如果a能被b整除,a就是b的倍數,b就叫a的約數(或a的因數)。
36、什麼樣的數能被2整除?
個位上是0、2、4、6、8的數都能被2整除。
37、什麼是偶數?
能被2整除的數叫偶數。
38、什麼是奇數?
不能被2整除的數叫奇數。
39、什麼樣的數能被5整除?
個位上是0或5的數能被5整除。
40、什麼樣的數能被3整除?
一個數的各位上的和能被3整除,這個數就能被3整除。
41、什麼是質數(或素數)?
一個數如果只有1和它本身兩個約數,這樣的數叫質數。
42、什麼是合數?
一個數除了1和它本身還有別的約數,這樣的數叫合數。
43、什麼是質因數?
每個合數都可以寫成幾個質數相乘的形式。其中每個質數都是這個合數的因數,叫做這個合數的質因數。
44、什麼是分解質因數?
把一個合數用質因數相乘的形式表示出來叫做分解質因數。
45、什麼是公約數?什麼叫最大公約數?
幾個數公有的約數叫公約數。其中最大的一個叫最大公約數。
46、什麼是互質數?
公約數只有1的兩個數叫互質數。
47、什麼是公倍數?什麼是最小公倍數?
幾個數公有的倍數叫這幾個數的公倍數。其中最小的一個叫這幾個數的最小公倍數。
48、分數
(1)什麼是分數?
把單位1平均分成若干份,表示這樣的一份或者幾份的數叫分數。
(2)什麼是分數線?
在分數里中間的橫線叫分數線。
(3)什麼是分母?
分數線下面的部分叫分母。
(4)什麼是分子?
分數線上面的部分叫分子。
(5)什麼是分數單位?
把單位「1」平均分成若干份,表示其中的一份叫分數單位。
49、怎麼比較分數大小?
(1)分母相同的兩個分數,分子大的分數比較大。
(2)分子相同的兩個分數,分母小的分子比較大。
(3)什麼是真分數?
分子比分母小的分數叫真分數。
(4)什麼是假分數?
分子比分母大或者分子和分母相等的分數叫假分數。
(5)什麼是帶分數?
由整分數和真分數合成的數通常叫帶分數。
(6)什麼是分數的基本性質?
分數的分子和分母同時乘或除以相同的數(0除外),分數大小不變,這就是分數的基本性質。
(7)什麼是約分?
把一個分數化成同它相等,但分子、分母都比較小的數叫做約分。
(8)什麼是最簡分數?
分子、分母是互質數的分數叫最簡分數。
50、比
(1)什麼是比?
兩個數相除又叫兩個數的比。
(2)什麼是比的前項?
比號前面的數叫比的前項。
(3)什麼是比的後項?
比號後面的數叫比的後項。
(4)什麼是比值?
比的前項除以後項所得的商叫比值。
(5)什麼是比的基本性質?
比的前項和後項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
51、長方體和正方體
(1)什麼是棱?
兩個面相交的邊叫棱。
(2)什麼是頂點?
三條棱相交的點叫頂點。
(3)什麼是長方體的長、寬、高?
相交於一個頂點的三條棱的長度分別叫長方體的長、寬、高。
(4)什麼是正方體(立方體)?
長寬高都相等的長方體叫正方體(或立方體)。
(5)什麼是長方體的表面積?
長方體六個面的總面積叫長方體的表面積。
(6)什麼是物體體積?
物體所佔空間的大小叫做物體的體積。
52、圓
(1)什麼是圓心?
圓中心的點叫圓心。
(2)什麼是半徑?
連接圓心和圓上任意一點的線段叫半徑。
(3)什麼是直徑?
通過圓心、並且兩端都在圓上的線段叫直徑。
(4)什麼是圓的周長?
圍成圓的曲線叫圓的周長。
(5)什麼是圓周率?
我們把圓的周長和直徑的比值叫圓周率。
(6)什麼是圓的面積?
圓所圍平面的大小叫圓的面積。
(7)什麼是扇形?
一條弧和經過這條弧兩端的兩條半徑所圍成的圖形叫扇形。
(8)什麼是弧?
在圓上兩點之間的部分叫弧。
(9)什麼是圓心角?
頂點在圓心上的角叫圓心角。
(10)什麼是對稱圖形?
如果一個圖形沿著一條直線對折,兩側圖形能夠完全重合,這樣的圖形就是對稱圖形。
53、什麼是百分數?
表示一個數是另一個數百分之幾的數叫百分數,百分數也叫百分率或百分比。
54、比例
(1)什麼是比例?
表示兩個比相等的式子叫比例。
(2)什麼是比例的項?
組成比例的四個數叫比例的項。
(3)什麼是比例外項?
兩端的兩項叫比例外項。
(4)什麼是比例內項?
中間的兩項叫比例內項。
(5)什麼是比例的基本性質?
在比例中兩個外項的積等於兩個內項的積。
(6)什麼是解比例?
求比例中的未知項叫解比例。
(7)什麼是正比例關系?
兩種相關的量,一種變化,另一種量也變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量叫正比例的量,它們的關系叫正比例關系。
(8)什麼是反比例關系?
兩種相關的量,一種變化,另一種也隨著變化,如果這兩種量中相對應的積一定,這兩種量叫反比例的量,它們的關系成反比例關系。
55、圓柱
(1)什麼是圓柱底面?
圓柱的上下兩個面叫圓柱的底面。
(2)什麼是圓柱的側面?
圓柱的曲面叫圓柱的側面。
(3)什麼是圓柱的高?
圓柱兩個底面的距離叫圓柱的高。
三、小學數學量的計算單位及進率歸類
1、長度計量單位及進率:千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米 1厘米=10毫米
2、面積計量單位及進率:平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃 1平方千米=1000000平方米
1公頃=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米
3、體積容積計量單位及進率:立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米 1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
4、質量單位及進率:噸、千克、公斤、克
1噸=1000千克 1千克=1公斤 1千克=1000克
5、時間單位及進率:世紀、年、月、日、小時、分、秒
1世紀=100年 1年=12月 1天=24小時 1小時=60分 1分=60秒
(31天的月份有1、3、5、7、8、10、12月份,
30天的月份有4、6、9、11月份,
平年2月28天,閏年2月29天)
四、常用計算公式表
1、長方形面積=長×寬,計算公式S=ab
2、正方形面積=邊長×邊長,計算公式S=a×a=a2
3、長方形周長=(長+寬)×2,計算公式C=(a+b)×2
4、正方形周長=邊長×4,計算公式C=4a
5、平行四邊形面積=底×高,計算公式S=ah
6、三角形面積=底×高÷2,計算公式S=a×h÷2
7、梯形面積=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2
8、長方體體積=長×寬×高,計算公式V=abh
9、圓的面積=圓周率×半徑平方,計算公式V=πr2
10、正方體體積=棱長×棱長×棱長,計算公式V=a3
11、長方體和正方體的體積都可以寫成底面積×高,計算公式V=sh
12、圓柱的體積=底面積×高,計算公式V=sh
1、數據的收集和整理
2、表的意義:把收集到的數據整理以後製成表格,用來反映情況,分析具體問題,這樣的表格叫做統計表。
3、常見統計表的分類:
(1)、單式統計表:只含有一個統計項目的統計表。
(2)、復式統計表:含有2個或2個以上統計項目的統計表。
(3)、百分數統計表:不僅表明各統計項目的具體數量,而且表明數量間的百分比的統計表。
4、統計表的製作步驟和方法。
(1)收集數據、整理數據。
(2)根據資料和製作表要求確定統計表的格式和項目。
(3)根據整理好的數據填表。
(4)填寫好總計和合計。
(5)寫出製表的名稱和製表的時間,必要時註明製表人。
5、條形統計圖的意義:用一個單位長度表示一定的數量,根據數量畫出長短不一的直條,然後把直條按照一定的順序排列起來。
6、折線統計圖的意義:用一個單位長度表示一定的數量,根據數量的多少描出各點,然後把各點用線段順次連起來。
7、扇形統計圖:用一個圓表示總量,用圓中大小不同的扇形表示各部分數量所佔的百分比。
8、統計量:包括平均數、眾數、中位數。
9、統計平均數的意義:平均數能較好地反映一組數據的整體水平。
10、眾數:在一組數據中,出現次數最多的那個數據叫眾數。
11、中位數:把收集到的某一對象的有關數據,按大小順序排列,處於中間位置的那個數據(或中間兩個數據的平均數)叫中位數。
12、確定現象與不確定現象的認識a、不確定現象:生活中,有些事的發生是不確定的,一般用「可能發生」來描述。
13、確定現象:生活中,有些事情的發生是確定的。一般用「一定發生」或「不可能發生」來描述。
14、可能性大小的表示:用數字表示「一定能」「不可能」。 「一定能」這種可能性用1來表示,「不可能」用0來表示。
1.圓錐的特徵:由2個面圍成,一個是底面,一個是曲面(展開後是一個扇形) 只有一條高。
2.圓柱的體積:
公式的推導:利用轉化的策略。
把圓柱的底面平均分成16、32、64……無限分割,切開後拼成的物體越來越接近長方體。根據長方體的體積公式推導出圓柱的體積公式。
V=sh(底面積×高)
當然在計算圓柱體積的過程中,還有一些變式。如已知半徑、直徑、底面周長等。
例如:
已知底面半徑是10厘米,高是12厘米,求圓柱的體積。
已知底面直徑是4分米,高是8分米,求圓柱的體積。
已知圓柱的底面周長是12.56分米,高5分米,求圓柱的體積。
3.圓錐的體積:
通過操作觀察討論獲得:圓錐的體積是與它等底等高的圓柱體積的1/3()圓柱的體積是與它等底等高圓錐體積的3倍。
V=1/3sh
4.關於圓錐的一些拓展提高,將會在下面的學習中遇到。
(1)等底、等高的圓柱體積與圓錐的體積比是3:1
一、知識點:1 正方形
C周長 S面積 a邊長
周長=邊長×4
C=4a
面積=邊長×邊長
S=a×a
2 正方體
V:體積 a:棱長
表面積=棱長×棱長×6
S表=a×a×6
體積=棱長×棱長×棱長
V=a×a×a
3 長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
1 每份數×份數=總數
總數÷每份數=份數
總數÷份數=每份數
2 1倍數×倍數=幾倍數
幾倍數÷1倍數=倍數
幾倍數÷倍數=1倍數
3 速度×時間=路程
路程÷速度=時間
路程÷時間=速度
4 單價×數量=總價
總價÷單價=數量
總價÷數量=單價
5 工作效率×工作時間=工作總量
工作總量÷工作效率=工作時間
工作總量÷工作時間=工作效率
6 加數+加數=和
和-一個加數=另一個加數
7 被減數-減數=差
被減數-差=減數
差+減數=被減數
8 因數×因數=積
積÷一個因數=另一個因數
9 被除數÷除數=商
被除數÷商=除數
商×除數=被除數
⑥ 小學1到6年級數學知識重點
(一)、數和數的運算(20課時)
這節重點確定在整除的一系列概念和分數、小數的基本性質、四則運算和簡便運算上。
1、系統地整理有關數的內容,建立概念體系,加強概念的理解(4課時),包括「數的意義」、「數的讀法與寫法」、「數的改寫」、「數的大小比較」、「數的整除」等知識點。
2、溝通內容間的聯系,促進整體感知(2課時),包括「分數、小數的性質」、「整除的概念比較」。
3、全面概念四則運算和計算方法,提高計算水平(6課時),包括「四則運算的意義和法則」、「四則混合運算」。
4、利用運算定律,掌握簡便運算,提高計算效率(5課時),包括「運算定律和簡便運算」。
5、精心設計練習,提高綜合計算能力(3課時)。
(二)、代數的初步知識(10課時)
本節重點內容應放在掌握簡易方程及比和比例的辨析。
1、形成系統知識、加強聯系(3課時),包括「字母表示數」、「比和比例」、「正、反比例」等知識點。
2、抓解題訓練,提高解方程和解比例的能力(4課時),包括「簡易方程」、「解比例」。
3、 辨析概念,加深理解(3課時),包括「比和比例」、「正比例和反比例」。
(三)、應用題(30課時)
這節重點應放在應用題的分析和解題技能的發展上,難點內容是分數應用題。
1、簡單應用題的分析與整理(3課時)。
2、復合應用題的分析與整理(6課時)。
3、列方程解應用題的分析與整理(5課時)。
4、分數應用題的分析與整理(10課時)。
5、用比例知識解答應用題的分析與整理(3課時)。
6、應用題的綜合訓練(3課時)。
(四)、量的計量
本節重點放在名數的改寫和實際觀念上。
1、整理量的計量知識結構(2課時),包括「長度、面積、體積單位」、「重量與時間單位」。
2、鞏固計量單位,強化實際觀念(4課時),包括「名數的改寫」。
3、綜合訓練與應用(1課時)。
(五)、幾何初步知識(12課時)
本節重點放在對特徵的辨析和對公式的應用上。
1、強化概念理解和系統化(2課時),包括「平面圖形的特徵」、「立體圖形的特徵」。
2、准確把握圖形特徵,加強對比分析,揭示知識間的聯系與區別(4課時),包括「平面圖形的周長與面積」、「立體圖形的表面積和體積」。
3、加強對公式的應用,提高掌握計算方法(5課時)。能實現周長、面積、體積的正確計算。
4、整體感知、實際應用(1課時)。
(六)、簡單的統計(6課時)
本節重點結合考綱要求應放在對圖表的認識和理解上,能回答一些簡單的問題。
1、求平均數的方法(1課時)。
2、加深統計圖表的特點和作用的認識(3課時),包括「統計表」、「統計圖」。
3、進一步對圖表分析和回答問題(2課時),包括填圖和根據圖表回答問題。
五、復習中應注意的問題
1、對於小學數學畢業總復習內容、過程和時間的計劃安排,在實際教學中要根據實際情況作出調整。
2、要注意小學數學知識與中學知識結構上的銜接,要為中學的學習做些鋪墊,適當拓展知識點。
3、要把握考綱要求,根據實際需要對計劃的復習內容、過程和時間上做出調整。既要全面學到知識,又要掌握復習知識的深淺程度。
北師:
小學數學四年級前四個單元知識點總結
1、路程速度時間公式:s=vt v=s÷t t=s÷v
2、正方形周長公式:C=4a
3、正方形面積公式:S=a2
4、長方形周長公式:C=2(a+b)
5、長方形面積公式:S=ab
6、加法交換律:a+b=b+a
7、加法結合律:a+b+c=a+(b+c)
8、乘法交換律:a·b=b·a
9、乘法結合律:〔a·b〕·c=a·〔b·c〕
10、乘法分配律:〔a+b〕·c=a·c+b·c
11、角的大小分類,從小到大是:銳角、直角、鈍角、平角、周角
12、銳角是小於90度的角,直角是90度,鈍角是大於90度而小於平角的角,平角是180度的角,周角是360度的角。
13、三角形按角分類:銳角三角形,直角三角形,鈍角三角形
14、三個角都是銳角是銳角的三角形叫銳角三角形;有一個角是直角的三角形叫直角三角形;有一個角是鈍角的三角形叫鈍角三角形。
15、三角形按邊分類有:不等邊三角形,等腰三角形,等邊三角形
16、從三角形的一個頂點到它的對邊作一條垂線,頂點和垂足之間的線段叫做三角形的高,這條對邊叫做三角形的底。
17、小數的計數單位是十分之一,百分之一,千分之一--------記作0.1,0.01,0.001-----
18、小數的性質:小數的末尾添上「0」或去掉「0」,小數的大小不變。
20、1平角=2直角 1周角=2平角=4直角
21、三角形具有穩定性
22、三角形任意兩邊之和大於第三邊
23、三角形的內角和是180度
24、學會畫角
25、會比較小數的大小
26、單位換算
長度單位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米
質量單位:1千克=1000克 1噸=1000千克=1000000克
錢的換算:1元=10角=100分 1角=10分
時間單位:1時=60分=3600秒 1分=60秒
1年=12月=365天或366天 1天=24小時
一三五七八十臘,三十一天永不差。四六九十一三十,平年二月二十八,閏年二月二十九。
面積單位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米
1公頃=10000平方米 1平方千米=100公頃=1000000平方米
周長公式:長方形周長=(長+寬)×2 C=2(a+b)
正方形周長=邊長×4 C=4a
圓的周長=圓周率×直徑 C=πd C =2πr
半圓的周長=圓周長的一半+直徑 πr+d
面積公式:長方形面積=長×寬 S=ab
正方形面積=邊長×邊長 S=a2
平行四邊形面積=底×高 S=ah
三角形面積=底×高÷2 S=ah÷2
梯形面積=(上底+下底)×高÷2 S=(a+b)h÷2
圓的面積=圓周率×半徑的平方 S=πr2
圓柱的側面積=底面周長×高 S=Ch
表面積公式:長方體表面積=(長×寬+長×高+寬×高)×2
S=(ab+ah+bh)×2
正方體表面積=邊長×邊長×6 S=6a2
圓柱體側面積=底面周長×高 S=C h
圓柱體表面積=側面積+底面積×2 S=S側+2 S底
體積公式:長方體體積=長×寬×高 V=abh
正方體體積=棱長×棱長×棱長 V=a3
圓柱體體積=底面積×高 V=Sh
(將近似長方體平放得到:圓柱體體積=側面積的一半×半徑 V=Ch÷2×r=2πr÷2×r=πr×r)
圓錐體體積=底面積×高÷3 V=Sh÷3或1/3Sh
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
1、 每份數×份數=總數 總數÷每份數=份數總數÷份數=每份數
2、 1倍數×倍數=幾倍數 幾倍數÷1倍數=倍數幾倍數÷倍數=1倍數
3、 速度×時間=路程 路程÷速度=時間 路程÷時間=速度
4、 單價×數量=總價 總價÷單價=數量 總價÷數量=單價
5、 工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間工作總量÷工作時間=工作效率
6、 加數+加數=和 和-一個加數=另一個加數
7、 被減數-減數=差 被減數-差=減數 差+減數=被減數
8、 因數×因數=積 積÷一個因數=另一個因數
9、 被除數÷除數=商 被除數÷商=除數 商×除數=被除數
小學數學圖形計算公式
1 、正方形 C周長 S面積 a邊長 周長=邊長×4 C=4a 面積=邊長×邊長 S=a×a
2 、正方體 V:體積 a:棱長 表面積=棱長×棱長×6 S表=a×a×6 體積=棱長×棱長×棱長 V=a×a×a
3 、長方形
C周長 S面積 a邊長
周長=(長+寬)×2
C=2(a+b)
面積=長×寬
S=ab
4 、長方體
V:體積 s:面積 a:長 b: 寬 h:高
(1)表面積(長×寬+長×高+寬×高)×2
S=2(ab+ah+bh)
(2)體積=長×寬×高
V=abh
5 三角形
s面積 a底 h高
面積=底×高÷2
s=ah÷2
三角形高=面積 ×2÷底
三角形底=面積 ×2÷高
6 平行四邊形
s面積 a底 h高
面積=底×高
s=ah
7 梯形
s面積 a上底 b下底 h高
面積=(上底+下底)×高÷2
s=(a+b)× h÷2
8 圓形
S面積 C周長 ∏ d=直徑 r=半徑
(1)周長=直徑×∏=2×∏×半徑
C=∏d=2∏r
(2)面積=半徑×半徑×∏
9 圓柱體
v:體積 h:高 s;底面積 r:底面半徑 c:底面周長
(1)側面積=底面周長×高
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
(4)體積=側面積÷2×半徑
10 圓錐體
v:體積 h:高 s;底面積 r:底面半徑
體積=底面積×高÷3
總數÷總份數=平均數
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者 和-小數=大數)
差倍問題
差÷(倍數-1)=小數
小數×倍數=大數
(或 小數+差=大數)
植樹問題
1 非封閉線路上的植樹問題主要可分為以下三種情形:
⑴如果在非封閉線路的兩端都要植樹,那麼:
株數=段數+1=全長÷株距-1
全長=株距×(株數-1)
株距=全長÷(株數-1)
⑵如果在非封閉線路的一端要植樹,另一端不要植樹,那麼:
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
⑶如果在非封閉線路的兩端都不要植樹,那麼:
株數=段數-1=全長÷株距-1
全長=株距×(株數+1)
株距=全長÷(株數+1)
2 封閉線路上的植樹問題的數量關系如下
株數=段數=全長÷株距
全長=株距×株數
株距=全長÷株數
盈虧問題
(盈+虧)÷兩次分配量之差=參加分配的份數
(大盈-小盈)÷兩次分配量之差=參加分配的份數
(大虧-小虧)÷兩次分配量之差=參加分配的份數
相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
濃度問題
溶質的重量+溶劑的重量=溶液的重量
溶質的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質的重量
溶質的重量÷濃度=溶液的重量
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)
利息=本金×利率×時間
稅後利息=本金×利率×時間×(1-20%)
長度單位換算
1千米=1000米 1米=10分米
1分米=10厘米 1米=100厘米
1厘米=10毫米
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
重量單位換算
1噸=1000 千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
時間單位換算
1世紀=100年 1年=12月
大月(31天)有:1\3\5\7\8\10\12月
小月(30天)的有:4\6\9\11月
平年2月28天, 閏年2月29天
平年全年365天, 閏年全年366天
1日=24小時 1時=60分
1分=60秒 1時=3600秒
小學數學幾何形體周長 面積 體積計算公式
1、長方形的周長=(長+寬)×2 C=(a+b)×2
2、正方形的周長=邊長×4 C=4a
3、長方形的面積=長×寬 S=ab
4、正方形的面積=邊長×邊長 S=a.a= a
5、三角形的面積=底×高÷2 S=ah÷2
6、平行四邊形的面積=底×高 S=ah
7、梯形的面積=(上底+下底)×高÷2 S=(a+b)h÷2
8、直徑=半徑×2 d=2r 半徑=直徑÷2 r= d÷2
9、圓的周長=圓周率×直徑=圓周率×半徑×2 c=πd =2πr
10、圓的面積=圓周率×半徑×半徑
⑦ 小學六年級數學畢業考必考的知識點是什麼
小學數學總復習資料
【常用的數量關系】
1、每份數×份數=總數; 總數÷每份數=份數 ; 總數÷份數=每份數
2、1倍數×倍數=幾倍數; 幾倍數÷1倍數=倍數; 幾倍數÷倍數=1倍數
3、速度×時間=路程 ; 路程÷速度=時間 ; 路程÷時間=速度
4、單價×數量=總價; 總價÷單價=數量 ; 總價÷數量=單價
5、工作效率×工作時間=工作總量; 工作總量÷工作效率=工作時間;
工作總量÷工作時間=工作效率;
6、加數+加數=和; 和-一個加數=另一個加數
7、被減數-減數=差; 被減數-差=減數; 差+減數=被減數
8、因數×因數=積; 積÷一個因數=另一個因數
9、被除數÷除數=商 ; 被除數÷商=除數; 商×除數=被除數
【小學數學圖形計算公式】
1、正方形(C:周長, S:面積, a:邊長)
周長=邊長×4; C=4a
面積=邊長×邊長; S=a×a
2、正方體(V:體積, a:棱長)
表面積=棱長×棱長×6; S表=a×a×6
體積=棱長×棱長×棱長; V= a×a×a
3、長方形(C:周長, S:面積, a:邊長, b:寬 )
周長=(長+寬)×2; C=2(a+b)
面積=長×寬 ; S=a×b
4、長方體(V:體積, S:面積, a:長, b:寬, h:高)
(1)表面積=(長×寬+長×高+寬×高)×2; S=2(ab+ah+bh)
(2)體積=長×寬×高; V=abh
5、三角形(S:面積, a:底, h:高)
面積=底×高÷2 ; S=ah÷2
三角形的高=面積×2÷底 三角形的底=面積×2÷高
6、平行四邊形(S:面積, a:底, h:高)
面積=底×高; S=ah
7、梯形(S:面積, a:上底, b:下底, h:高)
面積=(上底+下底)×高÷2; S=(a+b)×h÷2
8、圓形(S:面積, C:周長,π:圓周率, d:直徑, r:半徑 )
(1)周長=π×直徑π=2×π×半徑; C=πd=2πr
(2)面積=π×半徑×半徑; S= πr2
9、圓柱體(V:體積, S:底面積, C:底面周長, h:高, r:底面半徑 )
(1)側面積=底面周長×高=Ch=πdh=2πrh
(2)表面積=側面積+底面積×2
(3)體積=底面積×高
10、圓錐體(V:體積, S:底面積, h:高, r:底面半徑 )
體積=底面積×高÷3
11、總數÷總份數=平均數
12、和差問題的公式:已知兩數的和及它們的差,求這兩個數各是多少的應用題,叫做和差應用題,簡稱和差問題。
(和+差)÷2=大數; (和-差)÷2=小數
13、和倍問題的公式:已知兩個數的和與兩個數的倍數關系,求兩個數各是多少的應用題,我們通常叫做和倍問題。
和÷(倍數-1)= 小數; 小數×倍數=大數(或者:和-小數=大數)
14、差倍問題的公式:差倍問題即已知兩數之差和兩數之間的倍數關系,求出兩數。
差÷(倍數-1)= 小數; 小數×倍數=大數(或者:小數+差=大數)
15、相遇問題: 相遇路程=速度和×相遇時間;
相遇時間=相遇路程速度和;
速度和=相遇路程÷相遇時間
16、濃度問題
溶質的重量+溶劑的重量=溶液的重量; 溶液的重量×濃度=溶質的重量;
溶質的重量÷溶液的重量×100%=濃度; 溶質的重量÷濃度=溶液的重量
17、利潤與折扣問題: 利潤=售出價-成本; 利潤率=利潤÷成本×100%;
利息=本金×利率×時間; 漲跌金額=本金×漲跌百分比;
稅後利息=本金×利率×時間×(1-利息稅)
【常用單位換算】
(一)長度單位換算
1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米
(二)面積單位換算: 1平方千米=100公頃; 1公頃=10000平方米;
1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米
(三)體積(容積)單位換算:1立方米=1000立方分米; 1立方分米=1000立方厘米;
1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升
(四)重量單位換算: 1噸=1000千克; 1千克=1000克; 1千克=1公斤
(五)人民幣單位換算: 1元=10角; 1角=10分; 1元=100分
(六)時間單位換算: 1世紀=100年; 1年=12月;
【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】
【平年:2月有28天;全年有365天】; 【閏年:2月有29天;全年有366天】
1日=24小時; 1時=60分=3600秒; 1分=60秒;